Consider a Cartesian $N \times N \times N$ finite element mesh consisting of trilinear elements, and with $N >> 1$. We are using this mesh to discretize a linear, static problem with one unknown per node. In the resulting linear equation system

$$Ax = b,$$
(1)

x is the vector of nodal values of the unknown, and

$$A = \sum_{e=1}^{N^3} A^e,$$
(2)

$$b = \sum_{e=1}^{N^3} b^e,$$
(3)

where A^e and b^e are the contributions from Element e to Matrix A and Vector b, respectively. Do not assume that A is symmetric.

1. Assuming that Eq. (1) is being solved by using a direct (non-iterative) method, give an estimate of the amount of memory needed to store Matrix A.

2. Now assume that Eq. (1) is being solved by using an iterative method, based on massively parallel implementation, with each element assigned to a different processor (or virtual processor). Assume that the evaluation of the residual

$$r = b - Ax$$
(4)

is the only computational stage where matrix A appears.

(a) Give an estimate of the amount of memory needed for the storage requirement attributable to Matrix A.

(b) Describe at least one scenario of carrying out the computations given by Eq. (4) in a massively parallel way.

3. Can the computations given by Eq. (4) be carried out without the memory need for storage attributable to Matrix A? If your answer is “Yes”, explain how.