Given: \(r = \text{radius}, \)
\(W = \text{weight}, \)
\(h_s \) is same at A and B.

Find: Largest \(M \) if cylinder is not to rotate.

Since motion will impend,
\(F_A = h_s N_A \)
\(F_B = h_s N_B \)

\(\sum M_B = 0: \)
\(M - rF_A - rN_A = 0 \)
\(M = rN_A + rF_A = rN_A + r h_s N_A \)
\(M = rN_A(1 + h_s) \) \((1) \)

\(\sum F_x = 0: \)
\(N_A - F_B = 0 \)
\(N_A = h_s N_B \) \((2) \)

\(\sum F_y = 0: \)
\(N_B + F_A - W = 0 \)
\(N_B = W - h_s N_A \) \((3) \)

Substitute for \(N_B \) from \((3) \) into \((2) \):
\(N_A = h_s (W - h_s N_A) \)
\(N_A (1 + h_s^2) = h_s W \)
\(N_A = \frac{h_s W}{1 + h_s^2} \)

Substitute for \(N_A \) into \((1) \):
\(M = r \frac{h_s W}{(1 + h_s^2)} (1 + h_s) \)
\(M = W r h_s \left(\frac{1 + h_s^2}{1 + h_s^2} \right) \)