
UAV Simulation File Information

Austin Murch

April 15, 2011

Contents

1 Introduction 2
1.1 MATLAB Version . 2

2 Nonlinear Simulation: UAV NL 3
2.1 M-Files . 3

2.1.1 example1.m . 3
2.1.2 example2.m . 3
2.1.3 linearize tutorial.m . 4
2.1.4 model check.m . 4
2.1.5 setup.m . 4
2.1.6 trim tutorial.m . 5

2.2 Simulink Blocks . 5
2.2.1 UAV NL . 5
2.2.2 UAV NL/Nonlinear UAV Model . 6
2.2.3 UAV NL/Nonlinear UAV Model/Environment 7
2.2.4 UAV NL/Nonlinear UAV Model/Forces and Moments 8
2.2.5 UAV NL/Nonlinear UAV Model/Auxiliary Equations 9
2.2.6 UAV NL/Nonlinear UAV Model/Auxiliary Equations/Navigation . . 10
2.2.7 UAV NL/Nonlinear UAVModel/Forces and Moments/Electric Propul-

sion Forces and Moments . 10
2.2.8 UAV NL/Nonlinear UAV Model/Forces and Moments/Aerodynamic

Forces and Moments/Aero Model/Ultrastick 12

3 SIL Simulation: UAV SIL 13
3.1 M-Files . 13

3.1.1 SIL montecarlo.m . 13
3.1.2 model check.m . 13
3.1.3 plot SIL.m . 13
3.1.4 setup.m . 14
3.1.5 simulate and save.m . 14

1

3.2 Simulink Blocks . 15
3.2.1 UAV SIL . 15
3.2.2 UAV SIL/Control Law . 16

4 PIL Simulation: UAV PIL 17
4.1 M-Files . 17

4.1.1 setup.m . 17
4.2 Simulink Blocks . 18

4.2.1 UAV PIL . 18
4.2.2 UAV PIL/To FlightGear . 18
4.2.3 UAV PIL/Control Inputs . 18
4.2.4 UAV PIL/To MPC5200 (via Serial) 19

5 Common M-Files 19
5.1 FASER config.m . 19
5.2 UAV config.m . 20
5.3 Ultrastick config.m . 20
5.4 busnames2excel.m . 20
5.5 eigpara.m . 21
5.6 linearize UAV.m . 22
5.7 trim UAV.m . 22

1 Introduction

This document is a collection of the embedded README blocks and m-file help comments
for the UMN UAV simulation, developed by the UAV Research Group at the University of
Minnesota. The UAV simulation model is written in the Matlab/Simulink environment using
the Aerospace Blockset. Three simulation environments are maintained: a basic nonlinear
simulation, a Software-In-the-Loop simulation, and a Processor-In-the-Loop simulation. All
three simulations share the same plant dynamics, actuator, sensor, and environmental models
via Simulink Libraries. Aircraft and environmental parameters are set in m-files and shared
between the simulations. Two aircraft models are maintained, one for the Ultra Stick 25e
and one for the FASER aircraft.

1.1 MATLAB Version

The UMN UAV simulation was developed with 32-bit MATLAB R2010a. Users have re-
ported successfully using R2009b; however, R2010a or later is recommended. R2009a is
known to fail with the SIL simulation.

2

2 Nonlinear Simulation: UAV NL

2.1 M-Files

2.1.1 example1.m

example1.m

-------------- Doublet response, NonLinear and Linear Models -------------

Script trims the model to a level flight condition and linearizes.

It compares doublet responses between full nonlinear sim and

the full and decoupled linearized models

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: example1.m 312 2011-04-01 16:15:59Z murch $

2.1.2 example2.m

example2.m

---------- Trim & linearize over a range of flight conditions ------------

Script calculates a set of level flight trim condtions and linear models

for different airspeeds. Plots trim conditions and dynamic mode

characteristics as a function of airspeed.

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: example2.m 312 2011-04-01 16:15:59Z murch $

3

2.1.3 linearize tutorial.m

UMN UAV Simulation: Linearize Tutorial

This tutorial walks through the steps of linearizing the UMN UAV

Simulation model. Most of these steps are handled in the "setup.m" and

"linearize_UAV.m" functions provided with the UMN UAV sim. However, this

tutorial will give you an in-depth understanding of how these functions

work.

Published output in the Help browser

showdemo linearize_tutorial

2.1.4 model check.m

model_check.m

UAV_NL Model Verification

Compares the linear/nonlinear doublet response of the current simulation

model (blue/green lines) with the checkcase data (red/black).

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: model_check.m 314 2011-04-05 16:53:30Z murch $

2.1.5 setup.m

setup.m

UAV Nonlinear Simulation setup

This script will setup the nonlinear simulation (UAV_NL.mdl) and call

trim and linearization routines. Select the desired aircraft here in this

script, via the "UAV_config()" function call.

Note: the UAV_NL.mdl model is not opened by default. This is not

necessary to trim, linearize, and simulate via command line inputs.

Calls: UAV_config.m

4

trim_UAV.m

linearize_UAV.m

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: setup.m 305 2011-03-16 16:17:53Z murch $

2.1.6 trim tutorial.m

UMN UAV Simulation: Trim Tutorial

This tutorial walks through the steps of trimming the UMN UAV Simulation

model. Most of these steps are handled in the "setup.m" and "trim_UAV.m"

functions provided with the UMN UAV sim. However, this tutorial will give

you an in-depth understanding of how these functions work.

Published output in the Help browser

showdemo trim_tutorial

2.2 Simulink Blocks

2.2.1 UAV NL

Nonlinear UAV Simulation

The nonlinear simulation has the Nonlinear UAV Model only (no actuators

or sensor models). Top level inputs and outputs are used for generating

and storing trim conditions and linear models. The trim condition

generated with this model is used for the other simulations. The

aircraft configuration, trim condition, and linear models are stored in

the Libraries directory.

Notes:

The model automatically sets the wind and magnetic models to a

"Bypass" option. This is done using the model’s InitFcn callback. To view

or edit this function, use the Model Explorer -> UAV_NL, Callbacks tab,

5

then go to "InitFcn".

The UAV_NL.mdl model is not opened by default. This is not necessary to

trim, linearize, and simulate via command line inputs.

Light blue blocks are a UMN library link; orange blocks are a Simulink

Aerospace Blockset library link. README blocks are green.

The root level inport/outport blocks are require for trimming the model. DO

NOT delete or rename these blocks.

Control Inputs Sign Convention

Elevator: +TED

Rudder: +TEL

Aileron: +TED, da = (da_R-da_L)/2

Flap: +TED

Throttle: always positive

2.2.2 UAV NL/Nonlinear UAV Model

Nonlinear UAV Model

This block implements the nonlinear UAV dynamics model. Beginning on the

left, the Forces and Moments block models all of the relevant external

forces and moments acting on the aircraft.

The 6DoF EOM block implements the six degree of freedom, fixed mass,

flat, non-rotating Earth, rigid body equations of motion. This block has

been modified from the original Aerospace Blockset implementation. The

inertial position vector (Xe) is no longer computed. The original block

did not have a way to add steady state winds to the inertial velocities

(Ve) prior to integrating to get Xe. Therefore, this step is performed in

the Auxiliary Equations block.

The Auxiliary Equations computes other relevant variables (such as angle

of attack, indicated airspeed, etc) from state data. In this block are

the Navigation equations.

Finally, the Environment block has Aerospace Blockset models for Earth’s

atmosphere, gravity, and magnetic fields. Winds are modeled in two

portions: steady and unsteady. The steady portion is defined by a speed

and direction, and is horizontal only. The unsteady portion is made up of

6

a wind shear model and a turbulence model.

2.2.3 UAV NL/Nonlinear UAV Model/Environment

Environment Model

This block uses the Aerospace Blockset models for Earth’s atmosphere,

gravity, magnetic field, and wind.

The atmosphere is modeled using the 1976 Standard Atmosphere block.

Winds are modeled in two portions: steady and unsteady. The steady

portion is defined by a speed and direction, and is horizontal only. The

unsteady portion is made up of a wind gust model and a turbulence model.

The Dryden Wind Turbulence Model is used to model turbulence. The

intensity of the turbulence at low altitude (<1000ft) is determined by

the wind speed and direction; this is set as separate variables from the

steady wind speed and direction. The turbulence is off by default, and

can be enabled by setting the Env.Winds.TurbulenceOn boolean in

UAV_config.m.

The Discrete Gust Model is used to model wind gusts. Parameters are time

on, duration (length), and amplitude, in three axes (u,v,w). These

parameters are set in Env.Winds, in UAV_config.m

Note the booleans in the Env.Winds stucture to turn on each wind

component: >> Env.Winds

ans =

TurbulenceOn: 0

TurbWindSpeed: 0

TurbWindDir: 0

GustOn: 0

GustStartTime: 0

GustLength: [1 1 1]

GustAmplitude: [1 1 1]

SteadyWindOn: 0

WindSpeed: 0

WindDir: 0

7

The WGS84 Gravity Model is used to model Earth’s gravity as a function of

latitude, longitude, and altitude.

The World Magnetic Model 2005 is used to model Earth’s magnetic field as

a function of latitude, longitude, and altitude. The current decimal year

is input.

*Note for trim/linearizing: the Dryden turbulence model and the World

Magnetic Model 2005 have many internal states, which makes trimming and

linearizing difficult. Thus "Bypass" blocks are substituted for the Winds

and Magnetic Model blocks using Configurable Subsystems. For the

UAV_NL.mdl, the block choices are automatically set to "Bypass" using the

models "InitFcn" callback, which can be viewed by using the Model

Explorer, selecting UAV_NL, and going to the "Callbacks" tab. The Nonlinear

UAV Model block will then show up as a Parameterized Link (red arrow in the

lower left corner). The SIL and PIL sims use the default blocks, and should

have a normal library link (black arrow).

2.2.4 UAV NL/Nonlinear UAV Model/Forces and Moments

Forces and Moments

This block models all of the relevant external forces and

moments acting on the aircraft. The Aerodynamic Forces and Moments block

contains the aero models, and is a masked subsystem. The input parameter to

this block is a boolean which controls which aero model (either FASER or

the Ultrastick) is used.

The Gravitational Force block models the effect of Earth’s graviy field on

the aircraft.

The Electric Propulsion Forces and Moments block contains the electric

motor model.

Note the non-gravitational forces (nonGravForces) are output- this is what

an accelerometer on the aircraft would measure, and is used in the sensor

models.

8

2.2.5 UAV NL/Nonlinear UAV Model/Auxiliary Equations

Auxiliary Equations

This block computes other relevant variables (such as angle of attack,

indicated airspeed, etc) from state data. Part of this block is simply to

assign signals name and create the States bus.

Working from the top of the block downwards:

The inertial velocity, V_e, is computed by using the Direction Cosine

Matrix (DCM) to transform the body-axis velocities (u,v,w) to the

inertial frame. The steady state winds are then added, and the result is

V_e. This is integrated to obtain the inertial position, X_e. The

initial condition of the X_e integrator is set by

TrimCondition.InertialIni. V_e and X_e are inputs to the Navigation

block- see that blocks README for details.

Euler angles are bounded by +\- [pi/2, pi, 2*pi] respectively. The time

derivatives of the Euler angles are computed using the body-axis rates

and the Euler angles.

The DCM is included in the States bus as "R_be [3x3]".

Body axis velocites and rates, and their derivatives are included. The

unsteady (turbulence and gusts) winds are added to the body axis

velocities and rates.

Inertial accelerations are computed by transforming the body-axis

accelerations with the DCM. This step is simplified since we are using a

non-rotating Earth.

WindAxesParam is the true airspeed, angle of attack, and sideslip angle.

The derivatives of alpha and beta are computed using a deriative block.

Mach number is simply the ratio between true airspeed and the speed of

sound.

Accels [m/s^2] is what an accelerometer would read onboard the aircraft.

*Note on winds: dividing the wind components into steady and unsteady

9

components is necessary because we do not use an intermediate atmospheric

reference frame to account for the motion of the air mass relative to the

Earth. We can approximate the physical effects of wind without an

additional reference frame by splitting the wind into steady and unsteady

components, where the steady component is added to the inertial

velocities and the unsteady component is added to the body-axis

velocities allows us to

2.2.6 UAV NL/Nonlinear UAV Model/Auxiliary Equations/Navigation

Navigation

This block is library link that contains the navigational model and

equations. Included are equations relating the flat Earth position to

latitude/longitude, a simplified 2D table lookup version of the EGM-96

Geoid model for computation of MSL/AGL altitudes, and computation of

flight path and ground track angles.

2.2.7 UAV NL/Nonlinear UAV Model/Forces and Moments/Electric Propul-
sion Forces and Moments

Electric Propulsion Forces and Moments

This block models the electric motor, propeller, and the resulting forces

and moments.

The electric motor is modeled by using a table lookup to relate throttle

position to power output in Watts; power is coverted to torque by

dividing by the current motor angular velocity, omega (rad/s). This

torque is then summed with the required torque from the propeller. The

resulting net torque is divided by the combined motor/propeller inertia,

yielding omega_dot, which is integrated to get the current motor speed.

The initial condition of the Engine speed integrator is set in the

TrimCondition data structure.

The propeller is modelled using lookup tables of Thrust and Power

Coefficients, CT and CP, as a function of advance ratio J. These are

defined as:

CT = Thrust / (R^4 * omega^2 * 4/pi^2 * rho)

CP = Power / (R^5 * omega^3 * 4/pi^3 * rho)

10

J = V * pi / (omega * R)

where R is the propeller radius, omega is the angular velocity in

radians per second, and rho is the density of air. Note that the

torque coefficient for the propeller can be calculated from CP by

multiplying by n; thus the torque coefficient is not explicitly modeled.

The total forces due to the propeller is simply the thrust, assumed to

align with the x-axis. In reality, the motor is usually mounted so the

thrust axis is angled downward and to the left. This could be measured

and included in this model.

The moments due to the propeller are due to the derivative of the angular

momemtum (ie gyroscopic moments) and moments due to the position of the

thrustline relative to the center of gravity. The moments due to the

propeller are as follows:

Mp = d/dt(Jmp*omega)

where Jmp is the moment of inertia of the rotating portion of the motor

and propeller. Taking the derivative in the body frame, which is

non-inertial, results in:

Mp = Jmp*omega_dot + [p;q;r] X omega*Jmp

where [p;q;r] is the body axis angular velocity. Since we assume the

rotation axis is aligned with the body x-axis, there is only one angular

momentum term. This simplifies to:

[omega_dot]

Mp = Jmp* [r*omega]

[-q*omega]

The data for the lookup tables and all of the needed aircraft parameters

are stored in the aircraft configuration data structure (AC).

>> AC.Prop

ans =

J: [1x11 double]

11

CT: [1x11 double] CP: [1x11 double]

Radius: 0.1778

Throttle: [1x21 double]

Power: [1x21 double]

ThrottleOutputLimit: [1x1 struct]

OmegaSaturation: [1x1 struct]

Jmp: 1.2991e-004

2.2.8 UAV NL/Nonlinear UAVModel/Forces and Moments/Aerodynamic Forces
and Moments/Aero Model/Ultrastick

Ultrastick Aerodynamic Model

This block models the Ultrastick aerodynamics using a linear derivatives.

Coefficients are in the wind axes, so the six coefficients are CL, CDw,

CYw, Cl, Cm, Cn. See Klein, Morelli, Aircraft System Identification, pg 41.

The derivatives are stored in the aircraft configuration data structure

(AC). They are loaded into AC.Aero when ’Ulstrastick’ is selected with

UAV_config.m. The derivatives themselves are stored in

Ultrastick_config.m. An example is the derivatives for CL:

>> AC.Aero.CL

ans =

zero: 0.1086

alpha: 4.5800

dflap: 0.7400

delev: 0.0983

alphadot: 1.9724

q: 6.1639

minD: 0.2300

The majority of the derivatives have been indentified from flight test

data. The drag model was derived from first principles.

12

3 SIL Simulation: UAV SIL

3.1 M-Files

3.1.1 SIL montecarlo.m

SIL Simulation Monte Carlo Setup

The commands in this script will set conditions for the SIL simulation

for a range of environmental conditions and model uncertainties, run and

save the simulation data, and compare the results.

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: SIL_montecarlo.m 314 2011-04-05 16:53:30Z murch $

3.1.2 model check.m

model_check.m

UAV_SIL Model Verification

This script runs "plot_and_save.m", which plots the pitch and roll angle

doublet response using the current simulation model and controller. These

results are compared to a stored simulation run of the same inputs using

the baseline controller. Users can use this script to evaluate and

compare the performance of their controller or model relative to a flight

tested baseline.

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: model_check.m 314 2011-04-05 16:53:30Z murch $

3.1.3 plot SIL.m

plot_SIL.m

13

UAV_SIL sim plot and comparison tool

Input file names of saved simulation results (simData structure) and this

function will co-plot the results. If no file name is input, the file

"simData.mat" will be used.

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: model_check.m 314 2011-04-05 16:53:30Z murch $

3.1.4 setup.m

setup.m

UAV Software-in-the-Loop Simulation setup

This script will setup the SIL simulation. Stored aircraf configuration

and trim conditions are used.

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: setup.m 334 2011-04-14 21:33:30Z murch $

3.1.5 simulate and save.m

simulate_and_save.m

UAV Software-in-the-Loop simulate_and_save function

This function runs the SIL sim and saves the results to a file with the

given name. If no file name is given, "simData" is used. A simulation

time can also be input; the default is 45 seconds.

University of Minnesota

Aerospace Engineering and Mechanics

14

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: plot_and_save.m 314 2011-04-05 16:53:30Z murch $

3.2 Simulink Blocks

3.2.1 UAV SIL

UAV Software-in-the-Loop Simulation

This Simulink model contains a nonlinear UAV model with closed-loop

feedback control provided by a mex-function written in C. Actuator

dynamics and sensor noise are modeled, and the simulation data is

exported to the workspace via the "Flight Data Display" block.

Light blue blocks are a UMN library link; orange blocks are a Simulink

Aerospace Blockset library link. README blocks are green.

1) Make sure that you have a C compiler installed that can interface with

MATLAB. You can setup the default lcc compiler of MATLAB by typing "mex

-setup"

2) Run the file ’setup.m’. The default trim condition will be used.

Change the string variable control_code_path to specify the path and name

of the controller source code, or specify a different Variant with the

controller_mode variable.

3) Run the file ’example1.m’ which will generate plots of the simulation

response. Run ’model_check.m’ to compare the current sim response to

stored checkcase data. If the file runs successfully and the plots

corresponded with the provided results, the system should be working

properly. If you encounter problems with this setup, please contact

descobar@aem.umn.edu.

You can change the trim conditon without changing directories to NL_Sim;

simply call trim_UAV normally. Note that the UAV_NL model will be loaded

invisibly and will use your current workspace variables.

15

3.2.2 UAV SIL/Control Law

Control Law Block

This block uses Model Referencing to allow the user to easily switch out

control law implementations. An example usage would be first a user develops

a control law using simulink blocks. This controller is referred to as the

"simulink controller" and would be selected by setting the variable

"controller_mode" to 2. Once the development is completed, the user then

implements the Simulink controller into C-code suitable for integration

with the UAV software. This controller is referred to as the "flight code"

and would be selected by setting "controller_mode" to 1.

This is done using the Simulink.Variant object. See the documentation for

more detail. The user can specify any number of variants for the Control

Software block; edit the ModelReferenceParameters by right-clicking this

block to set which Simulink model is reference for each Variant object.

Note that these objects must be present in the base workspace. It

is strongly recommended that you use the "simulink_controller.mdl" file as

a starting place and "Save As" to a different file name.

In summary, to switch the Control Software, modify the "contoller_mode"

variable:

1 = flight code controller (C implementation)

2 = simulink controller (empty simulink model)

See "Software\Documentation\UAV_controllaw_ICD.pdf" for details on the

input/output signals.

The control_cmd signal must have the following order:

aileron

elevator

rudder

throttle

flap

Control Inputs Sign Convention

TED = Trailing Edge Down

TEL = Trailing Edge Left

Elevator: +TED

Rudder: +TEL

16

Aileron: +TED, da = (da_R-da_L)/2

Throttle: always positive

Flap: +TED

The refrence command signal must have the following order:

phi_ref

theta_ref

Note the trimmed value of pitch angle theta is included in the reference

command. Use the Doublet Generator block (or other signal generating block)

to input reference commands to the Control Software.

Rate Transition blocks are required on the input and output because the

simulation run at 50Hz and the Control Software runs at 25Hz. The sample

time of the mex function is an input parameter, and is set to use the

variable "SW_SampleTime" which is specified in setup.m.

4 PIL Simulation: UAV PIL

4.1 M-Files

4.1.1 setup.m

setup.m

UAV Processor-in-the-Loop Simulation setup

IMPORTANT: Mathworks Real Time Windows Target is only supported for

32-bit machines. http://www.mathworks.com/products/rtwt/requirements.html

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: setup.m 302 2011-03-14 15:11:38Z murch $

17

4.2 Simulink Blocks

4.2.1 UAV PIL

UAV Processor-in-the-Loop Simulation

This Simulink model contains a nonlinear UAV model with hardware interfaces

to connect to the UAV flight computer hardware. Aircraft state data is

visualized via FlightGear and the UAV Ground Control Station software.

Light blue blocks are a UMN library link; orange blocks are a Simulink

Aerospace Blockset library link. README blocks are green. Yellow blocks

indicate an external interface.

You can change the trim conditon without changing directories to NL_Sim;

simply call trim_UAV normally. Note that the UAV_NL model will be loaded

invisibly and will use your current workspace variables.

For the first 10 seconds, trim settings are applied so the operator has a

chance to manually control the aircraft.

4.2.2 UAV PIL/To FlightGear

To FlightGear

This block uses the Aerospace Blockset tools to send simulation data to

FlightGear for visualization. See the Simulink documentation for more

details these blocks. The latest FlightGear version supported is v1.9.1.

FlightGear can be running on the same computer as the PIL sim or can be on

another computer connected via LAN (note the destination IP address and

port setting must be updated in this case).

FlightGear is started automatically in the setup.m script, using

"StartFlightGear.bat". Edit this file to set the correct path to your

FlightGear installation.

4.2.3 UAV PIL/Control Inputs

Control Inputs

18

This block contains the hardware interface to the National Instruments

timer/counter board used to read the PWM actuator commands. The

"PCI-6602 PWM input" block reads in the PWM signals and converts them to

milleseconds. The "Input Calibration" block converts the PWM signals to

engineering units (normally radians). Note that this block should actually

have specific conversions for each aircraft, due to physical differences

in the actuator position and linkages, which results in a different control

surface deflection for a given PWM command.

4.2.4 UAV PIL/To MPC5200 (via Serial)

To MPC5200 (via Serial)

This block creates a data packet of feedback data and streams it to the

MPC5200B flight computer via a serial connection. The data packet format is

based on the Crossbow MicroNav data structure and is created in the mex

function "mpc_tx3.cpp". This is then read by the UAV flight software using

the normal MicroNav interface code.

The PPM packet (servo data) has been disabled, as this function

is no longer used on the UAV.

The "Stream Output" block must be configured for the hardware installed on

your computer.

This block could be enhanced by writing a more generic data packet

interface to the MPC5200B that also includes a serial input to receive

actuator commands from the UAV flight software.

5 Common M-Files

5.1 FASER config.m

function [AC] = FASER_config()

FASER configuration file. Sets aircraft parameters.

Called from: UAV_config.m

19

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: FASER_config.m 284 2011-03-03 15:07:19Z murch $

5.2 UAV config.m

function [AC,Env] = UAV_config(aircraft,savefile)

Defines aircraft parameters. Input desired aircraft and savefile boolean.

Sets Env data structure.

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: UAV_config.m 314 2011-04-05 16:53:30Z murch $

5.3 Ultrastick config.m

function [AC] = Ultrastick_config()

Ultra Stick 25e configuration file. Sets aircraft parameters.

Called from: UAV_config.m

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota. All rights reserved.

SVN Info: $Id: Ultrastick_config.m 314 2011-04-05 16:53:30Z murch $

5.4 busnames2excel.m

function busnames2excel(savename)

20

Takes input/output bus signal names from UAV_NL.mdl and stores them in a

Excel file. The default name for this file is ’UAV_sim_ICD.xlsx’.

Output signal names are taken from the "States" and "EnvData" bus

selectors. Input signal names are taken from the "Control Inputs" bus

creator.

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: busnames2excel.m 284 2011-03-03 15:07:19Z murch $

5.5 eigpara.m

function [wd, T, wn, zeta] = eigpara(lambda)

[wd, T, wn, zeta] = eigparam(lambda)

Return the parameters of a complex eigenvalue

Inputs:

lambda = a complex eigenvalue

Outputs:

wd = the damped natural frequency

T = the period

wn = the natural frequency

zeta = the damping

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: eigpara.m 284 2011-03-03 15:07:19Z murch $

21

5.6 linearize UAV.m

[longmod,latmod,linmodel,TF]=linearize_UAV(OperatingPoint,verbose)

Linearizes the UAV model about a given operating point using

../NL_Sim/UAV_NL.mdl. This function can be called from any of the three

sim directories. However, this function will use your workspace

variables. Requires the Control System Toolbox and Simulink Control

Design.

Inputs:

OperatingPoint - Operating point object of a trim condition

verbose - boolean flag to suppress output; default "true"

Outputs:

longmod - longitudinal linear model

latmod - lateral directional linear model

linmodel - full linear model

TF - common input/output transfer functions

Calls: eigpara.m

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: linearize_UAV.m 309 2011-03-24 20:10:17Z murch $

5.7 trim UAV.m

[TrimCondition,OperatingPoint]=trim_UAV(TrimCondition,AC,savefile,verbose)

Trims the UAV simulation to target conditions using ..\NL_Sim\UAV_NL.mdl.

This function can be called from any of the three sim directories.

However, this function will use your workspace variables. Requires

Simulink Control Design.

Set the trim target as shown below.

Inputs:

22

TrimCondition - Initial aircraft state, with a structure called

"target", which has some subset of the following fields:

V_s - True airspeed (m/s)

alpha - Angle of attack (rad)

beta - Sideslip (rad), defaults to zero

gamma - Flight path angle (rad), defaults to zero

phi - roll angle (rad)

theta - pitch angle (rad)

psi - Heading angle (0-360)

phidot - d/dt(phi) (rad/sec), defaults to zero

thetadot - d/dt(theta) (rad/sec), defaults to zero

psidot - d/dt(psi) (rad/sec), defaults to zero

p - Angular velocity (rad/sec)

q - Angular velocity (rad/sec)

r - Angular velocity (rad/sec)

h - Altitude above ground level (AGL) (m)

elevator - elevator control input, rad.

aileron - aileron control input, rad.

rudder - rudder control input, rad.

throttle - throttle control input, nd.

flap - flap control input, rad. Defaults to fixed at zero.

AC - Aircraft configuration structure, from UAV_config.m

savefile - boolean flag to save trim condition; default "true"

verbose - boolean flag to suppress output; default "true"

Outputs:

TrimCondition - values of state and control surfaces at trim.

OperatingPoint - Simulink OperatingPoint object to use with

linearization

Unspecified variables are free, or defaulted to the values shown above.

To force a defaulted variable to be free define it with an empty matrix.

For example, by default beta=0 but "target.beta=[];" will allow beta

to be free in searching for a trim condition.

Examples:

TrimCondition.target = struct(’V_s’,17,’gamma’,0); % straight and level

TrimCondition.target = struct(’V_s’,17,’gamma’,5/180*pi); % level climb

TrimCondition.target = struct(’V_s’,17,’gamma’,0,...

’psidot’,20/180*pi); % level turn

TrimCondition.target = struct(’V_s’,17,’gamma’,5/180*pi,...

23

’psidot’,20/180*pi); % climbing turn

TrimCondition.target = struct(’V_s’,17,’gamma’,0,...

’beta’,5/180*pi); % level steady heading sideslip

Based in part on the trimgtm.m script by David Cox, NASA LaRC

(David.E.Cox@.nasa.gov)

University of Minnesota

Aerospace Engineering and Mechanics

Copyright 2011 Regents of the University of Minnesota.

All rights reserved.

SVN Info: $Id: trim_UAV.m 307 2011-03-21 18:24:14Z murch $

24

