BMEN 3111 -- New Course

Tue Jan 15 10:19:55 2013

Approvals Received:
Department
on 12-04-12
by Jessica Baltzley
(baltz016@umn.edu)
Approvals Pending: College/Dean  > Catalog > PeopleSoft Manual Entry
Effective Status: Active
Effective Term: 1139 - Fall 2013
Course: BMEN 3111
Institution:
Campus:
UMNTC - Twin Cities
UMNTC - Twin Cities
Career: UGRD
College: TIOT - College of Science and Engineering
Department: 11143 - Biomedical Engineerng, Dept of
General
Course Title Short: Biomed. Transpt. Proc.
Course Title Long: Biomedical Transport Processes
Max-Min Credits
for Course:
3.0 to 3.0 credit(s)
Catalog
Description:
Principles of momentum, heat, and mass transfer illustrated with applications in physiological processes. Fluid mechanics, heat condition, mass diffusion, convection. Lecture.
Print in Catalog?: Yes
CCE Catalog
Description:
<no text provided>
Grading Basis: A-F or Aud
Topics Course: No
Honors Course: No
Online Course: No
Instructor
Contact Hours:
3.0 hours per week
Years most
frequently offered:
Every academic year
Term(s) most
frequently offered:
Spring
Component 1: LEC (with final exam)
Component 2: DIS (no final exam)
Auto-Enroll
Course:
Yes
Graded
Component:
DIS
Academic
Progress Units:
Not allowed to bypass limits.
3.0 credit(s)
Financial Aid
Progress Units:
Not allowed to bypass limits.
3.0 credit(s)
Repetition of
Course:
Repetition not allowed.
Course
Prerequisites
for Catalog:
3011, 3015, BMEN upper div, or %
Course
Equivalency:
No course equivalencies
Consent
Requirement:
No required consent
Enforced
Prerequisites:
(course-based or
non-course-based)
BMEN Upper Div, BMEN 3011, BMEN 3015
Editor Comments: The BME department is dividing all of its 3000-level courses so that instead of a single 4-credit lecture/discussion/lab course, there are two course numbers: one with a 3-credit lecture/discussion and one with a 1-credit lab.  The teaching and structure and content of the courses will remain completely unchanged.  The reason for splitting the two components into different course numbers is so that students have more lab options when registering since our current model has students register for a lab which auto-enrolls into a discussion and the lecture.  
Proposal Changes: <no text provided>
History Information: The BME department is dividing all of its 3000-level courses so that instead of a single 4-credit lecture/discussion/lab course, there are two course numbers: one with a 3-credit lecture/discussion and one with a 1-credit lab.  The teaching and structure and content of the courses will remain completely unchanged.  The reason for splitting the two components into different course numbers is so that students have more lab options when registering since our current model has students register for a lab which auto-enrolls into a discussion and the lecture.  
Faculty
Sponsor Name:
Faculty
Sponsor E-mail Address:
Student Learning Outcomes
Student Learning Outcomes: * Student in the course:

- Can identify, define, and solve problems

Please explain briefly how this outcome will be addressed in the course. Give brief examples of class work related to the outcome.

Example problems provided in lecture and recitation.

How will you assess the students' learning related to this outcome? Give brief examples of how class work related to the outcome will be evaluated.

Graded homework and examinations.

- Have mastered a body of knowledge and a mode of inquiry

Please explain briefly how this outcome will be addressed in the course. Give brief examples of class work related to the outcome.

Fundamentals of the subject communicated in lecture and recitation and textbook sections.

How will you assess the students' learning related to this outcome? Give brief examples of how class work related to the outcome will be evaluated.

Graded homework and examinations.

Liberal Education
Requirement
this course fulfills:
None
Other requirement
this course fulfills:
None
Criteria for
Core Courses:
Describe how the course meets the specific bullet points for the proposed core requirement. Give concrete and detailed examples for the course syllabus, detailed outline, laboratory material, student projects, or other instructional materials or method.

Core courses must meet the following requirements:

  • They explicitly help students understand what liberal education is, how the content and the substance of this course enhance a liberal education, and what this means for them as students and as citizens.
  • They employ teaching and learning strategies that engage students with doing the work of the field, not just reading about it.
  • They include small group experiences (such as discussion sections or labs) and use writing as appropriate to the discipline to help students learn and reflect on their learning.
  • They do not (except in rare and clearly justified cases) have prerequisites beyond the University's entrance requirements.
  • They are offered on a regular schedule.
  • They are taught by regular faculty or under exceptional circumstances by instructors on continuing appointments. Departments proposing instructors other than regular faculty must provide documentation of how such instructors will be trained and supervised to ensure consistency and continuity in courses.

<no text provided>
Criteria for
Theme Courses:
Describe how the course meets the specific bullet points for the proposed theme requirement. Give concrete and detailed examples for the course syllabus, detailed outline, laboratory material, student projects, or other instructional materials or methods.

Theme courses have the common goal of cultivating in students a number of habits of mind:
  • thinking ethically about important challenges facing our society and world;
  • reflecting on the shared sense of responsibility required to build and maintain community;
  • connecting knowledge and practice;
  • fostering a stronger sense of our roles as historical agents.


<no text provided>
Writing Intensive
Propose this course
as Writing Intensive
curriculum:
No
Question 1 (see CWB Requirement 1): How do writing assignments and writing instruction further the learning objectives of this course and how is writing integrated into the course? Note that the syllabus must reflect the critical role that writing plays in the course.

<no text provided>
Question 2 (see CWB Requirement 2): What types of writing (e.g., research papers, problem sets, presentations, technical documents, lab reports, essays, journaling etc.) will be assigned? Explain how these assignments meet the requirement that writing be a significant part of the course work, including details about multi-authored assignments, if any. Include the required length for each writing assignment and demonstrate how the minimum word count (or its equivalent) for finished writing will be met.

<no text provided>
Question 3 (see CWB Requirement 3): How will students' final course grade depend on their writing performance? What percentage of the course grade will depend on the quality and level of the student's writing compared to the percentage of the grade that depends on the course content? Note that this information must also be on the syllabus.

<no text provided>
Question 4 (see CWB Requirement 4): Indicate which assignment(s) students will be required to revise and resubmit after feedback from the instructor. Indicate who will be providing the feedback. Include an example of the assignment instructions you are likely to use for this assignment or assignments.

<no text provided>
Question 5 (see CWB Requirement 5): What types of writing instruction will be experienced by students? How much class time will be devoted to explicit writing instruction and at what points in the semester? What types of writing support and resources will be provided to students?

<no text provided>
Question 6 (see CWB Requirement 6): If teaching assistants will participate in writing assessment and writing instruction, explain how will they be trained (e.g. in how to review, grade and respond to student writing) and how will they be supervised. If the course is taught in multiple sections with multiple faculty (e.g. a capstone directed studies course), explain how every faculty mentor will ensure that their students will receive a writing intensive experience.

<no text provided>
Course Syllabus
Course Syllabus: For new courses and courses in which changes in content and/or description and/or credits are proposed, please provide a syllabus that includes the following information: course goals and description; format;structure of the course (proposed number of instructor contact hours per week, student workload effort per week, etc.); topics to be covered; scope and nature of assigned readings (text, authors, frequency, amount per week); required course assignments; nature of any student projects; and how students will be evaluated. The University "Syllabi Policy" can be found here

The University policy on credits is found under Section 4A of "Standards for Semester Conversion" found here. Course syllabus information will be retained in this system until new syllabus information is entered with the next major course modification. This course syllabus information may not correspond to the course as offered in a particular semester.

(Please limit text to about 12 pages. Text copied and pasted from other sources will not retain formatting and special characters might not copy properly.)


BMEn 3111
Biomedical Transport Processes
Spring 2014

Instructor:        Professor R.T. Tranquillo
Office Hours:  Monday 2:15-3:15 in 400 FordH, Thursday 10:00-11:30 in 6-101 NHH (primarily non-lab questions)
Tel:  625-6868
E-mail:  tranquillo@umn.edu (put ⿿3111⿝ at the start of the subject line)

TA:        Chris Valley
Office Hours: Thursday 1:30-3:30 in 4-101 NHH (non-lab questions only)
E-mail: vall0087@umn.edu (put ⿿3111⿝ in the subject; send him a message to get on the e-mail announcement list if you have not already received e-mail from us)
       
Lectures:        MWF  10:10-11:00 (AkerH 209)
Recitations:        T or Th 9:05-9:55 (RapsonH  31 - Tues,  AkerH 225 - Thurs, except the weeks of Mar 19, Mar 26, Apr 2 when they are held in ME 314, an IT Instructional Computer Lab)
Problem Session:        W 12:20-1:10 (Rapson 58) These sessions start week 2 and are optional. Materials are posted on-line.

Course Objectives: In terms of subject matter:
1) Learn fundamentals of mass, heat, and momentum transport as applied to biomedical problems
2) Learn numerical methods required to compute solutions of related equations

In terms of ABET accreditation:
a) an ability to apply knowledge of mathematics, science, and engineering
c) an ability to design a system, component, or process to meet desired needs
d) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
e) an understanding of biology and physiology, and the capability to apply advanced mathematics (including differential equations and statistics), science, and engineering to solve problems at the interface of engineering and biology.

Prerequisites:          IT upper division undergraduate and completion of BMEn 3001 or consent of instructor (the numerical methods of 3001 makes 3001 a prerequisite; students lacking 3001 can take 3111 under the assumption they will review the material in Dunn, Constantanides & Moghe ⿿ see the end of this document).

Textbook:        ⿿Transport Phenomena in Biological Systems: A Textbook for Biomedical Engineers⿝ by G. A. Truskey, F. Yuan and D. F. Katz, 2nd edition  (available from the bookstore or as a less expensive on-line option from this URL, but note this text is also currently used in BMEN 5311, in case you plan to take it:
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131569880)

        "Numerical Methods in Biomedical Engineering" by S. M. Dunn, A. Constantanides & P. V. Moghe (same text as was required in BMEn 3001)

Handouts:         Most if not all handouts can be downloaded from the BMEn 3111 page on the 3111 Moodle 2.0 site.

Examinations:        There will be three 50 min exams during lecture periods and a final exam during the scheduled time of Finals Week, held in the rooms stated in the schedule below.  The exams will test everything covered in lectures, recitations, and reading assignments, from the beginning of the course until almost the exam date (see syllabus for details), although each exam will stress the material since the last exam.  Exams will be open book and notes.  Per UMN policy, make-up exams will only be given in the case of conflicts with UMN-sanctioned events and documented personal emergencies approved by the instructor.   

Homework:        Homework problems related to lectures will be assigned about once per week and due at the start of lecture on the date stated (Fridays will be targeted).  A homework assignment may be worked on and submitted jointly by up to 3 students, whose names must be printed and signed on the front page as a declaration it was a joint effort; only a single copy should be submitted for the group. Unless indicated otherwise, all problems have the same value. No credit will be given for homework submitted late.

Grading Policy:
Mid-term Exams (3 @ 15%)        55%
Final Exam        33%
Homework        12%

⿢ Requests for regrades on exams or homework will be accepted only if submitted to Prof. Tranquillo by the lecture after the item is returned and/or the answer key is posted.  In such a case you must submit the original and a separate signed page describing exactly what is being requested for regrading and why.  Regrades for the Final Exam will not be possible.
⿢ The course grade based on weighted score and curve established by Prof. Tranquillo.
⿢ If an S/N option is declared, an S grade will require a performance of C grade or higher based on the weighted course score. (S/N is not an option for BME majors.)
⿢ Incomplete grades will be granted only under exceptional circumstances, provided that the majority of course work has been completed.
⿢ Request for late withdrawals from the course will not be accepted.

I.T. Policy on Scholastic Conduct:

In the cases of homework plagiarism (e.g. similarity judged to be non-coincidental between two or more submissions) or exam cheating, zero credit will be given for the work in question for the first occurrence and a course grade of F with referral to the I.T. student conduct office in the second occurrence.  This applies to all students who signed the item having the infraction regardless of who may or may not be responsible for the plagiarism.

E-mail Policy:          The instructor and TAs will respond to e-mail as quickly as possible.  You should not expect an immediate response (or even within 12 hr), and the response may simply be that you need to come to office hours - email is not an efficient means to convey nontrivial responses.  

COURSE SYLLABUS
(subject to change)

Lect   Wk   Date            3115 Lab        3111 Text Reading/Topic
1.        1        Jan 18        n/a        1.4-1.7  Intro to Biotransport.  Introduction to Conservation Equations
2.        Jan 20        n/a        Macroscopic Mass Accounting and Conservation
3.        2        Jan 23        1a,b        10.1-10.5  Chemical Kinetics and Reaction Mechanisms
4.        Jan 25        1a,b        1.2.1-2, 6.4.1  Introduction to Diffusion and Relation to Convection
5.        Jan 27        1a,b        2.2.2-3, 6.2  Definitions and Fluxes
6.        3        Jan 30        2a        6.6  Estimation Of Diffusion Coefficients In Solution
7.        Feb 1        2a        2.2.1, 6.7.1  Transport In One-Dimension (Cartesian)
8.        Feb 3        2a        6.7.2-3  Steady State Diffusion In One-Dimension (Cartesian)
9.        4        Feb 6        2b        Transport In 1D (Curvilinear), 6.8.1 1D Diffusion in a Semi-Infinite Medium
10.        Feb 8        2b        6.8.4  Quasi-Steady Transport Across Membranes, Determining Membrane Permeability
11.        Feb 10        2b        6.8.1 (⿿Protein Adsorption⿦⿝), 6.9.1-3 Diffusion-Limited Reactions (Surface & Solution)
12.        5        Feb 13        3a        7.1-3  Generalized Conservation Of Mass For Dilute Solutions
13.        Feb 15        3a        7.4  Dimensional Analysis, 1.8 Diffusion with Convection (Ex. 7.1)
14.        Feb 17        3a        Exam 1 (Thru Membrane Permeability) Location: TBA
15.        6        Feb 20        3b        14.2.2 Diffusion With Chemical Reactions:Membrane Reaction and Facilitated Diffusion
16.        Feb 22        3b        10.6.3-5 Diffusion With Chemical Reactions: Bulk-phase Reaction
17.        Feb 24        3b        13.1-4 Blood Oxygenation in a Hollow Fiber
7.5 Electrolyte Transport
18.        7        Feb 27        4a        7.5 Electrolyte Transport, Cont⿿d (Membranes),
Mass Transfer Coefficients (MTCs) Intro
19.        Feb 29        4a        7.8,9 MTCs and Application To Hemodialysis
20.        Mar 2        4a        7.8,9 MTCs and Application To Hemodialysis, cont'd; 17.2-4 Heat Transfer (by analogy)
21.        8        Mar 5        4b        17.5-6 Whole Body Heat Transfer
22.        Mar 7        4b        DCM 3.1-6, 5.2,3,4,6  (ignore the codes in all DCM sections) Numerical Methods Basics,
Nonlinear Algebraic Scalar Equations
23.        Mar 9        4b        Exam 2  (Thru Heat Transfer By Analogy) Location: TBA
        Mar 12-16        Spring Break
24.        9        Mar 19        CL1        DCM 5.7,8  Nonlinear Algebraic Systems, 0th-order continuation
25.        Mar 21        CL1        DCM 6.2-5  Finite Difference Approximation (FDA) of Derivatives
26.        Mar 23        CL1        DCM 8.4  Boundary Value Problems (BVPs) and FDA Of Boundary Conditions
27.        10        Mar 26        CL2        DCM 8.5.2  Initial-BVPs (I-BVPs)
28.        Mar 28        CL2        DCM Appendix E.1,6  Numerical Stability
29.        Mar 30        CL2        DCM 8.5, 8.5.1 2D BVPs/I-BVPs
30.        11        Apr 2        CL3        1.2.2 Convection; 2.1, 2.2 Kinematics, 2.3 Intro to Momentum Balances
31.        Apr 4        CL3        2.4.1-2 Fluid Statics, 2.4.2 Surface Tension, Vector calculus, App. A.3
32.        Apr 6        CL3        2.5.1,2, 2.8.1-2 Constitutive Relations & Rheology
33.        12        Apr 9        5a        Constitutive Relations & Rheology, Cont⿿d, 2.8.1-2 Rheology of Blood
34.        Apr 11        5a        2.5.3 Rheology of Viscoelastic Fluids, 2.6 Laminar And Turbulent Flow, 2.7 Application of Momentum Balances - Intro
35.        Apr 13        5a        Exam 3  (Numerical Methods) Location: TBA
36.        13        Apr 16        5b        Application of Momentum Balances ⿿ moving parallel plates, P-driven slit flow
37.        Apr 18        5b        Application of Momentum Balances - P-driven tube flow (Newtonian fluid)
38.        Apr 20        5b        Application of Momentum Balances - P-driven tube flow (power-law fluid)
3.1-3 Differential Forms of the Conservation of Mass in 3D
39.        14        Apr 23        6a,b        3.1-3 Differential Forms of the Conservation of Linear Momentum in 3D
40.        Apr 25        6a,b        Differential Forms ⿿ Couette viscometer, radial flow assay; the Navier-Stokes Equations
41.        Apr 27        6a,b        4.1-3 Macroscopic Forms of the Conservation of Mass and Linear Momentum,
4.4 Bernoulli's Equation, 4.4.1 Application to Stenotic Valve
42.        15        Apr 30        3.5 Dimensional Analysis and Dimensionless Groups
43.        May 2        3.6 Low Reynolds Number Flow Around a Sphere
44.        May 4        HW 11 highlights, Course Review, Taste of 5311, Surveys, etc. (Last Day Of Classes)
        May 10 (Thurs)        Final Exam (8:00am-10:00am) Location: TBA
(this date and time should be consistent with the UMN final exam schedule)


BMEn 3111 Numerical Methods Computer Laboratory

Purpose:  The purpose of the computer labs is to gain experience in the application of numerical methods to compute solutions of equations of mass transport as applied to biomedical problems.  At the conclusion of the course, students will be familiar with several techniques that they will be able to use to solve biotransport problems.

Prerequisite:  Knowledge of the numerical methods used in BMEn 3001.  For those that haven't had BMEn 3001, review the following material prior to the first computer laboratory:

1) 3.1-6, 4.1-4.3.2, 7.4-7.4.3 in Dunn, Constantanides & Moghe⿿s "Numerical Methods in Biomedical Engineering"

2) Study the Matlab primer available at the 3111 website and/or use the Matlab website
http://www.mathworks.com/products/education/student_version/tutorials/intropage.shtml

Note: If you want to purchase Matlab for your own computer, a discounted version is available through UMN for $50:
http://blog.lib.umn.edu/oit/news/2011/12/matlab_now_on_sale_to_all_u_of.html

Strategic Objectives & Consultation
Name of Department Chair
Approver:
<no text provided>
Strategic Objectives -
Curricular Objectives:
How does adding this course improve the overall curricular objectives ofthe unit?

<no text provided>
Strategic Objectives - Core
Curriculum:
Does the unit consider this course to be part of its core curriculum?

<no text provided>
Strategic Objectives -
Consultation with Other
Units:
In order to prevent course overlap and to inform other departments of new curriculum, circulate proposal to chairs in relevant units and follow-up with direct consultation. Please summarize response from units consulted and include correspondence. By consultation with other units, the information about a new course is more widely disseminated and can have a positive impact on enrollments. The consultation can be as simple as an email to the department chair informing them of the course and asking for any feedback from the faculty.

<no text provided>