A slender rod AB of mass m and length l is hinged at its end A to a square plate $CDEF$ with sides of length S as shown in Figure 1. The hinge at A is designed in such a way that the rod does not rest on the plate but swings in a plane just above the plate (see Figure 2). That is, all the contact forces between the rod and plate are carried by the hinge at A. A torsional spring of stiffness k that is unstretched when $\phi = 0$ is attached to the rod at A. Corners C and D of the plate move along a circular horizontal track of radius R ($R >> S$) at a known constant angular rate of Ω. The inclination of the plate with respect to the horizontal is a constant angle θ.

1. Using the Lagrangian approach, write a differential equation for the angle ϕ that describes the rod’s swinging motion on the plate.

2. Using the Newtonian approach, write a differential equation for the angle ϕ that describes the rod’s swinging motion on the plate.

3. Determine the reaction forces at A.

4. Find the equilibrium values of ϕ (Assume that at $t = 0$, the deflection of ϕ is equal to a very small angle ϵ in the direction shown in Figure 1).

5. Determine the frequency of small oscillations in ϕ in the case these are possible.
Figure 2: Side View of Rod and Plate Assembly.