
Writing Control Law Code for the UAV platform
UAV research group

University of Minnesota, Twin Cities

The control laws for the UAV platform are implemented in C code. The same control code is used by
the Software in the Loop simulation (SIL), Processor in the Loop simulation (PIL) and flight computer
of the UAV. The control code must implement the function prototypes defined in
control_law_interface.h, which can be found in the folder /Software/FlightCode/control/. The functions
are listed as follows:

extern double *get_control_outputs(double * feedback, double *reference , double
time, double sample_time)
This function returns a double array containing the outputs of the controller. The array should contain
the actuator commands [aileron, elevator, rudder, throttle]. See UAV_controllaw_ICD.pdf for a full
description of the control law I/O.

double *feedback : Double array that contains the feedback signals necessary for the controller. In the
UAV platform, it contains the body frame angles, angular rates, and accelerations. See
UAV_controllaw_ICD.pdf for a full description of the control law I/O.

double *reference: Double array containing the reference signals needed by the controller. For the
current UAV platform it contains the pitch and roll reference angles.

double time: Current time

double sample_time: Controller sample time.

extern void reset_control()
This function resets the controller’s internal variables to their initial values, such as an integrator state.
The exact form of this function will vary depending on the controller.

Example Control Codes
Examples and baseline code can be found in the folder Software/FlightCode/control/; a brief
explanation about these implementations is given as follows:

empty_control.c: Provides a basic layout for the control code. The position where the control code
needs to be written is indicated in comments.

baseline_control.c: Baseline PI controller which uses angles and angular rates feedback. It has an
integral action on the position errors (angles) and an integrator anti-windup strategy to handle actuator
saturations. Has a simple yaw damper for the directional axis.

lqr_control.c: LQR controller that uses angles and angular rates feedback and an integrator anti-
windup strategy to handle actuator saturation. Lateral-direction axes (aileron-rudder) are coupled.

Compiling a Control Law Code
The compilation process for software in the loop and hardware are explained in the following sections.

SIL simulation
Requirements: Matlab - mex utility linked to a C compiler. Type mex -setup in the Matlab
command line to configure the mex utility.

A schematic of the Software in the Loop Simulation interaction with the C code implementation is
presented in Figure 1.

SIL and C code schematic

The Simulink model runs the UAV simulation while a S-Function block linked to a binary Mex file
runs the compiled C code located in control_manager_SIL.c . Function mdlOutputs in
control_manager_SIL.c receives the sensor signals and control references each simulation time step,
these signals are transfered to the control_law_implementation.h control routine (get_control_outputs)
implemented by the desired C controller. The controller returns to control_manager_SIL.c the actuator
commands [aileron, elevator, rudder, throttle] that are also transferred from the mdlOutputs routine in
control_manager_SIL.c to the Simulink model through the S-Function block. These commands are set
to the actuator inputs of the UAV simulation. This cycle is repeated every time step until the end of the
simulation.

control_manager_SIL.c includes the header file control_law_interface.h which serves as interface
connecting the function definitions and the control implementation (C controller) specified in the

compilation process. The source code and header files included in control_manager_SIL.c are located
in the Software/FlightCode/ directory and are used by the hardware implementation as well.

The C code utilized by the SIL simulation is compiled from the Matlab environment by running the
setup.m script where the desired controller must be selected. The portion of the script where this
selection is done is shown as follows:

 %% Set controller mode
% Use this variable to quickly change what controller is used in the
% simulation.
%
% 1 = baseline controller (C implementation)
% 2 = baseline controller (Simulink)
% 3 = LQR controller (C implementation)
% 4 = LQR controller (Simulink)
% 5 = Student controller (C implementation)
% 6 = Student controller (Simulink)
controller_mode = 2;

% Load controller parameters or compile flight code
switch controller_mode
 case 1 % Baseline controller in C
 % Compile Flight Software:

. . .

. . .
case 5 % Student controller in C
 % Compile Flight Software:
 control_code_path ='../../Software/FlightCode/control/student_control.c'; % Specify your control code file name here
 eval(['mex -g -DSIL_MODE_ -I../../Software/FlightCode/control/ control_manager_SIL.c ' control_code_path]);

case 6 % Student controller in Simulink
 % Specify your Simulink controller parameters (gains, etc) here

By selecting an option in the controller_mode variable the desired controller is loaded. Two control
laws (LQR and baseline) are implemented in C and Simulink which correspond to options 1,2,3 and 4.
Option 5 is the student controller that provides a basic layout in C of the controller structure. The path
and name of the student controller can be changed from the default by setting the path (as a string) in
the variable control_path located in case 5 of the portion of code displayed above. Option 6 provides
the same layout of option 5 but in a Simulink block. Note that control parameters should be specified
in case 6 of the shown code.

The setup.m file is located in the SIL simulation folder : Simulation/SIL_Sim/. If a C controller is
selected, errors and warnings of the compilation are displayed in the Matlab console after running the
setup.m script. To use the same C controller code for both hardware implementation and Software in
the Loop Simulation it is recommended to save the C control code in the folder:
Software/FlightCode/control/.

Hardware implementation:
To compile the Flight computer software the make tool is used. A makefile written for the UAV
platform compiles the source code. To change the selected flight controller, the makefile must be edited
to specify which controller is compiled. Currently this is Line 40 of the makefile, which is as follows:

OBJ = L_avionics.c control/lqr_control.c

With this code, the controller in “control/lqr_control.c” will be compiled. The software requirements
for compiling the flight computer code for the MPC5200b-tiny system are explained in the PIL
simulation guide.

