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Abstract

In this paper we study the sedimentation of 6400 circular particles in 2D using the
method of distributed Lagrange multipliers for solid-liquid flow. The simulation gives
rise to fingering which resembles Rayleigh-Taylor instability. The waves have a well-
defined wavelength and growth rate which can be modeled as a conventional Rayleigh-
Taylor instability of heavy fluid above light. The heavy fluid is modeled as a composite
solid—liquid fluid with an effective composite density and viscosity. Surface tension
cannot enter this problem and the characteristic short wave instability is regularized by
the effective viscosity of the solid-liquid dispersion. The results of the simulation are in
satisfying agreement with results predicted by the model using viscous potential flow
without fitting parameters.

The data analyzed in this note is generated by the direct numerical simulation of solid-liquid
flow by a distributed Lagrange multiplier/fictitious domain method. The method is based on a
global variational formulation by Hesla (1991) and modified by Glowinski and Pan (see
Glowinski et al 1997, 1998, 1999). The calculation is carried on fixed triangular mesh on which
fluid equations are satisfied everywhere. Rigid motions of the portions of the fluid occupied by
solids are accomplished by a strategic choice of a Lagrange multiplier field there. The method
has a certain elegance in that the rigid motion constraint on the fluid is associated with a
multiplier field in a manner analogous to the way in which the pressure in an incompressible
flow is a multiplier field associated with the constraint on incompressibility. The details of the
computation have been given in the cited references and will not be repeated here.

A 2D simulation of 6400 circles of diameter d = 1/12 cm, density p = 1.1 /cm3 is arranged
initially in a crystal of width 8cm and height 7.708cm shown in figure 1(a). The volume fraction
of circles in this crystal is the ratio of the area AP of the circles to the total area AT of the crystal

566.0
)708.7(8
4/6400 2

== d

A

A

T

P π
(1)

��������	
���
�����������		��������
	��� �����������nf = 0.01 poise. Between 13 and 14 waves
develop at the bottom of the crystal (figure 1) and these waves remind us of Rayleigh-Taylor
instability. The wavelength λ of these waves is therefore given by the inequality

cm615.013/8571.014/8 =≤≤= λ (2)
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Figure 1. Snapshots of the simulation of 6400 circles in 2D. The arrangement of sedimenting particles is
asymetric, flat on top and corrugated at the bottom. The drag on a single sphere is smaller than when
it is among many so that isolated spheres on the bottom fall out of the crystal and isolated spheres on
the top fall into the crystal.
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� t(sec) A(cm) �n

0.101 3.65 x 10-4

1
0.151 8.00 x 10-4

17.31

0.201 1.62 x 10-3

2
0.251 3.08 x 10-3

14.15

0.301 5.63 x 10-3

3
0.351 9.94 x 10-3

12.81

0.401 1.66 x 10-2

4
0.451 2.66 x 10-2

9.50

Table 1. Growth rates for the wave amplitude ))]((/)(log[ 11 lllll
tttAtAn −= ++ .

The time step for this calculation was 0.001 sec; the growth of the wave amplitude at early
times is given in table 1.

The average 4/)( 4321 nnnnn +++=  is

1sec425.13 −=n (3)

We turn next to the two-fluid modeling of the instability of the sedimenting suspension just
described. The basic idea is to regard the particle laden portion of the sedimenting suspension
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below. The dynamics of this two-fluid problem is governed by viscous potential flow (Joseph &
Liao 1994). Joseph, Belanger and Beavers (1999) showed that the wavelengths and growth rates
obtained with viscous potential flow differ from those obtained from a fully viscous analysis by
less than 1%. The success of the potential flow analysis arises from the fact that main action of
viscosity is in the viscous part of the normal stress acting here in our problem through the
effective viscosity of the solid-liquid suspension. Surface tension cannot enter into this problem
so that the effective viscosity is the only mechanism which regularizes an otherwise ill-posed
problem in which the growth rate increases like λ/1 , tending to infinity with ever shorter waves
(Joseph & Saut 1990).

The analysis of Rayleigh-Taylor instability is carried out in an infinitely extended domain
using the method of normal modes with disturbances proportional to

qzykxki eee yx ±+ )(int (4)

where, for viscous potential flow

22
yx kkkq +== (5)
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where the z increases against gravity 
sec
cm

980=g  and the sign k±  chosen so that the amplitude

decays at infinity. The analysis leads to the following dispersion relation (equation (25) of
Joseph, Belanger & Beavers)
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Equation (6) depends on 22
yx kkkq +== only through k in (5); hence (6) is valid in both

two and three dimensions and it applies to the planar problem under discussion.

For the model under consideration the interfacial tension 0=γ ; the effective density is given
by
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in gm/cc. Inserting these values in (6), we get

nk f /)(2gk/n1.02 2
22 ηηφ +−= (7)

where f  = 0.01 poise, φ = 0.566 and
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is the effective viscosity given by an empirical formula due to Kataoka et al (1978) for 3D,
recommending A3D = 0.680 as an effective maximum packing fraction. Metzner (1985) cites the
3D version of (8) with A3D replacing A2D, as the most successful of all empirical formulas the
viscosity of concentrated suspensions. To obtain a value for A2D we scaled using maximum
packing fractions
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where 0.74048 is the volume fraction of closed packed spheres in 3D and 0.9069 is the volume
fraction of close packed discs in 2D. From (9) we find

8328.02 =DA (10)
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and from (8) we get
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The dispersion relation (7) reduces to

nk /ˆ2k/n37.552 22 η−= . (12)

To get k which maximizes n we set dn/dk = 0 and find that
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Substituting k from (13) into (12) we get
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The growth rate is given by
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The associated wavelength is given by (13) and (14) as
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and

cm599.02 == kπλ (16)
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The values of n (14) and λ (16) from the two-fluid model are in good agreement with values (3)
and (2) measured in the numerical simulation.

The construction of the model has involved certain choices, particularly with regard to the
selection of an empirical formula for the effective viscosity of a concentrated solid-liquid
dispersion and its scaling into two dimensions. All the choices made are conventional, perhaps
not controversial, but they are model assumptions. No fitting parameters have been used to get
agreement between the model and the numerical experiment; this could be as good as it gets.
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