AEM WPE Dynamics 2014

A particle of mass M moves in a plane under the action of a central force centered at O. Denoting the position vector to M with respect to O by r and its magnitude by $r = |r|$ the central force has the expression

$$ F = -\frac{\mu M}{r^2} e_r $$

where μ is a known constant, and e_r is the radial unit vector along r. The angle between r and the fixed X-axis is denoted θ. Another particle of mass m is located at a distance ρ from M and at an angle ϕ, defined as the angle between r and ρ–the position vector of m with respect to O. There is an attractive force between M and m of magnitude $f = \frac{GMm}{\rho^2}$, where G is a constant.

The particle m is not affected by the central force at O and moves in the same plane as M.

a) Using the variables r, θ, ρ, and ϕ as generalized coordinates, derive Lagrange's equations for the system.

b) Verify the expressions for the generalized momenta, i.e. $\frac{\partial \mathcal{L}}{\partial r}$, $\frac{\partial \mathcal{L}}{\partial \theta}$, $\frac{\partial \mathcal{L}}{\partial \rho}$, $\frac{\partial \mathcal{L}}{\partial \phi}$ by interpreting them in physical terms (i.e. determining whether they are momenta, angular momenta, etc.).

c) Verify the correctness of your equations of motion by deriving the corresponding equations using a Newton-Euler approach. Note that you will need to write the Newton-Euler equations in terms of the same variables as in (a) and along the same directions.

d) Suppose that there is an additional force $T = T_r e_r + T_\theta e_\theta$ on m. How would you modify the equations of motion in (a)? The unit vectors e_r and e_θ are defined in the figure.

Hint: a force that obeys the inverse square law, i.e. $F = -\frac{k}{r^2} e_r$ is associated with a potential energy of the form $V = -\frac{k}{r}$.