A massless ring of radius R rotates at a known constant angular speed Ω. A collar of mass m slides on the ring as shown in Figure 1. The coefficients of static and kinetic friction between the ring and collar are μ_s and μ_k, respectively. The friction forces depend on the normal force in the \hat{b}_3 direction only. Initially $\Omega = 0$ and the collar is at rest on the collar stop at an angle of $-\theta_0$. Suddenly, the ring accelerates and achieves an angular velocity of Ω instantaneously. This problem deals with the motion of the collar after the ring achieves an angular speed of Ω.

Figure 1: A collar on a rotating frame.
The \hat{a}_1-\hat{a}_2-\hat{a}_3 frame is attached to the ring with origin at point O. The \hat{b}_1-\hat{b}_2-\hat{b}_3 system also has its origin at point O but is attached to the collar and rotates with it. **Note that θ is measured starting from the \hat{a}_1 axis.**

1. Determine the equations of motion using the Newtonian approach and derive an expression for the reaction forces between the ring and collar in the \hat{b}_1, \hat{b}_2 and \hat{b}_3 directions.

2. Verify the equations of motion for the collar using the Lagrangian (analytical) approach. Determine any required forces using constraint-relaxation.

3. What is the value of Ω for which the collar will just start moving away from the collar stop?

4. For given values of θ and $\dot{\theta}$, determine the external moment M that would need to be applied to the ring’s vertical shaft in order to keep Ω constant.

5. Find the values of θ for which the collar can stay at equilibrium with respect to the ring in the range $[-\theta_0, \pi/2]$. Assume Ω is sufficiently large.

6. Derive an equation for small motions $\delta \theta(t)$ around one of the points you identified in part(5).