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Abstract

Current practice for flight control validation relies heavily on linear analyses
and nonlinear, high-fidelity simulations. This process would be enhanced by
the addition of nonlinear analyses of the flight control system. This paper
demonstrates the use of region of attraction estimation for studying nonlinear
effects. A nonlinear polynomial model is constructed for the longitudinal
dynamics of NASA’s Generic Transport Model aircraft. A polynomial model
for the short period dynamics is obtained by decoupling this mode from
the nonlinear longitudinal model. Polynomial optimization techniques are
applied to estimate region of attractions around trim conditions.
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1. Introduction

Safety critical flight systems require extensive validation prior to entry

into service. Validation of the flight control system is becoming more dif-
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ficult due to the increased use of advanced flight control algorithms, e.g.
adaptive flight controls. NASA’s Aviation Safety Program (AvSP) aims to
reduce the fatal (commercial) aircraft accident rate by 90% by 2022 (Heller
et al., 2003). A key challenge in achieving this goal is the need for extensive
validation and certification tools for the flight systems. The current certi-
fication and validation procedure involves analytical, simulation-based and
experimental techniques (Heller et al., 2003). Current practice is to assess
the closed-loop stability and performance characteristics of the aircraft flight
control system around numerous trim conditions using linear analysis tools.
The linear analysis methods include stability margins, robustness analysis
and worst-case analysis. The linear analysis results are supplemented with
Monte Carlo simulations of the full nonlinear equations of motion to provide
further confidence in the system performance and to uncover nonlinear dy-
namic characteristics, e.g. limit cycles, that are not revealed by the linear
analyses. To summarize, current practice involves extensive linear analysis
at different trim conditions and probabilistic nonlinear simulation results.
The certification process typically does not involve any analytical nonlinear
methods.

The gap between linear analyses and Monte Carlo simulations can cause
significant nonlinear effects to go undetected. For example, several F/A-18
aircraft were lost due to a nonlinear loss-of-control phenomenon known as
the falling leaf mode (Jaramillo and Ralston, 1996; Heller et al., 1999; Lluch,
1998; Heller et al., 2004). Linear analysis tools did not detect the potential
of the closed-loop system to exhibit the falling leaf mode. Thus there is a
need for nonlinear analysis tools to fill this gap (Chakraborty et al., 2009).



Recently, significant research has been performed on the development of non-
linear analysis tools for computing regions of attraction, reachability sets,
input-output gains, and robustness with respect to uncertainty for nonlinear
polynomial systems (Tan, 2006; Tan et al., 2008; Topcu et al., 2007, 2008;
Chiang and Thorp, 1989; Davison and Kurak, 1971; Genesio et al., 1985;
Tibken, 2000; Tibken and Fan, 2006; Vannelli and Vidyasagar, 1985; Par-
rilo, 2000). These tools make use of polynomial sum-of-squares optimization
(Parrilo, 2000). These tools can only be applied to the dynamics described
by polynomial vector field . These techniques offer great potential to bridge
the gap in the flight control validation process.

The objective of this paper is to demonstrate the advantage of includ-
ing nonlinear analysis tools based on SOS techniques in the flight control
law validation process. The computational requirements for sum-of-squares
(SOS) optimizations grow rapidly in the number of variables and polynomial
degree. This roughly limits SOS methods to nonlinear analysis problems
with at most 8-10 states and degree 3-5 polynomial models. Consequently,
the construction of accurate, low-degree polynomial models is an important
step in the proposed analysis process.

This paper applies the nonlinear analysis tools on NASA’s Generic Trans-
port Model (GTM) aircraft (Cox, 2009; Murch and Foster, 2007). The GTM
is the primary test aircraft for NASA’s Airborne Subscale Transport Air-
craft Research (AirSTAR) flight test facility (Jordan and Bailey, 2008; Jor-
dan et al., 2006; Bailey et al., 2005). The AirSTAR program addresses the
challenges associated with validating flight control law in adverse condition

(Murch et al., 2009; Murch, 2008; Gregory et al., 2009). The polynomial



model constructed in this paper accurately represents the longitudinal dy-
namics of NASA’s Generic Transport Model (GTM) aircraft and it is suitable
to address the issues with flight control law validation and verification.

The paper has the following structure. First, a polynomial model of
the longitudinal dynamics of NASA’s GTM aircraft (Cox, 2009; Murch and
Foster, 2007) is constructed in Section 2. The longitudinal dynamics consist
of a phugoid and short period mode. In Section 2.3, a polynomial model
for the short period dynamics is obtained by decoupling this mode from the
nonlinear longitudinal model. This nonlinear short period model is of interest
because the decoupling of the longitudinal modes is typically done using
linearized models. Section 3 describes a computational procedure to estimate
regions of attraction for polynomial systems (Jarvis-Wloszek, 2003; Jarvis-
Wloszek et al., 2003; Tan and Packard, 2004; Jarvis-Wloszek et al., 2005;
Tan, 2006; Topcu et al., 2007, 2008). This algorithm is applied in Section 4
to estimate regions of attractions for the open-loop short period dynamics
and a closed-loop longitudinal GTM aircraft. The analysis of the two-state
short period model in Section 4 is for illustrative purposes since the system
trajectories can be entirely visualized in a phase-plane diagram. This model
is used to demonstrate that the linearized model fails to capture significant
nonlinear effects. The analysis of the four-state longitudinal GTM aircraft
demonstrates that the nonlinear region-of-attraction (ROA) computational
procedure can be applied to systems with higher state dimensions. The paper

concludes with a summary of the contribution of the paper.



2. Polynomial Aircraft Models

NASA’s Generic Transport Model (GTM) describes a remote-controlled
5.5 percent scale commercial aircraft (Cox, 2009; Murch and Foster, 2007).
The main GTM aircraft parameters are provided in Table 1. NASA con-
structed a high fidelity 6 degree-of-freedom Simulink model of the GTM
with the aerodynamic coefficients described as look-up tables. This section
describes the construction of polynomial models of the GTM longitudinal

and short period dynamics based on the look-up table data.

Table 1: Aircraft and Environment Parameters

Wing Area, S 0.5483 m?
Mean Aerodynamic Chord, ¢ 0.2790 m
Mass, m 22.50 kg
Pitch Axis Moment of Inertia, I, 5.768 kg-m?
Air Density, p 1.224 kg/m?
Gravity Constant, g 9.810 m/s?

2.1. Longitudinal Dynamics

The longitudinal dynamics of the GTM are described by a standard four-
state longitudinal model (Stevens and Lewis, 1992):
1

V =— (=D —mgsin (f — a) + T, cosa + T, sin ) (1)
m
1
d:W(—L+mgcos(9—a)—szin&+Tzcosa)+q (2)
. (M+T,
vy
0=q (4)



where V' is the air speed (m/s), « is the angle of attack (rad), ¢ is the
pitch rate (rad/s) and 6 is the pitch angle (rad). The control inputs are the
elevator deflection d., (rad) and engine throttle d;, (percent). For ease of
interpretation, plots of «, ¢ and e, are shown in units of degs, degs/s, and
degs, respectively.

The drag force D (N), lift force L (N), and aerodynamic pitching moment
M (N-m) are given by:

D = qSCD(Oé, 5elev7 Cj> (5>
L= gSCL(aa 56161]7 Cj) (6>
M = QSECW(O(, 56[81}7 qA) (7)

where q := %pV2 is the dynamic pressure (N/m?) and ¢ := 5%¢ is the nor-
malized pitch rate (unitless). Cp, Cp, and C,, are unitless aerodynamic
coefficients computed from look-up tables provided by NASA.

The GTM has one engine on the port side and one on the starboard side
of the airframe. Equal thrust settings for both engines is assumed. The
thrust from a single engine 7' (N) is a function of the throttle setting dy,
(percent). T'(ds,) is a given ninth-order polynomial in NASA’s high fidelity
GTM simulation model. T, (N) and 7, (N) denote the projection of the total
engine thrust along the body x-axis and body-z axis, respectively. T,, (N-m)
denotes the pitching moment due to both engines. T}, T, and T, are given

by:

T (0n) = nenaT (04,) cos(€z) cos(es) (8)
T.(0in) = nencT (0i) sin(es) cos(es) 9)
Tm(éth) = TZT$(6th) - rxTz((Sth) (10)



ngng = 2 is the number of engines. e = 0.0375 rad and e3 = —0.0294 rad
are angles that specify the rotation from engine axes to the airplane body
axes. 1, = 0.1371 m and r, = 0.0907 m specify the moment arm of the

thrust.

2.2. Polynomial Longitudinal Model

The following terms of the longitudinal model presented in Section 2.1

are approximated by low-order polynomials:

1. Trigonometric functions: sin(«), cos(«), sin(f — «), cos(d — )
2. Engine model: T'(d;,)

3. Rational dependence on speed: —

v

4. Aerodynamic coefficients: Cp, Cp, C,,
Constructing polynomial approximations for the trigonometric functions, en-
gine model, and rational dependence on speed is relatively straight-forward.
The trigonometric functions are approximated by Taylor series expansions:
1

sinz~z—122and cosz~1—-1

5 52* for z in units of radians. For |z| < T

rad the maximum approximation error for the sine and cosine functions is
0.35% and 2.2%, respectively. For the engine model, a least squares tech-
nique is used to approximate the ninth order polynomial function T'(d;,) by

the following third order polynomial:
T(6y) = —8.751 x 107063, +5.115 x 107362 + 3.673 x 10716y, +4.825 (11)

The maximum approximation error is 1.3% over the full range throttle inputs

din € [0%, 100%]. The least squares technique is also used to compute a linear



1
fit to 7 over the desired range of interest from 30 m/s to 60 m/s:

1
T~ —5.304 x 1074V + 4.699 x 1072 (12)

The maximum approximation error is 9% over the specified velocity range.
The linear fit for % is used in both the & equation and the equation for the
normalized pitch rate q.

Derivation of the polynomial approximations for the aerodynamic coef-
ficients requires a more detailed explanation. NASA provides raw look-up
table data for the aerodynamic coefficients in the airframe body axes, i.e. the
raw data is provided for Cx, Cy, and C,,.? In addition, each aerodynamic
coefficient is computed as a sum of three terms which model the aecrodynamic
effects of the basic airframe, elevator inputs, and pitch rate. For example,
Cx(a, deten, G) is a sum of three terms each of which is computed from a

look-up table:
CX(Oéa delev, (j) :CX,a(a) + CXa(Seleu (O" 56161)) + CX,é(a7 (j) (13)

Cx,, models the basic airframe dependence of the body-X force on the angle

of attack. Cxpg,,., and Cx 4 model the aerodynamic effects of the elevator

elev

input and pitch rate, respectively. All body-axis look-up tables were trans-

formed into lift and drag coordinates via a rotation:

Cp _ cos(a) sin(a)| |Cx (14)
&) —sin(a) cos(a)| [Cz

2The notation refers to standard aircraft body axis conventions (Stevens and Lewis,
1992). x is directed to the front along the longitudinal axis of the aircraft and z is directed

down. X and Z are the aerodynamic forces along the x and z axes, respectively.

8



A weighted least squares technique is used to fit the lift and drag look-up
table data. Accurate, low-order polynomial fits could be obtained for all
look-up tables after rotating into the lift and drag coordinates. For example,
Figures 1, 2 and 3 show the look-up table data and cubic polynomial fits
for Cr.a, Cpo and Cy, . The polynomial function approximations for all

aerodynamic coefficient look-up tables are provided in Appendix Appendix
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Figure 1: Look-up table data and polynomial fit for Cp, ,

There are two important issues in this fitting procedure. First, the fitting
of the C/Cp data rather than the raw Cx /Cly is justified by the structure of
the dynamic equations. For example, —D enters directly into the equation for
1% (Equation 1). V can be alternatively expressed in terms of X and Z forces

via the substitution —D = X cos(«) + Zsin(«). In this form fitting the raw
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Figure 2: Look-up table data and polynomial fit for Cp ,

aerodynamic look-up data for C'y and Cy would introduce approximation
errors in X and Z. Approximation errors would also be introduced by the
polynomial fits for cos(«) and sin(a). Directly fitting the look-up data for Cp
only leads to one lumped approximation error in the —D term. Second, the
least squares solutions for the lift /drag/pitching moment data were weighted
to obtain extremely accurate fits at low angles of attack (—5° < a < 15°)
and less accurate fits at higher angles of attack (o > 15°). This weighting
ensures that the polynomial model retains trim characteristics that are sim-
ilar to those of the original nonlinear model. Note that the polynomial fits
fail to capture important characteristics of the look-up table data of Cr, , and
Cin,o for angles of attack between 15° < o < 40°. In fact, trimming both the

models around « ~ 11deg results unstable linearization for the original longi-
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Figure 3: Look-up table data and polynomial fit for C,, o

tudinal model, and stable linearization for the polynomial model. However,
the unstable pole in the original model is slow enough (=~ 1072 rad/s) not
to affect the feedback characteristics for the polynomial model after closing
the loop with the control law. Moreover, both the models were simulated
with numerous doublet and step inputs. The qualitative characteristics of
both the trajectories are similar, even when the linearizations are different.
The original model has more damping than the polynomial model around
a =~ 20deg and this can be seen from Figure 3. The mismatch between the
raw data and the polynomial fitting causes the polynomial and look-up ta-
ble models to have different trim characteristics for angles of attack in this

range. However, the analyses presented in this paper correspond to low angle

11



of attack (o~ 2 — 3°) trim conditions.
A degree seven polynomial model is obtained after replacing all non-
polynomial terms with their polynomial approximations. The polynomial

model takes the form:

&= f(x,u) (15)

where x := [V (m/s), a(rad), ¢(rad/s), 0(rad)], and u := [Jeren(rad), o (%)].
The degree seven polynomial model f(x,u) is provided in Appendix Ap-
pendix A.2.

The trim conditions for level flight across the range of velocities V' &
[30,60] m/s are computed to assess the quality of the polynomial approxi-
mation. The trim conditions assume level flight (o« = @) and no pitch rate
(¢ = 0 deg/s). Figure 4 shows the trim angle-of-attack « and trim inputs
(Octew, Oin) versus trim speed for both the original nonlinear model and the
polynomial approximation. The trim behavior of the polynomial model is
similar to the original nonlinear model. Both models were simulated with
a variety of step and doublet inputs and the time-domain responses were
similar.

The polynomial approximation to the original nonlinear model is only
valid within a certain region of state-space. The polynomial approxima-
tion for the trigonometric function (sin(a), cos(a) ete.) is valid up to ap-
proximately 50 deg for the corresponding angle. This provides an upper
bound on the range of validity for the polynomial model in the a direction.
The look-up table data for the basic airframe aerodynamic coefficients is
within the range of 5 deg < a < 85 deg, providing a lower bound on the

region of validity in « direction. Hence, the polynomial model is valid for

12
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Figure 4: Trim angle of attack and inputs vs. trim speed

5 deg < a < 50 deg. The least-square approximation to the rational de-

1
pendence on speed (V) is valid over the range from 30 m/s to 60 m/s with

a maximum error of approximately 9%. The least-square approximation of

the look-up table data to the rate derivative terms, i.e. CL; , Cpg, Cmg,

is valid for —70 deg/s < ¢ < 70 deg/s. This limits the range of validity in

the pitch rate direction. The polynomial model is valid within the above

specified region in the state-space.
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This validation procedure is heuristic but it is still an open problem to
develop rigorous and computable metrics of the approximation error between
a generic nonlinear (non-analytic) model and a polynomial model. There are
many ways to conceptually extend linear system metrics, e.g. the H,, norm,
but the difficulty is in obtaining algorithms to easily compute these metrics

for nontrivial nonlinear systems.

2.3. Polynomial Short Period Model

The longitudinal dynamics of an aircraft consist of a phugoid and short
period mode. The phugoid mode is a long duration oscillation involving air
speed and pitch angle. The short period mode is a faster oscillation involving
angle-of-attack and pitch rate. The 4-state model of the longitudinal aircraft
dynamics (Equations 1-4) can be decoupled into models of the short period
(a and q) and phugoid (V' and ) modes. This decoupling is typically done
on the linearized model of the longitudinal dynamics (Stevens and Lewis,
1992). In fact, this decoupling can be done, to a good approximation, on the
nonlinear longitudinal dynamics. The resulting nonlinear short period model
provides a simpler model for nonlinear analysis than the 4-state longitudinal
model. This nonlinear short period model is of interest to flight control
engineers since the short period mode is an important determinant of the
aircraft flying and handling qualities. Moreover, the decoupled nonlinear
short period model may provide insight for the design an inner-loop control
laws in presence of the nonlinearities. The remainder of this section describes

the construction of the nonlinear short period model.

14



Consider the flight condition at level flight and the speed V' = 45 m/s:

Vi 45.00 m/s
o 0.04924 rad Oclev,t 14.33 %
= , = (16)
G 0 rad/s, Otht 0.04892 rad
0; 0.04924 rad

The subscript “t” denotes a trim value. A polynomial short period model is
extracted from the 4-state polynomial model, Equation (15), by holding V/,
0 and d;, at their trim values. Define two polynomials:

91(, q, 0eien) = folw, u)I(z,u)=([Vt,oz,q,é’t],[éth,t,éelev]) (17)

92<057 q, 6ele’v) = f3<x: u)|(gg,u):([Vt7a,q,9t],[5th,t,5eleu}) (18>

where f; and f3 are from the 4-state polynomial longitudinal model provided

in Appendix Appendix A.2. The polynomial short period is given by:

a = gl(Oé, q, 5elev) (19)
q = 92(05, q, 6elev) (20)

The short period model has two states [, ¢]7 and one input dee,.

A simulation comparison is performed to verify that the polynomial short
period model provides a good approximation for the short period mode of the
original 4-state longitudinal model (Equations 1-4). The short period model
is simulated from many initial conditions [«(0), ¢(0)] with the elevator held
fixed at the trim value. The original 4-state model is also simulated starting
from initial conditions of the form [V, «(0),¢(0), ;] with both inputs held
fixed at their trim values. In Figure 5, the phase plane for the short period

model is shown in solid paths while the projection of the four-state simulation

15



trajectory onto the («, ¢) plane is shown in dotted paths. This phase plane
comparison shows that there is excellent agreement between the trajectories
of the two models over a wide range of initial conditions. The main differences
occur as the trajectories converge to the trim point. This is due to the short
period model converging to the trim condition while the phugoid mode in
the 4-state longitudinal model causes the trajectories to have a slow, low-
amplitude oscillatory behavior near the trim point. In addition to this phase
plane comparison, good agreement was observed between the two models for

simulations with step and doublet inputs.
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Figure 5: Phase Plane Comparison of Polynomial Short Period (Solid) and 4-state Poly-
nomial Models (Dashed)
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3. Region of Attraction Estimation

This section provides a brief overview of a computational method to es-
timate the region of attraction (ROA). Consider an autonomous nonlinear

dynamical system of the form:
T = f(x), z(0) = xg (21)

where x € R” is the state vector and f : R” — R" is a multivariable polyno-
mial. Assume that = = 0 is a locally asymptotically stable equilibrium point.
Formally, the ROA is defined as:

R = {xg € R": If 2(0) = z( then tlim x(t) = 0} (22)

—0Q

Computing the exact ROA for nonlinear dynamical systems is very difficult.
There has been significant research devoted to estimating invariant subsets
of the ROA (Parrilo, 2000; Vannelli and Vidyasagar, 1985; Tibken and Fan,
2006; Tibken, 2000; Hauser and Lai, 1992; Hachicho and Tibken, 2002; Gen-
esio et al., 1985; Davison and Kurak, 1971; Chiang and Thorp, 1989). The
approach taken in this paper is to restrict the search to ellipsoidal approxi-
mations of the ROA. Given an n x n matrix N = N7 > 0, define the shape
function p(x) := 2" Nz and level set & = {z € R" : p(z) < S}. p(x)
defines the shape of the ellipsoid and ( determines the size of the ellipsoid
&s. The choice of p is problem dependent and reflects dimensional scaling
information as well as the importance of certain directions in the state space.

Given the shape function p, the problem is to find the largest ellipsoid &g

17



contained in the ROA:

f* =max 3 (23)

subject to: £ C R

Determining the best ellipsoidal approximation to the ROA is still a chal-
lenging computational problem. Instead, lower and upper bounds for g*
satisfying 8 < * < B are computed. If the lower and upper bounds are
close then the largest ellipsoid level set, defined by Equation (23), has been
approximately computed.

The upper bounds are computed via a search for initial conditions leading
to divergent trajectories. If lim; . z(t) = +00 when starting from z(0) =
Todiv then xg g, ¢ R. If we define By, := p(xo.4i) then &3, ¢ R which
implies 3* < By, and Eg- C &z,..- An exhaustive Monte Carlo search is used
to find the tightest possible upper bound on (*. Specifically, random initial
conditions are chosen starting on the boundary of a large ellipsoid: Choose
xo satisfying p(z¢) = B4, where (3, is sufficiently large that G, > g*. If
a divergent trajectory is found, the initial condition is stored and an upper
bound on 3* is computed. B, is then decreased by a factor of 0.995 and the
search continues until a maximum number of simulations is reached. By;c will
denote the smallest upper bound computed with this Monte Carlo search.

The lower bounds are computed using Lyapunov functions and recent re-
sults connecting sums-of-squares polynomials to semidefinite programming.
Computing these bounds requires the vector field f(z) in Equation (21) to be
a polynomial function. The computational algorithm is briefly described here
and full algorithmic details are provided elsewhere (Jarvis-Wloszek, 2003;
Jarvis-Wloszek et al., 2003; Tan and Packard, 2004; Jarvis-Wloszek et al.,

18



2005; Tan, 2006; Topcu et al., 2007, 2008). Lemma 1 is the main Lya-
punov theorem used to compute lower bounds on (3*. This specific lemma is
proved by Tan (2006) but very similar results are given in textbooks, e.g. by
Vidyasagar (1993).

Lemma 1. If there exists v > 0 and a polynomial V : R™ — R such that:

V(0)=0and V(z) >0V #0 (24)
Q, :={xeR" : V(z) <7} is bounded. (25)
Q, c{zeR" : VV(2)f(x) <0} (26)

then for all x € €., the solution of Equation (21) exists, satisfies x(t) € €2,
forallt >0, and Q, CR.

A function V| satisfying the conditions in Lemma 1 is a Lyapunov func-
tion and €2, provides an estimate of the region of attraction. If x = 0 is
asymptotically stable, a linearization can be used to compute a Lyapunov
function. Let A := % }x:O be the linearization of the dynamics about the ori-
gin and compute P > 0 that solves the Lyapunov equation AT P+ PA = —1.
Virn(z) := 2T Pz is a quadratic Lyapunov function that satisfies the condi-
tions of Lemma 1 for sufficiently small v > 0. V7;y can be used to compute

a lower bound on (* by solving two maximizations:

7" :=max "y (27)

subject to: Q, C {x € R" : VVpny(z)f(x) <0}

B :=max (3 (28)

subject to: £g C (1

19



The first maximization finds the largest level set .- of Virn such that
Lemma 1 can be used to verify €2, C R. The second maximization finds the
largest ellipsoid & contain within (2,~. The computational algorithm used
replaces the set containment constraints with a sufficient condition involving
non-negative functions (Tan, 2006). For example, £5 C Q.+ in Optimiza-
tion (28) is replaced by

B 2

subject to: s(x) > 0 Vx

— (8= p(2)) sl@) + (7" = Virw(2)) 2 0 ¥

The function s(z) is a decision variable of the optimization, i.e. it is found
as part of the optimization. It is straight-forward to show that the two non-
negativity conditions in Optimization (29) are a sufficient condition for the
set containment condition in Optimization (28). If s(z) is restricted to be
a polynomial then both constraints involve the non-negativity of polynomial
functions. A sufficient condition for a generic multi-variate polynomial h(x)
to be non-negative is the existence of polynomials {g1,...,9,} such that
h =g?+---+ g2 A polynomial which can be decomposed in this way is
rather appropriately called a sum-of-squares (SOS). Finally, if we replace the
non-negativity conditions in Optimization (29) with SOS constraints, then

we arrive at an SOS optimization problem:

B :=max 3 (30)
subject to: s(z) is SOS

— (B —=p(x)s(z) + (v* = Viin(z)) is SOS
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There are connections between SOS polynomials and semidefinite matrices.
Moreover, optimization problems involving SOS constraints can be converted
and solved as a semidefinite programming optimization. Importantly, there
is freely available software to set up and solve these problems (Prajna et al.,
2004; Lofberg, 2004; Sturm, 1999; Balas et al., 2009). B, Will denote the
lower bound obtained from Optimization (30) using the quadratic Lyapunov
function obtained from linearized analysis.

Unfortunately, is usually orders of magnitude smaller than the upper

Brin
bound Byc. Several methods to compute better Lyapunov functions exist,
including V-s iterations (Jarvis-Wloszek, 2003; Jarvis-Wloszek et al., 2003;
Tan and Packard, 2004; Jarvis-Wloszek et al., 2005), bilinear optimization
(Tan, 2006), and the use of simulation data (Topcu et al., 2007, 2008). In this
paper, the V-s iteration is used. The Lyapunov function V() in the iteration
is initialized with the linearized Lyapunov function V7 ;y. The iteration also

Tz and ly(z) = —ex2” 2 where €, and e, are small

uses functions I (r) = —€1x
positive constants on the order of 107%. The V-s iteration algorithm steps

are provided below.

1. v Step: Hold V fixed and solve for s, and ~*

ov
*:= max st. —(y=V)sg— [ —f+13) € SOS
7T Le808., (7= V)2 ( oz’ 2)

2. 8 Step: Hold V, v* fixed and solve for s; and 3

= R — — + (v* = V) € SOS
8 Slerg%xs’ﬁﬁ s (B=p)s1+ (v )
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3. V step: Hold sy, s9, 8, 7" fixed and solve for V' satisfying:

oV
— (’7* — V)82 - (amf + lg) € SOS
—(B—p)s1+(v"—V)eSOS
V —1, €S0S,V(0)=0

4. Repeat as long as the lower bound [ continues to increase.

In the V-s iteration, Lyapunov functions are allowed to be of higher poly-
nomial degree. Increasing the degree of the Lyapunov function will improve
the lower bound at the expense of computational complexity. The computa-
tional time grows rapidly with the degree of the Lyapunov function. Hence,
the results for degree 6 candidates are provided. Software and additional

documentation on the V-s iteration is provided at (Balas et al., 2009).

4. Analysis of Generic Transport Models

4.1. Analysis of Short Period Model

In this section the region of attraction for the short period GTM in Equa-
tions (19)-(20) is analyzed. Since this model has only two states it is easy
to plot and visualize the entire phase plane. The analysis in this section is
for illustrative purposes and a more realistic, higher-dimensional example is
provided in Section 4.2.

The open-loop short period model can be analytically linearized about
the trim condition to obtain a linear short period model: dz = Adz + Bdu
i

where 6z = [ — ay, ¢ — ] and du := Ogjep — Oeten,t- For the trim condition
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in Equation (16) the state matrices are given by:

A % %9; —3.236  0.9227 (31)
% % (at, qr) —45.34 —4.372
[ o, —0.3166

B — 8gele'u — (32>
863251; (at7 at, 6elev,t) _5998

The eigenvalues of this linearization are —3.80 4 6.44¢. The trim condition
is asymptotically stable since the eigenvalues are in the open left half of
the complex plane. Figure 6 shows the phase plane simulation of the linear
(dashed) and nonlinear (solid) short period model. Qualitatively, both the
linear and nonlinear phase plane have stable spiral characteristics. This
qualitative similarity between the linear and nonlinear short period model
implies that the nonlinearities are not significant and the results of linear
analyses are expected to be valid over a wide range of flight conditions.
Moreover, Figure 6 demonstrates that region of attraction for the short period
model contains the region of the state space over which the polynomial model
is valid. Recall, the region of validity for the polynomial model is mentioned
in Section 2.1.

For the purposes of illustration, it is demonstrated that the linearization
can fail to detect the effects of significant nonlinearities. Recall that in the

GTM model, C,, is based on three look-up tables:
Cm(a7 5eleva Cj) = Cm,oa(a) + Cm,éelev (OZ, 56[6’1)) + Cm,@(a> (j) (33>

The look-up table data for pitch damping derivative C,, ; is provided on a grid
of twenty-four values of angle of attack « in [—0.5236,0.8727] rad ([—30, 50]
deg) and fifteen values of normalized pitch rate ¢ in [—~7.500 x 1073, 7.500 x
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Figure 6: Nonlinear (solid) and linear (dashed) phase plane simulation for polynomial

GTM short period model

1073] (unitless). It is easier to interpret this data in terms of actual rather
than normalized pitch rates. The normalized pitch rates in the table grid can
be converted at a trim speed V; to actual pitch rates via the relation ¢ = Q—‘E/f(j.
This relation is ¢ = 322.6¢ rad/s (=1.8484 x 101G deg/s) at the trim speed
V; = 45m/s. Figure 7 shows the raw look-up table data C,, 4 versus ¢ for five
different values of a. Each thin solid-dotted line is C,,, vs. ¢ for a specific
value of « in the look-up table.

In the polynomial longitudinal model, a linear fit is used to approximate
the rate damping look-up table: C,,4(a, §) ~ —41.25¢. The rate damping
is independent of the angle of attack in the approximation. This linear fit

can be converted to actual pitch rate (rad/s) at the trim speed V; = 45m/s:
Cmg = —0.1279q. Figure 7 also shows the linear fit versus pitch rate in
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deg/s (thick solid line). This linear relationship is a typical characteristic of

a commercial aircraft like the GTM.

0.3 -
_Crn.é = *—1125({'

020NG _— hg = —41.25¢ + 5.318¢°

——Raw Data

0.1 """"""""""""""""""""""""""""""

G
g OF i 5 N

o

-0.1 """"""""

-0.2 """"""""""""""""""""""

-100 -50 0 50 100

g (deg/s)

Figure 7: Pitch rate damping vs. pitch rate for raw look-up table data, linear fit, and

cubic nonlinearity.

To demonstrate the effects of nonlinearities consider the following cubic

pitch rate damping function:
Crngla, §) = —41.25§ + 5.318¢° (34)

This function, shown in Figure 7 as a thick dashed curve, results in less
damping at higher pitch rates and would lead to a less stable short period
model. The inclusion of this cubic term is purely to illustrate the effects of
aerodynamic nonlinearities on a simple model. It is not meant to model the

behavior of the actual GTM aircraft at high pitch rates. The C,, aerodynamic
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coefficient only enters the ¢ dynamic equation (Equation (3)). Hence the
cubic term modification to (), ; only affects the function fs; in polynomial
longitudinal model provided in the Appendix. The updated f3 based on
Equation (34) is given below as fs.

f3 = —6.573 x 1072V + 1.747 x 107V*¢® — 1.548 x 10~ *V3¢*
—3.569 x 1073V2a2 + 4.571 x 1073V ?¢> + 4.9530 x 1075V 3¢
+9.596 x 107°V?a” + 2.049 x 107*V?af¢er — 2.431 x 107V« ;
—3.063 X 1072V 240 — 4.388 x 1073V ?q — 2.594 x 107767, )
+2.461 x 1073V2 +1.516 x 10762, + 1.089 x 10725,
+1.430 x 107"
The linearization of the updated short period model is unchanged by this
modification and is still given by Equations (31) and (32). This statement is
verified by noting that C,, ; only affects the short period linearization through

a term of the form:

_ 4195 ¢ +1596( ¢ )2
(o @) Sy T gyt

The second term is due to the cubic nonlinearity but this term is zero since

0Cy,.4
dq

(36)

(Oét, Qt)

¢: = 0 at trim. To summarize, the linearization predicts no change in the
aircraft stability when the cubic rate damping term is included.

Figure 8 shows the phase plane for the short period model with this cubic
rate damping term. The stable trajectories are in solid while the dashed
trajectories grow unbounded. The region of attraction consists of all points

that lie on the stable (solid) trajectories. As expected, the cubic term in
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Chn,g decreases the aircraft damping and this reduces the size of the region
of attraction.

Figure 8 also shows two ellipsoidal estimates of the region of attrac-
tion. These are computed using the V-s iteration as described in the Sec-
tion 3 but with different shape functions. The solid ellipse is computed
with the shape function p;(z) = 2T Nyz where x := [a — ay, ¢ — ¢] and
Ny = diag(0.3491 rad, 0.8727 rad/s)™? := diag(20 deg, 50 deg/s)~2. For
this shape function the lower bound on the region of attraction estimate is
B, = 1.76. This verifies that the ellipse &5 = {z € R" : pi(z) < [} is
a subset of the region of attraction. The center of the ellipse is at the trim
condition. It has a minor axis length of 20 deg - ﬁl = 26.53 deg along the «
axis and a major axis length of 50 deg/s - ﬁl = 66.33 deg/s along the ¢ axis.
Note that there is an unstable trajectory that nearly touches the boundary
of Egl. Thus the ellipsoidal estimate is tight in the sense that any further
increase the size of the ellipse will cause it to no longer be a subset of the
ROA.

Choosing the shape matrix as Ny := diag(0.1745 rad, 0.8727 rad/s)™2 :=
diag(10 deg, 50 deg/s)~? decreases the shape of the ellipse in the a direction
as compared to the ¢ direction. For the shape function py(x) = 27 Nyx the
lower bound on the region of attraction estimate is §, = 5.69. &5 := {z €
R™ @ po(z) < B,} is shown as the dashed ellipse in Figure 8. This estimate is
also tight since it has an unstable trajectory that nearly touches the boundary
of the ellipse. This estimate of the region of attraction is significantly larger
in ¢ direction than Sﬁl and it is only slightly smaller in the « direction.

Ultimately the choice between p; and ps depends on which direction of the
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Figure 8: Phase plane simulation for polynomial short period model with cubic C,, ; with
lower bound estimation of ROA for different shape factor; Stable trajectories are denoted

by solid and dashed denotes the unstable trajectories

state space is more important to the analyst.

This example demonstrates the benefit of nonlinear region of attraction
estimation for flight control analysis. A comparison between Figures 6 and 8
demonstrates that the addition of the cubic pitch rate damping nonlinearity
significantly reduced the size of the stability region. However, the short
period linearization is unaffected by this nonlinear term and hence linear
analyses fail to detect any stability issues. The reduction in the stability
region is captured by the nonlinear ROA estimation technique.

This example also graphically demonstrates that impact of the shape

function on the region of attraction estimate. In a generic, higher dimen-
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sional problem the shape function level sets are ellipsoids. The choice of a
shape function would depend on the relative importance and units of the
states. The unstable trajectories can also be used to judge the quality of the
ellipsoidal ROA lower bounds. For a higher dimensional problems, the phase
plane is not easily visualized. The Monte Carlo search described in Sec-
tion 4.2 is used to compute upper bounds on the optimal ellipsoidal estimate
from unstable trajectories. Section 4.2 applies the techniques to computing
both lower and upper bounds for the ellipsoidal ROA of the 4-state longitu-
dinal GTM dynamics.

4.2. Analysis of 4-State Longitudinal Model

Phase-plane simulation alone is sufficient to understand the stability re-
gions for 2-state models. However, phase-plane analysis is not applicable
when the state dimension is greater than two or three. In this section, the
techniques described in Section 3 are used to estimate the stability region
of the 4-state longitudinal GTM dynamics with a simple proportional inner-
loop control law.

Inner loop pitch rate feedback is typically used to improve the short period
damping of the aircraft. The following proportional pitch rate feedback is
used to improve the damping of the GTM aircraft:

(Selev = Nyq + 5elev = 00698(] + gelev (37>

The open loop short period dynamics of the GTM are slightly underdamped.
The poles of the short period linearization (Equation 31) have a damping

ratio of 0.509. The rate feedback controller increases the damping ratio
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to 0.713. Equations (15) and (37) describe the nonlinear dynamics of the
closed-loop system with the thrust being held at its trim value.

Region of attraction analysis is performed for the GTM aircraft around
the level flight condition at V' = 45 m/s. The full trim condition is given by
Equation (16). The shape function is p(z) = 27 Nz where

N := diag(20 m/s, 0.3491 rad, 0.8727 rad/s, 0.3491 rad) > (38)
= diag(20 m/s, 20 deg, 50 deg/s, 20 deg) >

The shape function, p, roughly scales each state by the maximum magni-
tude observed during the flight condition. At straight and level flight, o and
0 are expected to have similar deviations. Hence, the maximum deviation
for both a and # are chosen to be of the same magnitude. The velocity is
assumed to deviate at most 20 m/s from its trim airspeed of 45 m/s during
the flight condition. This range of airspeed (V' € [25 m/s, 65 m/s]) is outside
the range of validity of the model by 5 m/s. Recall, the polynomial model
is valid over the range of airspeed from 30 m/s to 60 m/s. The maximum
deviation in pitch rate is chosen so that the maximum deviation stays within
the range of model validity in the pitch rate direction. The polynomial model
is valid for —70 deg/s < ¢ < 70 deg/s.

The polynomial model of the longitudinal dynamics was modified in two
ways to make it suitable for the computational algorithms. First the state
was redefined as z :=x —x; = [V -V, a — a4, ¢—q, 0 — Ht]T to shift the
trim condition to the origin of the state space. Next, all polynomial terms
with degree greater than five and/or coefficients less than 107% were removed

from the model. The terms have negligible effect on the model but their
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removal greatly reduces the computation time for the lower bounds due to
the computation of the V-s iteration growing rapidly with the degree of the
polynomial model and the Lyapunov function.

Scaling of the model is another important issue for the numerical stability
of the V-s iteration. The magnitude of the coefficients in the fifth order
closed-loop polynomial model can vary greatly. For example, the magnitude
of the minimum and maximum coefficients in the velocity derivative equation
(V) are 6.860 x 106 and 85.38, respectively. Scaling of the state-space of
the closed-loop dynamics is used to improve the numerical conditioning. The
states are scaled as zs; = Dz where D = N2. In the z,, coordinates the shape
function is p(zsy) = stdzscl. After scaling the magnitude of the minimum and
maximum coefficients in the velocity derivative equation (V) are 1.197 x 10~*
and 0.520, respectively. The V-s iteration was run on the scaled model and
results converted back to unscaled coordinates.

The V-s iteration with a degree six Lyapunov function resulted in a lower
bound estimate of 3, = 3.36. This verifies that the ellipsoid &5 := {z € R" :
p(z) < B,} is a subset of the region of attraction. The center of the ellipsoid
is at the trim condition. It has a length of 20 deg- \/EG = 36.66 deg along the
« axis. The other axis lengths can be computed similarly. The upper bound
from Monte Carlo simulation approach is computed to be fSyc = 3.76. In
other words, Monte Carlo simulation found an unstable trajectory with a
point on the ellipsoid 5@Mc'

The ellipsoidal bounds on the region of attraction can be visualized by
plotting slices of the ellipsoids Sgﬁ and 8QMC. Figure 9 shows slices of these

ellipsoidal ROA bounds in the a-g plane. The solid ellipse is the slice of
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Figure 9: Lower and Upper Bound Estimate of ROA for the GTM longitudinal model;

the rectangular region defines the validity region of the model

the 8g6. Every initial condition within this ellipsoid will return to the trim
condition (marked as an 'x’). The dashed ellipse is the slice of SﬁMc in the
a-q plane. There is an unstable trajectory that touches SEMC although it may
not necessarily touch the ellipse in the a-q plane. The Monte Carlo search

returned the following initial condition yielding an unstable trajectory.

To.4iv = [45.36 m/s, —0.6231 rad, 0.3701 rad/s, 1.1957 rad]"

:=[45.36 m/s, —35.70 deg, 21.21 deg/s, 68.51 deg]T

The dotted rectangular box in Figure 9 shows the region of validity for the
model. The region of validity for the polynomial model is explained in Sec-
tion 2.1. The closeness of the inner and outer ellipsoids implies, for engineer-

ing purposes, that the best ROA ellipsoid problem has been solved.
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The ellipsoidal bounds in Figure 9 are symmetric about the trim point.
This is due to the choice of a shape function p centered at the trim point. The
region of interest in the state space is not symmetric about the trim point.
For example, the model region of validity is skewed toward positive angles
of attack. It is possible to perform the region of attraction analysis with
shape functions that are not symmetric about the trim point. However the
theoretical and algorithmic details of non-symmetric shape functions have
not been fully developed. This will be investigated further in future work.

Both lower (3 6) and upper bounds (By;¢) of the ROA ellipsoid provide
useful information. The lower bound ellipsoid 5& defines the set of initial
conditions for which the control law will bring the aircraft back to its trim
point. If the aircraft is perturbed due to a wind gust or other upset con-
dition but remains within this ellipsoid then the control law will recover
the aircraft and bring it back to trim. For example, the state [V, «,q, 0]"
= [V;, 30.0 deg, 20.0 deg/s, Qt]T is inside 6'@6. If a disturbance pushes the
GTM aircraft to this state then the control law will bring the aircraft back
to its trim point. The upper bound ellipsoid EEMC contains at least one ini-
tial condition that will cause the aircraft to diverge from its trim condition.
Upset conditions that push the aircraft state to this upper bound ellipsoid
could lead to loss of control. In other words, information from these two
ellipsoids can be used to draw conclusions about the safe flight envelope.
The size of these ellipsoids measure the robustness of the flight control law
to disturbances. In summary, the ellipsoids define a metric for the safe flight

envelope of the GTM aircraft.
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5. Summary

This paper demonstrated the utility of polynomial modeling and region
of attraction analysis for aircraft flight control systems. Low degree polyno-
mial models were constructed for the longitudinal and short period dynamics
of NASA’s GTM aircraft. The nonlinear short period model is of interest
since this mode is typically decoupled using a linearization of the longitu-
dinal dynamics. FEllipsoidal region of attraction estimates were computed
for both models. These region of attraction estimates provide quantitative
information about the nonlinear aircraft dynamics. This is in contrast to
linearizations that may be valid only in a small neighborhood of the trim

condition.
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Appendix A. Longitudinal GTM Model

Appendiz A.1. Polynomial Aerodynamic Coefficients

Each aerodynamic coefficient is computed as a sum of three terms which

model the aerodynamic effects of the basic airframe, elevator inputs, and
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pitch rate. For example, C.(a, dejer, ¢) is a sum of three terms each of which
is computed from a look-up table:
C*<Oé, 56[6117 Cj) :C*,a<04) + C*y(sele'u (Oé, 5elev) + C*,zj(a> (j)

where * can be replaced by D, L, m to form the drag force, lift force and

pitching moment coefficient, respectively.

The basic airframe coefficients for C'p, Cp, C,, are:
Cpola) = —1.477a° +3.110a* — 1.303 x 10~ ' + 3.060 x 1072
Crao(a) = 2.1410° — 6.575a% + 5.298 + 5.337 x 1072

Crna(@) = —=2.199 x 107 'a® +5.912 x 10 'a? — 1.498a + 1.516 x 107"

The effects of control surface (elevator) on the aerodynamic coefficients
are modeled as:
Cp.go, () Oeten) = —5.943 x 10720 + 1.435 X 107 A per + 5.967 x 107257,
+2.661 x 10" %a + 2.733 x 10726, — 1.903 x 1077
Crs, (0 0c1ep) =  4.188 x 107%a* — 3.438 x 10~ ayien + 9.293 x 107257,
— 3497 x 1072 4 4.610 x 10~ 6y, + 2.543 x 1072
Crnsorey (O Octen) = 1.26300¢1e0 — 1.8870¢ie
Finally, the contributions due to the pitch damping are expressed as:
Cpgla,§) = —2.197 x 1072a® + 33.58a4 — 151.04
—3.022 x 10732 — 9.691 x 107§ + 2.221 x 10~*
Crqla,§) = 2.297 x 107%a® — 1.359aqG — 856.7¢*
—1.673 x 102 + 34.38G + 3.703 x 10~*

Crnaer, §) = —41.24G
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Appendiz A.2. 4-state Polynomial Model

The 4-state polynomial longitudinal model is provided in this subsection.
The ordering of the states and inputs are, respectively: = [V (m/s), a(rad), ¢(rad/s), 6(rad)],
and u = [Jeren(rad), 64,(%)]. The polynomial model is:

f(:c,u) = [fl(xuu)v f2<x7u)> f3(:c,u), f4(x7u)}T

f1=1.233 x 1073V*¢* +4.853 x 1077035}, +3.705 x 10~°V?ayq
—2.184 x 107°V3¢* +2.203 x 1072V2a® — 2.836 x 10~ %57,
+3.885 x 1077a?63, — 1.069 x 10°°V3q — 4.517 x 1072V ?a?
—2.140 x 1073V g0 — 3.282 x 107°V?aq — 8.901 x 107*V?62,_,
+9.677 x 107°V2¢* — 2.037 x 102’6y, — 2.270 x 100?53,
—2.912 x 107863, + 1.591 x 1073V 2a — 4.077 x 107V %6 41er
+9.475 x 1075V2%g — 1.637a> — 1.631 x 10~2a%5,, + 4.903a%6
—4.903060% +1.702 x 10 a3, — 7.771 x 107763, + 1.6346°
—4.319 x 107*V? — 2,142 x 107 'a® + 1.222 x 10 %ady,

+4.541 x 107%03, + 9.823a + 3.261 x 10726, — 9.8070 + 4.284 x 10~*
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fo=—3.709 x 107"V +6.869 x 10"V a3 + 7.957 x 107V*aq
+9.860 x 1077V4¢* +1.694 x 107°V3a® — 4.015 x 10°*Va?53,
—7.722 x 1072V a5}, — 6.086 x 107753, — 2.013 x 107%V?q
—5.180 x 107°V3a? — 2.720 x 1075V 38,1, — 1.410 x 107" V3aq
+7.352 x 1077V352,, — 8.736 x 107 "V3¢* — 1.501 x 107*V?a?®
—2.883 x 107V a8y, + 4.513 x 107°Va?53, — 4.121 x 107V ad?,
4 3.557 x 1075062 + 6.841 x 1070?63, + 4.151 x 107°V3«
+3.648 x 107V 38,10, + 3.566 x 107%V3¢ + 6.246 x 10~ °V?qyq
+4.589 x 1073V2a? 4 2.410 x 10"V by, — 6.514 x 107°V257,,

+2.580 x 107°V?¢* — 3.787 x 107°Va® + 3.241 x 107"V a?sy,

42409 x 107" Vad?, + 1.544 x 10711V 3, + 2.554 x 10~*a?s,,

—3.998 x 1077062, +3.651 x 10~ %ad?, +4.716 x 1077V?

—3.677 x 1073V 2% — 3.231 X 1074V %510, — 1.579 x 1074V %

+2.605 x 107*Va? + 1.730 x 107°Vady, — 5.201 x 107V al

—9.026 x 1079V 62, + 2.601 x 107V 6? + 3.355 x 10~%a?

—2.872 x 10706y, — 2.134 x 10°ad?, — 1.368 x 107763,

— 4178 x 107°V2 4+ 2272 x 107V — 6.483 x 107"V dy,

—2.308 x 107 *a® — 1.532 x 10*ady, + 4.608 x 10~'af

—2.304 x 10710? +7.997 x 107762 — 5.210 x 1073V

—2.013 x 107 2a + 5.744 x 1076y, + ¢ + 4.616 x 107*
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fs = —6.573 x 107°V5¢® + 1.747 x 1075V ¢® — 1.548 x 10741343
—3.569 x 107°V2a® + 4.571 x 107°V3¢® 4+ 4.9530 x 10~°V3q
+9.596 x 1073V + 2.049 x 102V 2000 — 2.431 x 1072V 3
—3.063 X 1072V 250, — 4.388 x 107°V?q — 2.594 x 107763,

+2.461 x 1073V2 + 1.516 x 107*67, + 1.089 x 10726, + 1.430 x 107+
fi=q
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