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Since the appearance of our paper on heat waves [Rev. Mod. Phys. 61, 1989], certain
papers which should have been cited have come to our attention. It appears that our effort to
write a relatively complete chronology of thought about heat waves fell somewhat short of the
mark. We thought it would be useful to correct the more serious omissions in that chronology in
this addendum, and not to try to list all the papers which bear on one or another aspect of the
subject. The literature on heat waves is still a manageable one, the subject is still active, but not
explosively so. It seems to us that nearly the whole of the literature is covered in our review, in
the various summaries of results on propagation of waves in liquid helium, and in the recent

review of Jou, Casas-Vazquez and Lebon [1988] which give some references missed by us, and



thoroughly reviews the literature coming from the special school of thought about
thermodynamics called extended thermodynamics. We did not think it useful to try to add
something to the already complete review of the literature on liquid helium, and we confined our
remarks to signal events in the development of equations leading to wave propagation of heat.
The fascinating story of the nonlinear evolution of shock waves in Helium II can be found in
Chap. 16 of “Fluid Dynamics” by Landau and Lifshitz [1959] and especially in the book by
Khalatnikov [1965]. These topics and others which arise in the study of liquid helium are
thoroughly reported in the works of Donnelly [1967], Putterman [1974], Roberts and Donnelly
[1974], Tilley and Tilley [1986] and Wilks and Betts [1987].

Our paper and the references cited in the above paragraph do not quite cover all the lines
of thought about heat waves which we now think ought to be listed in our chronology. In
particular it is important to draw attention to the notion of the non-local theory of transport of
heat which emerges from non-equilibrium statistical mechanics and thermodynamics. Another
problem that needs to be addressed is the question of how to regard the heat flux and what types
of invariance ought to be imposed. The origin of the relation between the heat flux and the
temperature can be regarded either as a constitutive problem, whose solution is independent of
the frame of the observer, or as a manifestation of dynamics governing the random motions of
small particles satisfying the weaker conditions of invariance which are associated with the
equations of motion. There is a small number of interesting approaches to nonlinear problems of
heat transmission. The theory of “thermal waves” is generated out of the nonlinear dependence of
conductivity on temperature arising, say, in the diffusion theory of thermal radiation (see the
review of Zeldovich and Razier [1966]). Parabolic waves are possible when the conductivity
vanishes with temperature. The whole theory is based on similarity solutions and is fully
nonlinear. An interesting generalization of thermal waves to a hyperbolic problem was achieved
by Wilhelm and Choi [1975] who used a Cattaneo law with temperature dependent conductivity

and relaxation time. This theory also can be treated by similarity solutions. The mathematical and



physical relationship between these two solutions is far from fully resolved. Other nonlinear
approaches based on thermodynamics have been developed for application to the problem of
second sound in dielectric crystals. Recent experiments on ultrafast thermal excitation of metals
using femtosecond, high-intensity laser pulses may be good for testing ideas about heat wave
propagation at high temperatures. At present, the theory is based on the two-temperature
diffusion model of Anisimov et al [1974] even though the relaxation times involved are well in
the range where wave propagation could be dominant. The times of transit across thin gold films
of heat pulses measured by Brorson, Fujimoto and Ippen [1987] are linear in the sample

thickness, consistent with wave propagation.

This addendum follows the strictly chronological sequence of our annotated bibliography.
At various points, however, we felt obliged to give some further explanations so that the text is

composed of an annotated bibliography interspersed with clearly identified commentaries.

1948 Carlo Cattaneo, Atti Semin. Mat. Fis. Univ. Modena 3, 3

We wrote a summary of this important paper in “Heat Waves” but we missed an
important point which has been made forcefully by I. Miiller [1987], who notes that Cattaneo

first proposes that the heat flux depends on the history of the temperature gradient, writing

(1
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The heat flux at a point (X, t) is not only proportional to the temperature gradient there, but also

remembers faintly the temperature gradient that the particle at x had at an earlier time. When this

is combined with the energy equation
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we get a parabolic equation
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predicting the spreading of pulses with infinite speed. Miiller notes that Cattaneo must have

noticed this, because he proceeds to the equation
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through a sequence of steps
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Miiller notes that this sequence is difficult to justify. Before the sequence we get diffusion, after

the sequence we get hyperbolicity and waves

d
If a term Efcl were added on the right of (1) we would arrive at a heat conductor we called

of Jeffrey’s type which has a diffusive response singularly perturbing waves when 0 is small.

1956 Harry Jones, Handbuch der Physik X1 X

It is argued that conduction in metals can be modeled by an electron gas satisfying Fermi
statistics in which collisions between electrons can be neglected. An electron in a space periodic
field behaves like a free particle justifying the use of the kinetic theory of gases, to study
conduction, except that quantum statistics are used and that steady state arises from lattice
irregularities or motions and not from collisions. This is to say that electron interactions with
phonons and singularities are what is important. James shows that when scattering alone is
considered, an arbitrary initial probability distribution will relax to the equilibrium with a t(k)
time of relaxation which depends on the wave vector k. They conclude that there is a time of

relaxation in pure metals at high temperatures, and in sufficiently impure metals at all



temperatures. The analysis is for weak temperature gradients in the sense that the heat current is
proportional to the temperature gradient at equilibrium. This gives rise to a Cattaneo type of
equation (cf. Wilhelm and Choi, 1975). The Wiedemann-Franz relation can be used to relate a
relaxation time to the thermal conductivity. Empirical formulas for the temperature dependence

of the thermal conductivity of metals leads then to nonlinear laws of heat propagation in metals.

1960 J.M. Richardson, J. Math. Anal. Appl. 1, 12

Richardson derives general hydrodynamic equations for a system of identical structureless
particles under the action of central forces and conservative external forces using methods of
nonequilibrium statistical mechanics. He extends the work of Irving and Kirkwood [1950] by
advancing arguments about the nature of the underlying ensemble to obtain a closed set of
equations with a partially implicit prescription for calculating irreversible terms. He does not use
Boltzmann’s transport equation and gives criticisms of approaches that do. The irreversible terms
in Richardson’s theory are non-local in space and time (see (18) and (19) under Piccirelli, 1968).
He says that he expects the non-local dependence to have a spatial extension of the order of the
range of interaction forces. He remarks that the time sequence of mean observables almost never
can be the solution of a set of first order differential equations, but it can be the solution of sets of
equations in which the present rates of change of mean observables depend not only upon the

present values but also on their past values.

Richardson’s work appears to be the first in which the transport of heat is expressed by an

integral whose kernel is influenced by values far from the point of observation.

SPATIALLY NON-LOCAL THEORIES

It may be useful at this point to make precise what is meant by a spatially non-
local material; it may have many different forms. A spatially non-local theory in
continuum mechanics is not a simple material. The reader should not confuse simple

materials in statistical mechanics with simple materials in continuum mechanics; they



have nothing to do with one another. A simple liquid in statistical mechanics would be a
liquid of featureless molecules acted on by potential forces whose action need not be
short range. A simple material in isothermal continuum mechanics is one whose stress
is determined by the history of the first spatial gradient of the deformation, short range.
A simple heat conductor is one in which the heat flux is determined by the history of the
first gradient of the temperature as in the theories of Cattaneo, Gurtin and Pipkin, and

Nunziato. But the equations of Richardson are obviously not simple in this sense.

1964 R.J. Von Gutfeld and A.H. Nethercot, Phys. Rev. Letters 12, 641

Von Gutfeld and Nethercot were the first to observe the ballistic propagation of heat in
cold crystal of quartz (Si0;) and sapphire (AlO3). Ballistic of propagation takes place when the
temperature of the crystal is colder than that at which heat waves (second sound) propagate. The
speed of these ballistic phonons induced by heat pulsing is the first rather than the second sound

speed.

1966 Y.B. Zeldovich and Y.P. Razier, Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena, Vol. II, Chap. X, Academic Press,
New York and London
The theory of parabolic wave propagation arises in the theory of thermal waves which
was developed in the paper by Zeldovich and Kompaneets [1950]. Chapter X of the book by
Zeldovich and Razier [1966] contains a thorough, detailed and clear account of the whole
subject. First we shall define thermal waves in a formal way, then we go a little deeper into the
physical underpinning. The diffusive propagation of heat is governed by a diffusion equation
oT
pc 3 = DkOT (8)
where p, ¢, k are density, specific heat and thermal conductivity. Now suppose that the
conductivity k(T)=aT" depends on temperature, n>0 and it is possible to support a plane

propagating wave



T =0 (x—vt). )

Any such wave necessarily satisfies

do d ( d@j

PV T dx a@n& (10)

This can be integrated once if pcv is independent of ©. We can find a solution of this problem

with ©=0 at x=xr
1
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This solution is locally valid near the front coordinate x=xy, the front velocity v=dxgdt and

position may be determined from the spatial solution as functions of the time. Some similarity
solutions for different problems are given in the book. The wave velocity v is not a constant in
time. For example, in the problem of heat release from an instantaneous plane source the heat

release parameter,
o0
Q= J Tdx (12)

1s a constant and
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When n=1, the front moves as t'* and front velocity decreases to zero like tzﬂ . Similar results

hold for instantaneous release of heat from a point source, as in explosions.

Now we consider some properties of the thermal conductivity k=aT?, the gradient

T’=dT/dx at the front and the flux kT’



n > 0, k vanishes at the front,
k=aTnyn=0,k=aforall T,

n <0, k(oo as x[x¢,

The conductivity does not go to zero with T when n<0 and there are no solutions with T=0 at any
finite x. This case, n<0 corresponds to the instantaneous propagation of heat to infinity, “infinite

wave speeds.”

1

-1
We also have T'~[x¢x|" which is infinite at x=xy when n>1. The solution here

violates the small gradient hypothesis of the diffusion theory of radiation. Thus, when n>1 we

have a sharp discontinuity, rather too sharp. When 0<n<1, T" tends to zero at the fronts. The flux
1

q~TnT'~|x¢-x|" vanishes at the front for all n>0.

The propagation just described of a heat pulse into a region of zero temperature is what

we understand by parabolic propagation of heat.

The theory of thermal waves can never be achieved in nature if T is the absolute
temperature, because T=0 is then impossible to attain. In fact T is the absolute temperature
because the theory of thermal waves arises out of the theory of radiation for optically dense
materials in local equilibrium (cf. §12 in Zeldovich and Razier, Vol. 1). Photons arriving at any
point in space are born in the vicinity of that point at distances of not more than several mean
free paths; photons born farther away are absorbed in transit. Consequently, only the immediate
vicinity of the point “participates” in establishing the equilibrium intensity. The necessary
condition for local equilibrium—small gradients in an extended, optically thick medium—serves
simultaneously as a justification for the use of the diffusion approximation when considering

radiative heat transfer. The heat flux transported by radiation can be written

_ 16sT’l
3

k

(15)



where T3 arises from differentiation of the T4 radiation law, O is the Stefan-Boltzmann constant

and | is the radiation mean free path, which also depends on temperature.

Suppose we have a real explosion in which hot gas is radiating into the ambient air with,

say To=300°K. Can we use the similarity solution for the instantaneous release of energy from a
point source, which assumes that Tp=0°K, to model the real problem? At early times the interior
temperature will be enormously larger than the 300°K ambient. One may then expect that the real
problem could be modeled by the self-similar problem, but non-uniformly and certainly not near
x¢. “Self similar solutions are of interest not so much as particular solutions of a specific narrow
class of problem, but mainly as limits which are asymptotically approached by solutions of more

general problems that are not self-similar.”

HEAT WAVES AND EXTENDED THERMODYNAMICS

The following citation is from Israel and Stewart [1979]:

One of the most annoying paradoxes which have plagued
thermodynamical theory has been the parabolic character of the
differential equations of heat flow. Even in classical theory, instantaneous
propagation of heat is an offense to intuition, which expects propagation
at about the mean molecular speed; in a consistent relativistic theory it

ought to be completely prohibited.

Although it was recognized that the origin of this problem must reside
in some deficiency of conventional thermodynamics when applied to the
description of transient effects, the nature of this deficiency was not
pinpointed for a long time. In 1949, Grad showed how transient effects
could be effectively treated within the framework of classical kinetic theory

by employing a method of moments instead of the Chapman-Enskog



normal solution. Suitable truncation of the moment equations gave a
closed system of differential equations which turned out to be hyperbolic,

with propagation speeds of the order of the speed of sound. ...

In the context of phenomenological theory, instantaneous propagation
remained for many years a puzzle that makeshift devices, like the addition
of ad hoc relaxation terms to Fourier's law (Cattaneo, 1948), could not
resolve in a logically satisfying way. However ... Muller (1967a) showed
that the difficulty lies in the conventional theory’s neglect of terms of
second order in heat flow and viscosity in the expression for the entropy.
Restoring these terms, Mduller derived a modified system of
phenomenological equations which was consistent with the linearized

form of Grad’s kinetic equations.

1967 Ingo Miiller, Zeit. Phys. 198, 329

Miiller’s paper is the first to use irreversible thermodynamics to replace the parabolic
diffusive propagation heat with hyperbolic, wave propagation. To do this, Miiller had to extend

the idea of local equilibrium, introducing a new state variable. From the author’s summary:

It is shown that the paradox of Fourier’s heat conduction theory (propagation
of temperature disturbances with infinite velocity) is a consequence of an
insufficient description of the thermodynamical state in nonequilibrium. Taking
heat flow and flow of momentum as additional state variables and thoroughly
investigating the equation of entropy balance, we derive an extended theory of
thermodynamics of irreversible processes, which can be shown to remove the
paradox of heat conduction theory for materials with appropriate equations of
state. The velocity of temperature propagation is calculated explicitly for a one

atomic ideal gas using an approximate solution of the Boltzmann equation.

10



Some observations and modifications of Miiller’s theory are presented by Ruggeri [1983].

Extended thermodynamics is one of a few thermodynamic theories far from
equilibrium. The classical theory of irreversible processes rests on the assumption that
although globally the system is in a state of non-equilibrium, each small element of the
system remains in a state of local equilibrium and the equations of thermostatics are
valid in such elements. In particular, the local entropy has the same functional
dependence on the local macroscopic variables as at equilibrium. This enables one to
calculate the entropy production in systems which in such cases is a bilinear expression
of thermodynamical forces and fluxes. In fast irreversible processes or when inertial and
relaxation phenomena in the continuum are strong, the system no longer remains in the
state of local equilibrium. To define the non-equilibrium state of the system, new
variables which vanish at equilibrium must be introduced. The entropy flux is treated as
a constitutive quantity different than the quotient of the heat flux and absolute
temperature. The history of the generalizations of Gibbs’ equation for entropy

production is given by Jou et al [1988].

Other papers which confront the problem of infinite speed of propagation with
extensions of irreversible thermodynamics are Lambermont and Lebon [1973],

Gyarmati [1977] and Lebon [1978].

Recent theories of extended thermodynamics are represented in the
proceedings volume edited by Muller and Ruggeri [1987]. Most of the papers there and
elsewhere deal with the thermodynamics of gases, and are inspired by the kinetic
theory of gases. They get thirteen quasilinear equations of evolution type to determine
the density, internal energy, velocity, heat flux and stress fields, 14 in all, with an extra
equation that the stress is traceless. Five of the equations come from balance laws for

mass, momentum and energy; the other 9 are called balance laws for fluxes. We could

11



regard the other 9 equations as constitutive equations of the rate type, in that the form
of these nine rate equations is not known without making constitutive assumptions. The
thirteen equations just mentioned can also be regarded as arising as moments of the
Boltzmann equations, following Grad [1958]. The number thirteen of moment equations
is then the simplest possible truncation number, with the same number of equations
and unknowns. As is usual in mathematical physics, the closure leaves some unknown
terms which can be determined by constitutive modeling, some kind of guessing about
how these terms should look, or else by higher order moments, postponing the

guessing to yet higher order terms.

Since the thirteen equations are quasilinear it is possible to consider the
possibility of arranging the modeling to give rise to a strictly hyperbolic system, avoiding
diffusion and infinite wave speeds. This procedure has been elevated to a principle in
extended thermodynamics. Grad’s method of dealing with Boltzmann’s equation leads
to strict hyperbolicity and finite wave speeds but Enskog’s procedure leads to Burnett's
equations which are diffusive. (Another example of this appears in the work of Carrassi
[1978].) What you get depends on what you assume, different physical problems

require different assumptions.

A problem of extended thermodynamics is that each rate equation gives rise to
only one time of relaxation (cf. (44)), though different times of relaxation may be needed
to describe responses to different frequencies. We discussed this already in “Heat

Waves.”

1968 R.A. Piccirelli, Phys. Rev. 175, 77

Piccirelli uses methods of statistical mechanics (which is an application of probability
theory to mechanics) to derive expressions adding to the results of Richardson [1960]. These two

papers treat simple liquids and obtain expressions for the stress heat flux which are non-local in

12



time and space. Piccirelli adds explicit molecular expressions for these to the general dynamical
theory given by Richardson. Though these expressions are explicit, they are very idealized and
depend on a number of unverifiable assumptions. Piccirelli himself remarks that his “... present
results are not directly useful as they stand.” The value of his results is to give an example of
how a non-local theory might look. His results are perhaps also of interest in that his effort is to
derive constitutive equations from dynamics, using statistical mechanics rather than, say, kinetic

theory or molecular modeling.
Let
T=Py+T1 (16)

be the stress tensor, Py is the reversible part and T is the irreversible part. Piccirelli finds that P

is a functional which is determined by the present values of the temperature (rather, by the
inverse temperature B=(kT)~!) and the Helmholtz free energy f. Though Py depends on present
values and not on the history of 3 and f; it is not local in space, distant point x" affects the value
of Py at the observation point x. The tensor Py reduces to the thermodynamic pressure times the
unit tensor in the classical case. In Piccerelli’s theory Py is not diagonal, but it is reversible in the
sense that it does not appear in the equation governing the evolution of the entropy. (The reader
may recall that the balance equation governing the evolution of the specific internal energy
contains a dilatational work term, pressure times the divergence of the velocity, but no such term
appears in the equation for the entropy.) The caloric equation is also generalized into a nonlocal

(in space) law.
The heat flux vector
VAN
q=qo+q (17)

also is determined in a decomposed form in which qg, the reversible heat flux, also does not

appear in the evolution equation expressing the balance of entropy. There is no counterpart for qq

13



in classical theory; it reduces to zero in the classical limit. Like Py, qo depends on the present

values of B, f and, in addition, on v, the velocity, but the dependence is non-local in space.

Piccerelli’s expression (57) for qo depends explicitly on local and distant values of [Jv, and not

on v itself.

The irreversible parts of the stress and heat flux are given by Piccirelli as

t
x, ) =—J dt" [ dx" {K@(x, t; x’, t'): Ov(x’, t') + KO(x, t; X', t) » OlnP (x', t')}
0 Q
(18)
A t
qx,t) =—f dt" [ dx" {KO(x, t; x, t') « Ov(x', t") + KA(x, t; x', t') « OlnP (x', ")}
0 Q
(19

Here K4, the viscosity kernel is a fourth order tensor, K(2) the thermal conductivity kernel is a
second order tensor, and the cross-effects tensor K(3) is of third order and is not present in
classical theory. These kernels are actually worse than they look; they are functionals of the
spatially non-local history of B, f and v in Q and [0, t]. “Somewhat less sweeping generalizations
have also been suggested in which the transport kernels ... depend only on the local values of B, f
and v, and is a function only of space and time differences.” The forms given in (18) and (19)
are actually special cases of the forms derived by Piccirelli which have additional terms which
depend on initial values. He notes that there are no indications that the initial-value terms relax
faster than the kernels. To get rid of these terms it is necessary that one select initial values so
that the extra terms vanish. The assumption necessary for this is called “constrained equilibrium”
and (18) and (19) are supposed to hold only for constrained equilibrium. Actually, it seems to us
that initial values are a somewhat ambiguous concept for problems that depend on history. Surely

the materials remember things that happen when t<0.

14



1969 T. André-Talamon, Compte Rendus Acad. Sci. Paris 269B, 101

André-Talamon studied Cattaneo’s equation in a solid when the thermal conductivity
depends on the temperature. He also lets the density and specific heat in the energy equation
depend on the temperature. He finds a general solution in three dimensions without taking
special cases for the dependence of material parameters on the temperature. He notes that
because of the possibly strong variation of the temperature dependent coefficient at early times,
linearization might not be valid. He treats only early times under the condition that the first
derivative in the nonlinear telegraph equation arising from combining the heat law and entropy
equation is much smaller than the second derivative. Under these conditions he is able to solve

the equation generally with a functional equation of the D’ Alembert type.
ENGINEERING APPLICATIONS

We are thinking of ordinary materials at temperatures above super cool. For
such materials heat waves could be important when the imposed change of
temperature takes place in a time, the process time, not too much longer than the
relaxation times for thermal waves. The relaxation times for these materials of
engineering interest are much smaller than the process time. This is why heat waves
are not important in most engineering applications. For engineering applications
Fourier’s law and diffusion give an easier and better description. We already argued in
‘Heat Waves” that even in cases where the relaxation and process times were
comparable it would be desirable to allow for both diffusion and relaxation by adopting
constitutive models like Jeffrey’s which have both a thermal conductivity and a

relaxation time or relaxation spectra.

The engineering literature on heat waves suffers from a lack of observational
data which could establish the applications in which they are important and the

theoretical approximations appropriate to these applications. There are a few good

15



discussions of areas of application in which heat waves may be important in the
engineering literature, but the discussions are usually perfunctory and shallow and the
literature is more or less dedicated to comparing results from numerical calculations of
traditional theories and those based on the telegraph equation. For applications to
common materials it is necessary to do experiments with process times in the window
10-13-10-8 seconds where hyperbolic phenomena and relaxation effects can be
important. The recent literature on laser pulse experiments in metal, reviewed later, is of

interest here.

The problem of sintering of catalysts is interesting because the process time has
been estimated by Luss [1970] as 10-13 seconds, a domain in which relaxation effects
and heat waves ought to be important. The problem has been studied by Chan, Low
and Mueller [1971], and Ruckenstein and Petty [1972]. Some numerical calculations for
this problem when the thermal conductivity grows linearly has been given by Glass, O
zisik and McRae [1986] who also mention possible applications to pulsed lasers and by
Glass, O zisik and Vick [1987]. Some numerical calculations which include the effects
of surface radiation are given in the paper last mentioned and by the same authors in
1985. Frankel, Vick and O zisik [1987] have presented formulation analysis of

hyperbolic conduction for composite materials.

The engineering literature on “hyperbolic conduction” is collected each year in
“Reviews of the Heat Transfer Literature” in the International Journal of Heat and Mass

Transfer.

1971 S.H. Chan, M.J. Low and W.K. Mueller, AIChE J. 17, 1499

In exothermic reactions the maximum temperature may occur in times of the order 10-13
seconds and the hyperbolic transport of heat should be important. Chan, et al imagine periodic

pulses of heat entering the sample from one face. If the waves travel at the speed of sound and

16



the relaxation time is 10-14 seconds, then temperature rise of the platinum sample is 1600°C
according to Fourier’s law and 1800°C according to Cattaneo’s law. Experiments exhibit
temperature rises between 2000° and 3000°C. Chan et al note that the higher temperatures would

be generated from the Cattaneo law with lower wave speeds and the same time of relaxation.

1972 E. Ruckenstein and C.A. Petty, Chem. Eng. Sci. 27, 937

This paper contains a good physical description of the possible effects of finite
propagation speeds on the aging of platinum (metal) catalysts supported on aluminica or silica.
Sintering and agglomeration of crystallites is by hot spots generated by exothermic reactions on
the catalyst. The magnitude of the heat rise depends on how fast the heat is carried to the support.
The finite propagation speed, in addition to being responsible for high temperatures close to the
surface of platinum clusters, also possibly conducts heat to the support. The generation (process)
time is 10-13 second and is smaller or of the same order as the relaxation time for the heat flux.
The finite speed of propagation could be important. For example, an estimate of time taken to

cool a crystallite on a platinum slab 10A thick with a prescribed temperature at the support is less

than the process time tg for Fourier’s law, but it will take 5 tg for heat to travel 10A with a speed
c=2A/tg. The conclusion is reached that the temperature achieved near the reaction surface is
much higher than that resulting from Fourier’s law and that the cooling of the hot spot after the
completion of a reaction is so hindered that the high temperature lasts sufficiently long for

detachments of clusters of atoms to take place.

TWO DIFFERENT KINDS OF INVARIANCE UNDER A CHANGE OF
FRAME

There is a group of papers which consider the theory of constitutive equations for
the heat flux. Some of these are reviewed below. It is generally thought that constitutive
equations characterize materials and the description of material response should be

independent of the observer; two observers on different planets, or on different
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turntables on the same planet should come up with, say, the same equation relating
stress and deformation or the heat flux and temperature gradient, and their equation
should not depend on the frame. There are two requirements stated here: the first is
that constitutive equations should be form invariant and the second is that their form
should be independent of the frame. The first requirement means that different
observers agree about the form of the governing equations. This need not imply that
the equations are independent of the frame. In fact the equations of motion, which
depend on the frame, are form invariant. Form invariance means that equations should
transform like tensors under a change of frame. They are then said to be “indifferent” or
“objective” tensors. Vector-valued equations should transform like vectors a*=Qa under

the change of frame x[Jx*.
x* = Q(t)x + b(t)

where Q(t) is an arbitrary time-dependent orthogonal matrix QQT=1 and b(t) is a time-
dependent spatially constant vector. Similarly second order tensor valued equations

A=0 transform like tensors

A* = QAQT

o

under a change of frame. The velocity u—b and velocity gradient L=[u=du/dx are not

indifferent

U —b = QMu(x, ) + Q) x ,
U1ox* = L*(x*, 1) = QE)L(x, QT + Q QT (20)

The second requirement for constitutive equations is that form invariant
expressions describing material response should depend on the material and not on the
frame in which the material is observed. This is obvious on the one hand and deeply

mysterious on the other. There is of course no more mystery in the “principle” of
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material frame indifferences than in the idea of an inertial frame, which seems to work
well. Certainly the requirement that constitutive equations should not depend on the
frame does not follow from first principles, and frame-dependent expressions often
arise for the stress tensor and heat flux vector when they are derived from statistical
mechanics, as in the work of Richardson [1960] and Piccirelli [1968], from studies in the
kinetic theory of gases which were analyzed in the paper of I. Muller [1972] and in the
paper of Edelen and McLennan [1973], or from molecular dynamic simulations as in the

work of Hoover, Moran, More and Ladd [1981].

A different interpretation of the second requirement of invariance has been
presented by Murdoch [1981] who would let constitutive equations depend on the
frame, but only through the intrinsic spin, an indifferent tensor expressing the spin of the
body relative to an inertial frame. When interpreted this way, the constitutive equations
coming from the kinetic theory also satisfy the revised second requirement of
invariance. There are two separate questions answered in the two requirements of
invariance. The first is whether a material knows if the observer is rotating. The answer
is obviously no. The second is whether a material knows about its own rotation and the
answer may depend on the material. It seems to us that the exact circumstances under
which dynamics gives rise to constitutive equations which are independent of frame is a

largely unexplored topic at the foundation of continuum mechanics.

1972 1Ingo Miiller, Arch. Ration. Mech. Anal. 45, 241

From the author’s summary “... However, a careful study of the kinetic theory shows that
the constitutive equations for stress and heat flux should be dependent on the frame of the
observer, although such a dependence is normally excluded in thermodynamics. The purpose of
this paper is to substantiate the remark above and to illustrate it. The results imply that the field
equation for the temperature in a gas at rest in the observer frame depends on that frame and, in

particular, on whether or not the frame is an inertial one.” In the paper he considers the
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Boltzmann equation for Maxwellian molecules using expressions for the second, third and fourth
moments derived by Ikenberry and Truesdell [1956]. Truesdell has influenced people to believe
that constitutive equations ought to be independent of the frame, and at the time Miiller worked
as an assistant professor in a department and milieu strongly controlled by Truesdell. Miiller
derives expressions for the stress deviator and the heat flux from these moment equations whose
right hand sides contain terms, some of which depend on the frame, which are separately not
objective, but when these terms are added, the added expression is objective, form invariant but
still depends on the frame. There is a second paper by Miiller [1987] in which this problem is

treated. There he cites an equation of Grad [1949] for the heat flux q

K2 [dqi Ovi oT
qﬁ;ia Tox qr”ij%’}“% T D

in which he notes that the bracketed term depends on the frame through the angular velocity
tensor Wij of the frame, but is objective; non-objective contributions of the separate terms sum to
zero. Miiller shows that the same feature, a frame-dependent objective sum of non-objective
terms, arises in Burnett’s [1935] equation for the heat flux and arises also in the equations for the

stress derived by Burnett and Grad.

To illustrate Miiller’s point and to make one of our own, recall that invariant rates were
discussed in our summary of the paper by Fox [1969a] in “Heat Waves” where we showed that

the derivative s

q= (01 —Lq, L =u, (01 = dq/dt (22)
and

5 17 e
are objective. Linear combinations of these are also objective and any one of these combinations

may be used to form nonlinear equations of Cattaneo’s type which do not depend on the frame.
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o

Miiller showed that q +Lq is not objective because q * = Q q = Q q + Qq and

o

L*q* = (QLQT + (02 Q1)(Qq) = QLq + Q q do not transform as tensors. He also observed that

; +Lq—-2Wq (24)
is objective. Here

Wik = —€ijk (25)

is the angular velocity tensor in x corresponding to the angular velocity vector w, relative to an
o
inertial frame with position vector xI, so that W=P PT where x=Px!+b, x*=P*xI+b* relate x and

x* to x! in the inertial frame and
W* = QWQT +Q QT . (26)

The orthogonal matrices are related by Q=P*PT. All the linear algebra is nicely put out in the

beginning of Miiller’ paper. Now we compute

L 12w k] 0a=|5 +ud| =0 +Qa @7
This together with the transformation formulas for L*q* and W* gives
q*+L*q* ~ W*q* = Q(q +Lq-2Wq) (28)

proving the objectivity of this frame-dependent quantity.

It follows now that (22) and (23) are independent objective, frame-independent rates and
(24) is another objective, but frame-dependent rate. Any linear combination of these three is

again objective.
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Miiller reports a calculation in his paper which is very important, though Miiller and

13

subsequent authors make no reference to it. He notes (p. 242) that “... By a long but

straightforward calculation it can be proved ... that

[e] [e]

Vi=b i 2Wik (vicb 1) + W2 (xibi) — W ik(xi-bi) (1.13)

is an objective tensor; the dot derivative of a function (of x) denotes the material time derivative

”  Miiller’s expression (1.13) is the acceleration relative to an inertial frame seen by an
observer in x and there is the same expression with * seen in x*. Together with the usual
assumptions about body forces and the stress tensors, Miiller’s (1.13) shows that the equations of
motion are objective, but of course, they are frame-dependent. People working in continuum
mechanics frequently note that ... the laws of motion themselves do not enjoy invariance with
respect to the observer” (Truesdell and Toupin [1960]), proving that 3 does not transform like a

tensor, taking no notice of the invariance of the acceleration relative to an inertial frame

embodied in (1.13).

1973 J. Lambermont and G. Lebon, Phys. Lett. 42A, 499
They derive a generalized Fourier law
q+1q =L 0T -1 1>0

by extending the local equilibrium hypothesis for isotropic solids. Their result is a special case of
the theory of Miiller [1967a] if the choice L=AT2, corresponding to Cattaneo’s law, is made. A

further generalization of these ideas for elastic bodies is given by Lebon and Lambermont [1976].

1973 D.G.B. Edelen and J.A. McLennan, Int. J. Engng. Sci. 11, 813

This apparently independent work carries the same message as Miiller [1972] (the
submission dates are January 1972 for Miiller and October 1972 for Edelen and McLennan) but
the conclusion is expressed more forcefully. “If there is one instance above all others in which

extreme care has to be exercised it is in the elevation of a known convenience to the peerage of a
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Fundamental Principle. A case in point is the principle of material frame-indifference ...” From
the authors’ summary: “Constitutive relations for stress and energy flux, derived from the
Boltzmann equation by the Chapman-Enskog procedure, are shown to violate the principle of

material indifference while exhibiting invariance under Galilei transformations.”

DIFFERENT POINTS OF VIEW ABOUT MATERIAL FRAME
INDIFFERENCE

Other references on frame indifference are by Wang [1975], Truesdell [1976]
who argue for frame indifference and Séderholm [1976] and Hoover, Moran, More and
Ladd [1981] who argue against it. Hoover, et al did a molecular dynamics simulation for
a fluid in two-dimensional rotating disks and found an azimuthal component of the heat

flux, violating frame indifference.

Some recent points of view on whether or not the heat flux and stress tensor
should satisfy objective constitutive equations which are frame indifferent follow on an
idea by Bressan [1982] who notes that in the various extensions of thermodynamics
beyond local equilibrium, rate equations are introduced for the heat flux and the other
system variables. He then suggests that these rate equations ought to be regarded as
balance laws, on the same footing as the balance of mass, momentum and energy.
The inertial part of these balance laws then need not be independent of frame, any
more than the inertial terms in the momentum balance. In this case the angular velocity
matrix Wj; of the frame which appears in (1:13) is in the inertial term and the remaining
relations which need constitutive modeling can be made frame indifferent. The problem
is resolved by declaring that it is not a problem. This is the point of view presently
advocated by Muller [1987] and Ruggeri [1987] and it seems closely related to the

extended notion of frame-independence advanced by Murdoch [1983].
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1974 P. Roberts and R.J. Donnelly, Annual Rev. Fluid Mech. 6, 179

In this review of superfluid mechanics many topics are discussed. Of interest for
discussions of invariance of constitutive equations is a discussion in §3 of a phenomenological
theory of rapidly rotating Helium II where it is shown that the force terms in the superfluid,
which depend on the superfluid vorticity (the body spin) are not indifferent. Invariance questions

for superfluids are considered in greater detail by Hills and Roberts [1977].

1975 H.E. Wilhelm and S.H. Choi, J. Chem. Phys. 63(5), 2119

Wilhelm and Choi develop a quasilinear hyperbolic theory of heat transmission in metals

using a generalization of Cattaneo’s law

1k
q=-7 q-7 UT GD

with a temperature dependent conductivity k(T) proportional to T® and relaxation time T(T)
proportional to T™. They justify using this law with the relaxation results for metals based on
Boltzmann’s equation which is given by Jones [1956]. Values for m and n for different ranges of
temperature given by Jones are used in this paper. They give an explicit similarity solution for
cylindrical thermal waves in metals, showing that the heat released from a line source propagates
a discontinuous wave front radially outward with a finite, time-dependent wave speed which is

determined by m and n. For constant k, n=0 and m= —1, they get

RO (k)2 ),
i V2 o)t (32)

the speed of the radially spreading wave decreases with time. Unique nonlinear hyperbolic
thermal wave solutions exist up to a critical amount of driving energy. For larger energy releases

the flow becomes multivalued indicating the development of shock waves.

Wilhelm and Choi also calculate and compare the parabolic theory to their hyperbolic

theory. They say that “... the parabolic thermal wave theory gives in general a misleading picture
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of the profile and propagation of thermal waves, and leads to physical (infinite speed of heat
propagation) and mathematical (divergent energy integrals) difficulties. Attention is drawn to the
importance of temporal heat flux relaxation for the physical understanding of fast, transient

processes, such as thermal waves, and more general explosions and implosions.”

This paper of Wilhelm and Choi is very interesting because it generalizes
nonlinear heat conduction to the hyperbolic case in such a way that similarity solutions
may be used in both cases. There are many interesting questions left open; for
example, we expect that when the relaxation times of the hyperbolic theory are much
shorter than any characteristic time for the parabolic theory, then the parabolic theory
will dominate at later times, with the already relaxed hyperbolic modes perturbing the
conductivity (cf. §6 of “Heat Waves”).

1975 C.C. Wang, Arch. Ration. Mech. Anal. 58, 381

Wang seems to have been encouraged by Truesdell to have a critical look on the papers of
Miiller [1972] and Edelen and McLennan [1973] which raise doubts about the principle of frame
indifference. He is only slightly critical remarking that “... it seems to me that there is no
rigorous proof to substantiate the claims of ... I believe there are four major gaps in their

arguments:

a)  There is no proof that the formal expansions of the iterative procedures are

convergent so as to justify the leading terms as approximations of the limits.

b)  There is no proof that the limits of the expansions share the same properties

as the leading terms especially with regard to frame-indifference.

c) There is no proof that the approximate constitutive relations given by the
leading terms of the expansions can be applied to macroscopic processes

which do not satisty the [macroscopic energy balance].
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d) There is no proof that the iterative procedures are valid for any ‘“real

materials.”

1976 G. Lebon and J. Casas-Vazquez, Phys. Lett. S5A, 393

Lebon and Casas-Vazquez extend an earlier analysis of Glansdorff and Prigogine [1971]
for Fourier’s law to the generalized Cattaneo law. They study the stability of heat conduction
with prescribed temperatures of heat flux in rigid bodies in the context of linearized theory using

13

Liapunov’s theory and find that “... contrary to what happens in the classical situation
investigated by Glansdorff and Prigogine, it cannot be concluded that heat conduction is always

stable.”

1976 C. Truesdell, Meccanica 11, 196

Truesdell states strongly that the criticism of material frame indifference coming from the

kinetic theory is wrong.

SUMMARY: Certain results of formal processes of “approximation” in the
kinetic theory are similar in form to constitutive relations of continuum
mechanics. It is wrong to regard them as such. Continuum mechanics takes the
variables entering constitutive functions as being independent. Thus it is possible
to ask whether or not those functions be frame-indifferent. In the kinetic theory,
on the contrary, all solutions automatically satisfy the principle of linear
momentum. In order even to ask whether gross relations satisfied by solutions be
frame-indifferent, it would be necessary to show first that those relations pertain
to a class of solutions that correspond to velocity fields which differ from one
another by arbitrary time-dependent orthogonal transformations of the motion. It
is not presently known whether any such classes of solutions exist in the kinetic
theory. Indeed, as the constraint imposed by the principle of linear momentum is

frame-dependent, the existence of any such class is implausible. Be that as it may,
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to claim that the kinetic theory can bear in any way whatever upon the principle of

material frame-indifference is presently ridiculous.

One can assume that materials satisfy constitutive equations as is done in
continuum mechanics, but it is also valid to enquire if constitutive equations can be
derived from the laws of dynamics at a microscopic level. The second line of inquiry
should not be suppressed. Actually it is not hard to enter into a frame of mind in which it
is the concept of a constitutive equation which appears ridiculous. For example, the
idea that a certain material must satisfy Fourier's law under all conditions is not just
astonishing, it is also incorrect. The best that can be expected is that a constitutive
equation is some form of “approximation” in a restricted class of conditions and the

determination of the conditions is the main point at issue.

1976 Lars H. Soderholm, Int. J. Engng. Sci. 14, 523

From the author’s summary: “It is shown from simple physical arguments that the
material equations of a gas should have frame-dependent terms of the kind appearing in the
Burnett equations. This indicates severe limitations of the range of validity of the Principle of

Material Frame-Indifference.”

1976 S.H. Choi and H.E. Wilhelm, Phys. Rev. A 14, 1825

This paper is about explosions in a fully ionized electron-ion plasma governed by a
generalization of Cattaneo’s law based on the application of the moment method to Boltzmann’s
equation. Let q, v, m, p, T and T be the heat flux, the mass averaged velocity, the mass, partial

pressure, temperature and relaxation time. Then the heat equation reduces to

q + (g0 + qdivv+3 {(q-O)v+ q div v+ (Ov)eq} +35 pOT =—q/T (33)
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when inhomogeneous terms of the third order in the Boltzmann equation are neglected. One and

the same equation applies to the electrons and the ions, me, pe, Te €tc. are for electrons, m;, p; etc.
for ions. Eq. (33) reduces to Cattaneo’s under linearization. Eq. (33) may be written as

L] k p—

q tLqtqul+s {(LgtqurL+LTq} +35 pDT:—f (34)
where L = [Jv. Assuming now that the velocity and mass averaged velocity have the same form

under a change of frame, we may use (20) to show Eq. (34) is not objective.
From the authors’ summary:

The nonlinear partial differential equations describing plane, cylindrical, and
spherical explosions in a fully ionized electron-ion plasma with heat-flux
relaxation and thermal relaxation are reduced to ordinary differential equations by
means of novel similarity transformations. The resulting ordinary boundary-value
problem for the plasma explosion, with the strong shock conditions as boundary
values at the moving shock front, is formulated mathematically. The scaling laws
for the plasma fields are presented which show how the plasma properties change
with time during the course of the explosion. The importance of electron and ion
heat-flux relaxation, which enhances the concentration of thermal energy behind
the shock front, is stressed for the understanding of the shock-heating mechanism
in fast processes. It is concluded that heat-flux relaxation is an important process
for short-time plasma explosions, which determines the discontinuity of the

electron and ion temperature fields at the shock front.

1977 S. Sienuitycz, Int. J. Heat and Mass Transfer 20, 1221

Sienuitycz derives a functional with a stationary point corresponding to a hyperbolic
equation for heat transport. There is no claim made that the stationary point is extrematizing so

that the variational results given in the paper may not be very useful.
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1977 L. Gyarmati, J. Non-Equilib. Thermo. 2, 233

When the imposed changes in state variables are sufficiently rapid the kinetic energy of

the currents contributes to the entropy. The entropy is decomposed into an equilibrium plus

kinetic part S=Seq+Skin Where

n
Seq= 2, ail| (35)
=1

a; are generalized coordinates,

I'; are generalized conjugated thermostatic forces,

1
Skin =3 miidiJi , (36)

n
1,k=1
Jk are fluxes,

mjk positive definite matrix of inductivities.

The generalized Gibbs equation for solids is

n n n
oS . oJ
=+, div =) Ji-( I‘pLZrnikEj =Y Ji+Ei=0>0. (37)
i=1 k=1

oJk
Here E;=[ i+zmikﬁ is the new thermodynamic force incorporating both dissipative and

inertial effects. If a linear relation between E; and J; is valid, then
n
Ji= Z LikEx
k=1

n n
oJx
Ji= Z L - Z Tik 3¢ (38)
k=1 k=1
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where

[Tik] :_{z Li%m%k:|
/=1
is a matrix of relaxation times from non-local to local equilibrium. Eq. (38) generalizes

Cattaneo’s equations and it leads to hyperbolic transfer equations (j=1, 2, ..., n)

n| 9T ar .
z{rj/?;+5j/a—tf—kjﬁmzrp}=o.

With appropriate choices of I L, this equation can account for thermal waves in solids, waves in

thermo-diffusion systems.

1978 M. Carrassi, Nuovo Cimento 46, 363

This paper shows that the kind of heat propagation you get from the kinetic theory of
gases depends strongly on the approximation scheme used to derive the equation. Probably the

different types of approximation correspond to physical processes arising in different situations.

Summary.—Various forms of the linear heat equation which can be deduced
from the kinetic theory of gases are analyzed. It is shown that, if one uses a
perturbative procedure based on a power series expansion in the viscosity
coefficient p (or in the mean free path A), the resulting equations are of the
“parabolic” type, which means that the propagation velocity of the thermal
disturbance is always infinite. Conversely, both the equations derived by using the
Cattaneo procedure and those which are directly derived from the thirteen-
moment approximation introduced by Grad to solve the Boltzmann equation are
all of the “hyperbolic” type with well-defined propagation velocity. The
theoretical interest of the direct measurement of the propagation velocity of a

thermal disturbance is also pointed out.
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1981 W.G. Hoover, B. Moran, R.M. More, and A.J.C. Ladd, Phys. Rev. A 24(4),
2109

Hoover, et al present a molecular dynamics simulation of the problem of heat conduction
in a two-dimensional rotating disk of dense fluid. The calculation addresses the issue of whether
or not the heat flux should be frame-indifferent with a purely radial component of flux,
corresponding to an axially symmetric prescription of the prescribed temperature difference. In
molecular dynamic simulations the equations of motion of N particles with a given interaction
potential are solved numerically. The calculation is of interest because it is an independent
method for seeing if the flux remains radial in a rotating system as is required by frame
indifference. They find an angular part of the heat flux which contains nearly equal potential and
kinetic parts. It fluctuates wildly with time and is considerably smaller than the radial flux.
According to an approximate theory using Boltzmann’s equation, worked in the paper, the
angular flux equals —2q,wT, where q; is the radial flux, w the angular frequency and T the

relaxation time. The molecular dynamic simulation confirms this order of magnitude estimate.

“We conclude that the approximate kinetic theory and Enskog’s dense-fluid modification
of Boltzmann’s equation correctly predicts a violation of Fourier’s law. In dense media a radial

temperature gradient induces an angular heat flux in a comoving frame.”

1981 S. Sienuitycz, J. Non-Equilib. Thermodyn. 6, 79

Sienuitycz generalizes the analysis of Lebon and Casas-Vazquez [1976] using another
approach. “... The unsteady-state coupled heat and mass transfer, occurring in an isobaric
unreacting fluid, is considered. Using the second (direct) method of Liapunov the stability of the
stationary state, approached by the wave solution, is proven, providing that the well-known
thermostatic matrix, ¢ characterizing the stable equilibrium of every macroscopic system, is

negative.”
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1983 A.lL. Murdoch, Arch. Ration. Mech. Anal. 83, 186

Murdoch enunciates a different principle of frame indifference under which Miiller’s
[1972] relations are frame indifferent. He notes also that there are two kinds of invariance. The
first is that physical quantities which characterize the behavior of a given material are intrinsic.
He defines this to mean that the constitutive equations for the heat flux and stress tensor should
be indifferent. The second assumption is that all observers should agree upon the nature of any

given material.

Various interpretations of the second assumption are possible. The usual interpretation is
that the constitutive equation should be independent of frame. Murdoch suggests a new
interpretation of the second assumption; constitutive equations may depend on the frame, but
only through an indifferent tensor called the intrinsic spin and defined as QQ-W where Q is the
skew-symmetric part of the velocity gradient, the spin of the body, and w=p pT (defined under
(25)) is the spin of the frame of the observer relative to an inertial frame (Murdoch’s intrinsic
spin is W+S where his W is our €, his S our —W). The spin of the body relative to an inertial
frame is the intrinsic spin. Murdoch shows that the intrinsic spin is indifferent and that it is just
this spin which exhibits the dependence of frame found in the various works of Miiller [1972],

Edelen and McLennan [1973], S6derholm [1976], and Roberts and Donnelly [1974].

The intrinsic spin enters into the formula for the acceleration relative to a frame rotating

relative to an inertial frame,
1
Qij-Wij = Mjii [ 2¢1-w]

where wis the angular velocity of the frame relative to an inertial frame and  is the vorticity of a

material element. Since this acceleration is indifferent, it splits into two indifferent parts.
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PROPAGATION OF HEAT PULSES IN METALS AT HIGH
TEMPERATURES

We already remarked in “Heat Waves” (p. 67) that molecular dynamic
simulations of heat propagation suggest a kind of time-temperature equivalence in
which slowly propagating pulses at ultra low temperatures are in some sense equivalent
to fast pulses at high temperatures. The advent of high intensity femtosecond (10-19
sec) laser pulsing and high resolution detection methods have made it possible to
probe thermal response in metals at high temperatures. One of the main goals in this
effort has been to detect non-equilibrium electron and lattice temperatures suggested
by the physics of rapid pulsed heating and by the two-temperature diffusive theory of
heat transport (see (39) below) of Anisimov, Kapeliovich and Pere’'man [1974]. There
has been some success in this effort. At the same time, it might be argued that no
diffusive theory could be correct in the femtosecond range where waves following
hyperbolic models rather than diffusion should dominate. In fact the experiments of
Brorson, Fujimoto and Ippen [1987] do appear to give rise to a heat wave with a speed
=108 cm/sec together with pulse spreading of a type seen in the literature on second

sound in cold dielectric crystals.

1984 J.G. Fujimoto, J.M. Liu and E.P. Ippen, Phys. Rev. Letts. 53, 1837

This paper is the first to probe nonequilibrium between electrons and phonons at time
scales shorter than or comparable to the time of relaxation of electron to phonon temperatures.

From the authors’ summary:

High-intensity, 75-fs optical pulses have been applied to observe multiphoton
and thermally enhanced photoemission from a tungsten metal surface.
Experimental results suggest the presence of anomalous heating, a transient

nonequilibrium temperature difference between the electrons and lattice. Pump-
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probe measurements indicate an electron-phonon energy relaxation time of several

hundred femtoseconds.

The application of intense optical pulses of short duration may heat electrons more than
phonons because of the smaller heat capacity of the electron gas. The energy of a short pulse is
first absorbed by the electrons which thermalize rapidly through electron-electron scattering. The
electrons then transfer energy to the crystal lattice through electron-phonon coupling. If the laser
pulse duration is comparable to or shorter than the electron-phonon energy-transfer time, then the

electrons and lattice temperatures T and T; are universally assumed to satisfy the two

temperature diffusive model of Anisimov et al [1974]:
O0Te
Ce (Te) 3p = kO?Te—g(Te-Ti) + A(r, 1),

oT;
Cp 5 =&(TeTH) 39)

where A(r, t) represents internal heating due to the laser pulse and g is a coupling constant whose
values could be determined from pulse experiments. In fact, the experimental determination of g
seems still to be controversial (see Corkum, et al [1988]). The two-temperature theory itself may
be flawed. The physical phenomena involved depend essentially at least on the time of relaxation
of nonequilibrium temperatures, but the existence and relaxation of thermal inertia is not
acknowledged in the theory; all the relaxation effects are subsumed in the coupling constant g.
Moreover, thermal relaxation can be expected to give rise to wave propagation rather then
diffusion at the time scale of hundreds of femtoseconds reported in this paper or the 2-3

picoseconds (10-12 sec) reported by Schoenlein, et al [1987].

In general, diffusion theories will generate smaller rises of temperature than hyperbolic
theories for which the wave speed is finite. Some possibly relevant comparisons have been
calculated by Vick and O zisik ([1983], see “Heat Waves”) and by Glass, O zisik and Vick
[1987].
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1985 G. Ryskin, Phys. Rev. A 32, 1239

Ryskin’s short essay gives some criticisms of the principle of material frame indifference
(MFI). He adopts a point of view close to the one expressed in this review under the topic “Two

different kinds of invariance under a change of frame.” He says that

The confusion over the nature of the useful restriction on the allowable forms
of constitutive relations (“material frame-indifference,” or “objectivity”) is due to
the vague language of its formulation. In the final analysis, the confusion arises
because the concept of general covariance of physical laws is applied in the
inappropriate setting of the three-dimensional space instead of the four-

dimensional space-time.

He notes further that the only ways to check MFI are “... by experiments or derivation of a
constitutive equation from macroscopic physics. The latter approach shows that the MFI cannot
be exactly true (because the microscopic physics obeys Newton’s laws ...), but is a very good
approximation for ordinary materials and circumstances (because the absolute acceleration due to

the rigid body motion are usually much smaller than the accelerations at the molecular scale.)”

Truesdell and Muncaster [1980] and Spezialle [1987] have argued that constitutive
equations can only represent special solutions of the microscopic dynamics and, as such, can
have a larger invariance group than the Galilean group. This possibility seems not to be realized
in the special cases so far considered; e.g., Piccirrelli [1968], Hoover, et al [1981] and other

references mentioned in Ryskin’s paper.

1987 S.D. Brorson, J.G. Fujimoto and E.P Ippen, Phys. Rev. Letts. 59, 1962

This paper reports an experiment which lends itself to interpretation in terms of wave

propagation, though the authors do not so interpret their results. From the authors’ summary:
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We have observed ultrafast heat transport in thin gold films under
femtosecond laser irradiation. Time-of-flight (front-pump back-probe)
measurements indicate the the heat transit time scales linearly with the sample
thickness, and that heat transport is very rapid, occurring at a velocity close to the

Fermi velocity of electrons in Au.

Their figure 3 shows that there is a linear relation between the transit time and the
distance traveled by a heat pulse. This is characteristic of wave propagation and not of diffusion.
They note that ... the measured delays are much shorter than would be expected if the heat were
carried by the diffusion of electrons in equilibrium with the lattice (tens of picoseconds). This
suggests that heat is transported via the electron gas alone, and that electrons are out of
equilibrium with the lattice on this time scale. Second, since the delay increases approximately
linearly with sample thickness (see Fig. 3), we may extract a heat transport velocity =108

cm/sec.”

They note further “that the rise time of the signal increases slightly with increasing
thickness. This indicates spreading in the front edge of the electron-velocity distribution which
propagates through the sample. At present, the origin of this phenomenon is unknown, although
it may be related to small-angle scattering.” The hyperbolic spreading could be due to
dispersion, say, the first derivative term in a telegrapher’s equation. This is the type of spreading
induced by umklapp processes in cold dielectric crystals (also due in part to scattering). The
broadening of pulses also could occur as a diffusive effect associated with an effective thermal
conductivity associated with the relaxation of the electronic mode of heat transport. This is an
effect of the third derivative of the diffusion equation {(4.3) in “Heat Waves”} of Jeffreys’ type.
This type of pulse broadening is due to the viscosity of the phonon gas in dielectric crystals,

associated with normal processes.
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1987 D.E. Glass, M.N. O zisik and B. Vick, Int. J. Heat Mass Transfer 30, 1623

From the authors’ summary:

The transient temperatures resulting from a periodic on-off heat flux boundary
condition have many applications, including, among others, the sintering of
catalysts frequently found during coke burn-off, and the use of laser pulses for
annealing of semiconductors. In such situations, the duration of the pulses is so
small (i.e. picosecond-nanosecond) that the classical heat diffusion phenomenon
breaks down and the wave nature of energy propagation characterized by the
hyperbolic heat conduction equation governs the temperature distribution in the
medium. In this work, an explicit analytic solution is presented for a linear
transient heat conduction problem in a semi-infinite medium subjected to a
periodic on-off type heat flux at the boundary x=0 by solving the hyperbolic heat
conduction equation. The non-linear case allowing for the added effect of surface

radiation into an external ambient is studied numerically.

1988 D.K. Bhattacharya, Acta Mechanica 47, 87

Bhattacharya studies the stability of stationary states in the context of the hyperbolic
transfer equations proposed by Gyarmati [1977]. It is found that a monotonic transition from
non-equilibrium states to stationary states is insured only when dissipative processes are
dominant over relaxation phenomena. The possibility of oscillating transitions to stationary states
is left open. These results differ from those of Sienuitycz who shows that in the linear case the
generalized excess entropy source would decrease along trajectories of the governing generalized

telegraph equation. Some conjectures about the reasons for the discrepancy are given in the

paper.
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1988 A. Morro and T. Ruggeri, J. Phys. C: Solid State Phys. 21, 1743

Morro and Ruggeri have proposed a general nonlinear model for heat conduction in solids
which they believe correct certain defects in the model based on a generalization of Cattaneo’s
law by Coleman, Fabrizio and Owen [1982]. They note that in the theory of Coleman, et al the
internal energy is given by e=eg(0)+a(0)q2, where 0 is the temperature and q is the heat flux.
Comparison of this theory with second sound propagation in dielectric crystals showed that a’<0
and this implies that the specific heat will go negative when g2>c/|a’|; moreover, the entropy is a
minimum instead of a maximum at equilibrium. Presumably the Cattaneo based theory breaks
down for large q, or it isn’t a valid theory. Adopting this second view, they propose to replace the

Cattaneo law with

(aq)+ D0+ (yl +BqO0q)=-vq

where @, Y, 3 and v are scalars and [J is a dyadic product. This gives back the Cattaneo law when
=0, a=const. and y and v are functions of 8. In their theory they assume that the internal energy
e, entropy @, Y, 3, v depend on 0 and q, finally they put 3=0. They make their theory consistent

with thermodynamics using an entropy inequality and derive the governing equations

egb +ewq'a +Uq=0,
0o 6 +tapq +%¥' B +vq=0. (40)
where w=% q2. The first equation is for the balance of energy. This is a hyperbolic system. They

claim that this model fits data on sound speeds and bears evidence of the need for a thermal

inertia. The essential difference between (40) and Cattaneo’s equation is in the nonlinear term

e}
0o’q9 which is not zero only if 0('=0, O cannot be constant.

1988 D. Jou, J. Casas-Vazquez and G. Lebon, Rep. Prog. Phys. 51, 1105

This is a review paper which deals with that formulation of non-equilibrium

thermodynamics known as extended irreversible thermodynamics. There is a section (§4) in this
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paper in which the equations of hydrodynamic transport of phonons, the equations of Guyer and
Krumhansl are derived from the equations of extended thermodynamics. They work with a

generalized Gibbs equation
ps +divIs=0 (41)

where s is the entropy, dot means take the substantial derivative, p=1/v is the density, Jg is the

entropy flux and O is the entropy production. They take the specific volume v, the internal energy

1 .
u, the heat flux q, the mean normal stress ©=3 tr F and the stress deviator (=P—O1 as the

canonical variables of s. The temperature T and pressure p are obtained as derivatives of s in the

usual way. They assume that the entropy flux depends on all dissipative fluxes
Js=Boq + Bitq + P2q (42)

where the 3’s depend on u, v, © and algebraic invariants of functions arising on derivatives of s.

This determines the LHS of (41). For the entropy production on the RHS they write
0=q°x] +Ox0+T:X3 (42)

where the xis are taken as functions of the fluxes and their first gradients. The coefficients of q,

T, O in (41) are now put to zero giving rise to evolution equations for q, © and T.

The above sketch of the theory shows that it is for a simple material, one which depends
on the system variables and their first derivatives locally; the system variables are related as point

functions, their derivatives at x, t are determined by the values of these variables at x, t.

The identification of the coefficients of q, T, © leads, after many simplifications, to

evolution equations, a first order quasilinear system
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T11q =—(q + AOT) + BAT2 div T+ BAT2®
108 =—(8+ & div u) + B'LT div q
T,T =—(1 +2nD[u]) + 2BNTsLq (44)

where u is the velocity, D[u] is the rate of strain and sLq is the symmetric part of

Lq=10 q—3 tr (Il q)1, (45)

the deviatoric part of the dyadic gradient of q. It seems desirable to choose the coefficients of the
quasilinear system so that catastrophic short wave instabilities do not occur. These instabilities
are associated with ill-posedness of the Cauchy problems. Evidently this system gives rise to real
roots if the coefficients are well-chosen, and it can be made hyperbolic. Complex roots can be
avoided. The idea that the system should be hyperbolic has been elevated to a principle in
extended thermodynamics, but it depends on assumptions made already at the beginning. We
could get a well-posed evolutionary system with other assumptions that do not lead to a
hyperbolic system, for examples with assumptions, like the one leading to conductors of

Jeffrey’s type.

Another point to be made about the evolution equation is that they have only one time of
relaxation for each flux. This is certainly an incorrect physical approximation, though it may

work well for problems which can be defined over a limited range of frequencies.

To get the equations of Guyer and Krumhansl, Jou, et al put u=0, for a rigid conductor

and they also set Tgp and T to zero. Then, there is still a stress which is induced by heat flux

gradient
O=B(Tdivq, (46)
T=2BNTsLq. (47)
and
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sLq = %(Dq + DqT) —% divq.
We now substitute (46) and (47) into (41)1. Then after linearizing around q we get
11q =—(q + AOT) + B2AnT3 2 + (5 B2ANT3 + B2AT3Z) O div q (48)

This may be compared with the Guyer-Krumhansl equation (4.2a) in “Heat Waves.” The
coefficients of the two equations can be identified (the identification (4.10) of Jou et al is
incorrect, several minor errors appear in their derivation). In this way, the unknown coefficients
in the thermodynamic theory may be expressed in terms of the known coefficients of the Guyer-

Krumbhansl theory.

The derivation just given is interesting because it shows how the hydrodynamic theory
which contains second derivatives arises by elimination from a local determined system of
PDE’s. Therefore these second derivatives should not be regarded as arising from a non-local

theory.

1988 D. Brandon and W.J. Hrusa, J. Integral Eqs. and Appl. 1(2), 175-201

Brandon and Hrusa construct nonlinear models of heat conductors of the integral type
introduced by Gurtin and Pipkin [1968, see “Heat Waves™]. They let the internal energy and the
heat flux depend on history and make this dependence consistent with the Clausius-Duhem
inequality. They derive constitutive equations for the heat flux and the internal energy e(8) where
0>0 is the absolute temperature. When these expressions are substituted into the equation
expressing the balance of energy in a one-dimensional homogeneous rigid heat conductor of unit

density, Brandon [1989] finds that
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A 2 ” —
(e "(B(x, t)ﬁw f a’(s)F(Bi(x, s) )ds)By(x, t)
0

2 7 _
s FOF I ) Bx(x, -By(x, t-9)ds
0
+ [ a(©F Bix, 5)Bk(x, s) ds=r(x, ) x0I, £0, 49)

0

where the coefficient of 8¢(x, t) is the specific heat and g(@(x, t)) is the present value of the heat

capacity, r(x, t) is the external heat supply, F(é}( ) and a(s) are scalar functions which are required

by thermodynamics to satisty
F(0)=F'(0)=0,F"(0)>0,F(y)>0 ¥yCR ,
a’’(s)>0 s >0, a(s) positive definite

and

t
Bi(x,s)= f Bx(x, z)dz Fs>0

t—s

is the summed history up to time t of Bx(x, *). Eq. (49) was analyzed by Brandon [1989].

1989 D. Brandon, CMS Technical Summary report #89-37, University of
Wisconsin

Nonlinear models of heat conductors should lead to well-posed initial-value problems for

the propagation of heat. Ill-posed problems are catastrophically unstable to short waves, with

growth rates which tend to infinity as the wave length tends to zero. This stability problem is tied

to the classification of type of the equation governing the flow of heat. Hyperbolic and parabolic

equations are well-posed in this sense and elliptic problems are ill-posed. Ill-posed problems

cannot be integrated numerically; the finer the mesh the worse the instability. The classification
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of quasilinear equations depends on the solutions because the coefficients of the highest
derivatives are not constants but are defined on unknown system variables. There are “forbidden”
values of the solutions for which the equation becomes elliptic and loses stability. Ill-posedness,
catastrophic instability to short waves, may be studied by freezing coefficients and discarding
lower order terms (Joseph and Saut, 1989). Brandon’s paper deals with this problem of change

of type for the integral models derived by Brandon and Hrusa [1988]. Differentiation of (49)

leads to
A(X, 1)By(x, t) + B(X, t)Bx¢(X, t) + c(x, t)Bxx(X, t) = R(x, t) , (50)
where
A 2 OO —
A(x, t) =e(O(x, t)) + Wf a’(s)F(BL(x, s) )ds, (51)
0
) 7 _
B6. =~ 50D [ a'(9)F (BYx, s) )ds , (52)
0
Cx, t)= f a’(s)F"(BYx, s) )ds , (53)

0

and R consists of lower order terms in addition to the forcing term ry.

It is now easy to see that near equilibrium (i.e., near a state where 0 is a constant and

Bx+0) equation (49) is of hyperbolic type (since for |By| sufficiently small A>0 and C<0.

However, we observe that the second term on the right-hand side of (51) is negative and hence,

far enough from equilibrium equation (49) may become elliptic.
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