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Abstract Wake sensing for bioinspired robotic swimmers has been the focus of much investigation owing
to its relevance to locomotion control, especially in the context of schooling and target following. Many
successful wake sensing strategies have been devised based on models of von Kármán-type wakes; however,
suchwake sensing technologies are invalid in the context of exoticwake types that commonly arise in swimming
locomotion. Indeed, exotic wakes can exhibit markedly different dynamics, and somust bemodeled and sensed
accordingly. Here, we propose a general wake detection protocol for distinguishing between wake types
from measured hydrodynamic signals alone. An ideal-flow model is formulated and used to demonstrate the
general wake detection framework in a proof-of-concept study. We show that wakes with different underlying
dynamics impart distinct signatures on a fish-like body, which can be observed in time-series measurements
at a single location on the body surface. These hydrodynamic wake signatures are used to construct a wake
classification library that is then used to classify unknown wakes from hydrodynamic signal measurements.
Under ideal settings, the wake detection protocol is found to have an accuracy rate of over 95% in the majority
of performance studies conducted. Further, proper tuning can lead to accuracy rates of 80% or better in low
signal-to-noise environments. Thus, exotic wake detection is shown to be a viable concept, suggesting that
such technologies have the potential to become key enablers of multiple-model sensing and locomotion control
strategies in the future.

Keywords Wake detection · Flow classification · Bioinspired sensing ·Machine learning ·Vertex dynamics ·
Hydrodynamic signals

1 Introduction

Marine creatures display a tremendous ability to interact with their hydrodynamic surroundings: Some are
able to orient themselves with respect to incoming currents [3]; some can skillfully surf wake vortices for
locomotive advantage [21,22]; even the blind among them are able to school [27] and navigate obstacle-ridden
waters [23,45,46]. These remarkable feats of situational awareness and hydrodynamic interaction are, in part,
made possible by suitably evolved mechanosensory organs that allow these creatures to sense and perceive
their hydrodynamic environments.
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Hydrodynamic sensing modalities—such as the lateral line systems of fishes, the long facial whiskers of
harbor seals, and the arrays of microsetae on the appendages of small crustaceans [6,34,40]—enable marine
creatures to detect spatiotemporal patterns present in the external fluid environment. For example, the lateral
line system consists of a collection of superficial and canal neuromasts distributed across an organism’s body,
which effectively serve as a set of directional-velocity and pressure sensors, respectively [7]. In principle, a
creature can infer much information about its surroundings simply by measuring changes in the local flow;
hydrodynamic signals encode and transmit information about nearby objects and flow structures. Indeed,
hydrodynamic reception allows some marine swimmers to evade predators or to track prey [15,28,43].

Although it is common to associate hydrodynamic reception as a close-range sensing capability [9,32,46],
the persistence of some hydrodynamic signals in the waters can allow for longer range sensing as well. For
instance, the vortical wakes of swimming fish persist along the swimming path of a fish, allowing for wake
detection when the relative distance between the signal transmitter and the signal receiver is large (i.e., tens of
body lengths) [6]. In such instances, a passerby would be able to detect the associated hydrodynamic cues and
potentially discern relevant information about another swimmer. Indeed, the hydrodynamic trails left behind
by swimming fish can encode a rich amount of information about a particular swimmer and its motion. It
is commonly suggested that the vortical wakes generated by marine swimmers can provide other aquatic
animals with useful information about the swimmer’s size, swimming speed, and even species and sex-specific
information [6].

Given the astounding sensory capabilities afforded to marine creatures by hydrodynamic sensing and
reception, numerous investigations have explored technological concepts for bringing hydrodynamic sensory
capabilities to bear in human-engineered systems. Much effort has focused on developing artificial lateral line
systems and associated strategies for various sensing and locomotion control tasks (see [40] for an excellent
review of the current state of the art). For example, Chambers et al. show that vortex shedding frequency and
magnitude can be used by underwater vehicles to detect a von Kármán vortex street and navigate flows with
varying levels of turbulence and unsteadiness [10]. In another study, Klein and Bleckman show that having a
total of two artificial lateral line canals—one on either lateral side of the body—is sufficient to discern relevant
environmental information, such as object position, flow speed, and wake shedding frequency [19].

Many investigations have leveragedmodel-based strategies for studying higher-level hydrodynamic percep-
tion and locomotion control capabilities [11,13,14,29]. For example, DeVries et al. used an ideal-flow model
to devise a lateral-line-based flow sensing strategy that fuses measurements from both velocity and pressure-
based sensing modalities [13]. Experimental demonstrations of the multimodal sensing strategy show that a
robot can utilize the fused hydrodynamic information for feedback control and successfully achieve rheotaxis
and station-keeping [13]. In a separate study, Ren and Mohseni used an ideal-flow model to demonstrate a von
Kárḿan wake sensing algorithm [29]. In their study, a mathematical model was formulated for the flow inside a
canal neuromast, which was then used to demonstrate the utility of hydrodynamic reception for reconstructing
the various parameters associated with a von Kármán-type wake.

An ability to sense von Kármán-type wakes is of practical interest because von Kármán-type wakes arise
behind bluff bodies and many biological and bioinspired swimmers. For example, as noted in [8], carangiform
swimming propulsion leads to the shedding of two single vortices per tail beat, leading to the well-known
reverse von Kármán vortex street—which, as the name suggests, is simply a von Kármán wake with the vortex
orientation reversed. We note here that the von Kármán-type wakes are a subclass of “2S” wakes—so-called
owing to the fact that two single vortices are shed per cycle [44].

Despite demonstrated successes of model-based sensing and control strategies, it is important to note that
the efficacy of a model-based strategy is often predicated on the reliability of the model at faithfully describing
the relevant hydrodynamic interactions at play. It stands that wake sensing strategies developed in the context
of von Kármán-type 2Swakes are not necessarily justified nor valid in the context of higher-order exotic wakes,
wheremore than two single vortices are shed per cycle [2]. Indeed, exotic wakes are just as relevant as 2Swakes
in biological and bioinspired swimming [8,18,20,24,31,33]. For instance, “eel-like” anguilliform swimming
commonly leads to the shedding of two pairs of vortices per tail beat [8,41]—often called a “2P” wake owing
to the two pairs of vortices that are shed per cycle [44]. (Note, since more than two single vortices are shed
per cycle, a 2P wake constitutes an exotic wake, as originally defined [2].) Further, 2P wakes have also been
associated with wake resonance modes in flapping plate experiments [24], providing a physical significance
of 2P wakes as a sort of “optimal” wake type. Graphical representations of 2S and 2P patterns are shown in
Fig. 2.

The existence and relevance of exotic wakes present a challenge for wake sensing, since different wake
types can exhibit markedly different dynamics. This fact suggests that wake sensing strategies would benefit
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from a “multiple model” approach, in which a wake is first detected and classified by type, and then sensed and
reconstructed with a suitable model corresponding to the identified wake type. Indeed, this is one motivation
for the exotic wake detection strategy that we introduce and study here.

Beyond the distinctions between 2S, 2P, and higher-order wakes, dynamical differences can also arise
between various subclasses of these wake types. A familiar example is the difference between subclasses of 2S
wakes: i.e., the difference between drag-producing von Kármán (vK) wakes and thrust-generating reverse von
Kármán (rvK) wakes. Distinct regimes of motion also arise in exotic wakes, as has been well established in
the vortex dynamics literature [2,4,36,38]. For instance, in the recent study by Basu and Stremler, an idealized
point vortex model of a 2P wake was thoroughly examined and found to exhibit twelve dynamically distinct
regimes of motion [4].

A careful examination of the biolocomotion literature suggests that different “wake regimes” (i.e., wakes
exhibiting different dynamical characteristics) are commonly observed for a given “wake type” (i.e., a given
wake pattern, such as 2S or 2P), in numerical simulations and physical experiments alike. For instance,
Schnipper et al. observe drag-producing 2P wakes in experiments of a flapping foil [31], whereas the 2P wakes
they aimed to study were motivated by the thrust-generating 2P wakes observed in undulatory swimming [25].
In numerical studies, Borazjani and Sotiropoulos show that anguilliform swimming can result in both drag- and
thrust-producing 2P wakes [8]. Still more, the gait optimization study of Kern and Koumoutsakos suggests that
an anguilliform swimming gait can be modified to achieve different objectives, but will consistently generate
a 2P wake pattern, e.g., swimming to maximize velocity and swimming to maximize efficiency both yield
2P wake patterns [18]. The dynamical differences between each of these 2P wakes suggest that there may be
much more information to glean from a wake signature simply by considering the wake dynamics; associating
a wake signature with a particular wake regime can allow inferences about the wake-generating system.
Although future work is still needed to establish connections between specific wake dynamics and various
swimming characteristics [16], the study here will demonstrate that different wake regimes impart distinct
hydrodynamic signatures that can enable wake detection and classification from sensor measurements. For
example, a carangiform swimmer (2S wake generator) can be distinguished from an anguilliform swimmer
(2P wake generator) from hydrodynamic wake signatures alone. Further, it may be possible to determine
more refined information by considering the sub-regimes of motion, such as whether a particular anguilliform
swimmer was swimming for speed or efficiency. In fact, we will show here that wake types and wake regimes
can be classified using hydrodynamic signals measured at only a single location on the surface of a fish-like
body, at least in the context of ideal fluids models. To do so, we begin by constructing a library of wake
signatures from known wake types. Then, given the measured signature from an unknown nearby wake, the
type and dynamical regime of the wake can be determined by comparing against entries in the library.

In this study,we explore the viability of classifyingwake regimes fromhydrodynamic signalmeasurements.
Attention is restricted to 2S and 2P wakes because these wakes are well studied and because this choice allows
the study to maintain a smaller parameter space for demonstration purposes. As will be shown, the protocol
is able to successfully classify various 2S and 2P wake regimes. Although the protocol is demonstrated in a
proof-of-concept setting using ideal fluids models for a limited set of wake types and specific type of sensor,
the general wake detection framework is applicable more broadly as well.

We begin, in Sect. 2, by introducing a general framework for wake detection. Then, the remainder of the
manuscript will focus on the specific details of the proof-of-concept demonstration. In Sect. 3, we present an
ideal-flowmodel to represent the dynamics of variouswakes and to study the hydrodynamic signatures that they
impart on a fish-like body. In Sect. 4, we present a detailed study of the wake detection strategy in the context
of the ideal-flow model. The model used here is a well-studied wake model that can be used to objectively
validate and assess the performance of the protocol, owing to a clear delineation between wake types and
regimes. Each step in the construction of the wake detection protocol is presented along with a performance
study. Finally, in Sect. 5, we discuss the results of the study, draw conclusions, and offer suggestions for future
investigations.

2 A general framework for wake detection and classification

The problem of exotic wake detection is concerned with associating measured hydrodynamic signals with
a particular wake type. Indeed, the exotic wake detection problem can be framed as a problem in time-
series classification, which we will address by means of a general supervised learning strategy. Ultimately,
this strategy will allow an unknown wake to be detected and classified solely from measured hydrodynamic
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Fig. 1 Synthesis of an exotic wake detection protocol consists of two primary tasks, summarized graphically here. The library
construction stage in (a) is performed first, followed by the wake classification procedure shown in (b)

signals. However, before the actual classification task can be accomplished, the proposed approach will require
a library of wake signatures to be constructed. In constructing this library, it is assumed that the wake types are
known, such that every entry in the library of wake signatures has a wake type associated with it. In practice,
one could implement an unsupervised wake regime learning scheme to construct such a library [16]. Once
the library is constructed, the classification task can be carried out by comparing a measured signature from
an unknown wake type with the entries in the library. In this way, the “closest match” in the library with the
measured signal can be used to classify the unknown wake. Below we outline more specifically the steps that
must be taken to construct a library and implement a general wake detection and classification protocol.

To construct a wake classification library, we begin by collecting sensor measurements over a large number
of known wake types. In doing so, it is important to capture multiple realizations from each of the various
wake types that are to be included in the library; this is needed to ensure that the library will be sufficiently
rich for the classification task. Since we are working with time-series data, it will also be useful to perform a
“feature extraction” step that transforms the time-series signal into a “static” feature vector, denoted Vi , such
that entries in the library will be invariant to such factors as the start time of data collection. The primary
challenge associated with feature extraction here rests in choosing a feature vector that adequately summarizes
the time-series data and can be used to effectively distinguish between wake types. With an appropriate feature
vector defined, the feature vectors for all r realizations {V1, V2, . . . , Vr } of wake signatures can be collected
along with associated wake types (i.e., “labels”), and then stored in a library for use during the wake detection
and classification task. The full library construction process is summarized in Fig. 1a.

Once the library of wake signatures is constructed, a classification algorithm can be applied to classify an
unknown wake type from its hydrodynamic signature—called a “test signal”—by comparing with entries in
the library. In order to do so, the time-series data in the test signals must be converted into a feature vector Vtest,
as was done in the library construction stage, in order to compare with entries in the library. Classification
can then be performed by evaluating which library entries match most closely with Vtest. In the present study,
we make use of the k-nearest neighbor (KNN) algorithm to perform this comparison and to determine the
unknown wake type, primarily owing to its simplicity [5,39]; however, this specific algorithm can be replaced
by alternative classification techniques as well. The wake detection and classification procedure is summarized
in Fig. 1b.

In the next section, we present an ideal-flow model that will be used to demonstrate the wake detection and
classification approach in Sect. 4. The ideal-flow model will be used to generate representative wake signature
data, which will inform many of the specific implementation details that were presented more generally in this
section. We note here that the model is constructed with a simplifying assumption of one-way hydrodynamic
coupling—with the wake influencing the body, but not vice versa—in order to maintain the integrability of the
wake dynamics; indeed, this is a necessary consideration for preserving the objective definition of dynamical
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regimes needed to validate thewake detection protocol in this proof-of-concept demonstration. Implementation
details, such as the choice of feature vectors, will be guided by insights gained from a careful analysis of the
specific wake signatures that are collected during the library construction processes.

3 Theoretical modeling

At this point, we are interested in formulating a modeling framework by which to demonstrate the wake
detection and classification approach described in Sect. 2. To this end, we will formulate an ideal-flow model
to represent the hydrodynamic influence of a dynamic wake on a fish-like body. We emphasize, however, that
the wake detection and classification approach presented in Sect. 2 is not model based, rather, it is entirely
data driven. The ideal-flow model formulated here is used only to generate representative wake signatures for
the proof-of-concept studies presented in Sect. 4. In principle, the wake detection approach can be applied
to generate a classification library and classify wake signatures obtained in other settings just as well, since
the approach is entirely data driven. In this study, we are most interested in validating and demonstrating the
performance of the approach, and so we choose to use an ideal-flow model that is best suited for this, as will
be described next.

Important to the present study is the ability to generate different regimes of motion within a given wake
type; beyond determining whether a wake signature is associated with a 2S or 2P wake, we will also seek
to determine whether a nearby wake is a von Kármán 2S wake (vK), a reverse von Kármán 2S wake (rvK),
or any of a number of 2P wake sub-regimes. To this end, we represent the ambient wake vorticity as a
singly-periodic array of point vortices, whose evolution is governed by the associated vortex dynamics equa-
tions. Different wake types can be represented simply by changing the number of point vortices in the base strip,
while sub-regimes can be attained by modifying physical parameters associated with the vortex system, as will
be described in Sect. 3.1. These singly-periodic wake models are ideally suited for the purposes of our study
here: These models allow various wakes and dynamical sub-regimes to be known ahead of time, and thus pro-
vide an objective baseline for validating the wake detection and classification approach. Further, the practical
significance of these models has been suggested in previous studies of these exotic wake models [4,38].

Further, we employ a vortex panel method to model the fish-like body, as will be described in Sect. 3.2. By
combining the vortex panel methodwith the wake dynamics model (see Fig. 4), we are able tomodel the hydro-
dynamic signatures of variouswake regimes imparted on a fish-like body.A simplifying assumption of one-way
coupling in the wake-body model is used to maintain integrability of the wake dynamics; that is, the model
considers the hydrodynamic influence of the wake on the body, but not the hydrodynamic influence of the body
on the wake evolution. The velocity at a point (or set of points) on the surface of the body can then provide time-
series measurements that are representative of the hydrodynamic signals detected by a superficial neuromast
or similar bioinspired velocity sensor. The modeling approach taken here can be generalized to study multiple
sensing modalities. For example, the canal neuromast model of Ren and Mohseni [29] could be introduced
directly—though we do not present such results here. In the present study, we focus attention to wake detection
using a single velocity sensor on the surface of a fish-like body. We focus on a velocity sensor owing to its sim-
plicity in this proof-of-concept study, but emphasize that other sensed quantities (e.g., pressure or shear-stress)
could be used just as well. We find that a single velocity sensor is sufficient for the detection of ideal wakes,
though introducingmore sensors is expected to improve detection accuracy and robustness in non-ideal settings.

3.1 Vortex wake modeling

Here, we summarize the basic formulation of the wake dynamics models, and then discuss specific cases of
2S and 2P wakes. The vorticity ω(z, t), as a function of complex position z = x + iy and time t , can be
represented by a system of N point vortices,

ω(z, t) =
N∑

α=1

Γαδ(z − zα(t)), (1)

where Γα ∈ R and zα(t) ∈ C denote the strength and complex position of vortex α, respectively. Here, we
assume that the vortex strengths remain constant in time. In the unbounded domain, a system of N point
vortices evolves according to [12,26]
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Fig. 2 The evolution of point vortices on a singly-periodic strip can be used to model wake dynamics. Here, three spatial periods
are plotted for the point vortex models associated with a a 2S wake and b a 2P wake

dzα∗

dt
= 1

2π i

N∑

β=1
β �=α

Γβ

zα − zβ
, (2)

where (·)∗ denotes complex conjugation.
In modeling the evolution of periodically shed wake vorticity, we consider the evolution of N vortices in

a strip of a singly-periodic domain (see Fig. 2). Thus, we account for the mutual interactions between all the
vortices in a given strip (as in Eq. 2), as well as the interactions with all of the vortices in the strips along
the periodic direction (taken as x here). Taking the length of a single strip to be L ∈ R, the evolution of all
vorticity in the singly-periodic domain can be expressed as

dzα∗

dt
= 1

2π i

N∑

β=1
β �=α

+∞∑

κ=−∞

Γβ

zα − zβ + κL
. (3)

This expression can be further simplified by noting the identity π cot πx = ∑∞
κ=−∞(x + κ)−1, which yields

the equivalent expression [36],

dzα∗

dt
= 1

2Li

N∑

β=1
β �=α

Γβ cot
[π

L
(zα − zβ)

]
. (4)

Here, the vortex system is considered from a reference frame that moves with the background flow. Since the
vortex strengths are assumed to be invariant, the sum of vortex strengths Γ∞ is a constant of motion that, in
an effort to model the periodic shedding of vorticity into the wake, is taken to be zero:

Γ∞ =
N∑

α=1

Γα = 0. (5)

We note that (4) can be expressed in Hamiltonian form,

Γα

dxα

dt
= ∂H

∂yα
, Γα

dyα
dt

= − ∂H
∂xα

. (6)
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with the Hamiltonian for the singly-periodic vortex system—a constant of motion—given as [36],

H(z1, . . . , zN ;Γ1, . . . , ΓN ) = − 1

4π

N∑

α=1

N∑

β=1
β �=α

ΓαΓβ ln
∣∣∣sin

[π

L
(zα − zβ)

]∣∣∣ . (7)

Hence, given a set of vortex strengths Γα , the topology of phase space becomes fixed. Then, a particular trajec-
tory in phase space is determinedby the initial positions of the basevortices zα . That is, the vortex strengthsfixall
possible dynamical regimes, while the initial vortex positions determinewhich among these is actually realized.

3.1.1 2S wake model (N = 2)

We begin by using the point vortex framework described above to model 2S wake dynamics by setting N = 2
(see Fig. 2a). Since the equations of motion were formulated assuming zero net circulation in the wake, it
follows that the strengths of the two point vortices in each strip are equal and opposite (i.e., Γ1 = −Γ2 = Γ ).
The equations of motion for the 2S wake then reduce to

dz1∗

dt
= − Γ

2Li
cot

[π

L
(z1 − z2)

]
,

dz2∗

dt
= Γ

2Li
cot

[π

L
(z2 − z1)

]
.

(8)

Any choice of z1 and z2 results in a uniformly translating configuration, with the direction of translation being
a function of Δx and Δy, where (z1 − z2) = (Δx + iΔy) [35]. When Δx = nL/2 and y �= 0—for some
integer n, the translational velocity is purely real, and the vortices translate parallel to the wake axis. A detailed
analysis of this wake model can be found in [35]. In the present study, we focus on vK and rvK configurations
with (Δx, Δy) = (L/2, 0.28L), which corresponds to the same configuration considered in the wake sensing
studies of Ren and Mohseni [29].

3.1.2 2P wake model (N = 4)

The dynamics of a 2P wake can be modeled by setting N = 4 (see Fig. 2b). Here, we only present a summary
of these models and their associated dynamics, as needed for the present investigation. Further details and
discussions of the practical significance of these models can be found in the recent works by Stremler and
colleagues [4,36,38].

The 2P vortex dynamics can be reduced to an integrable two-degree-of-freedom Hamiltonian system by
taking the base vortex strengths and positions to be

Γ3 = −Γ1, Γ4 = −Γ2 (9)

z3 = z∗1 − L

2
, z4 = z∗2 + L

2
. (10)

Defining S := Γ1 + Γ2, it follows that the non-dimensional linear impulse for the base vortices Q + iP =
(π/LS)

∑N
α=1 Γαzα—a quantity related to the vortex momentum [30]—reduces to

Q = π

2
(2γ − 1) (11)

P = 2π

L

[
γ y1 + (1 − γ )y2

]
, (12)

where γ := Γ1/S. For convenience, we take 0 ≤ Γ1 ≤ Γ2, such that 0 ≤ γ ≤ 1/2. Then, upon defining
Z := X + iY = π(z1 − z2)/L as the normalized separation between the first and second base vortices, the
Hamiltonian takes the form [4]

H = H(X, Y ; γ,P). (13)

We emphasize that the components of linear impulse (Q and P), the strength ratio (γ ), and the Hamiltonian
(H) are all constants of motion [37]. Thus, for the idealized 2P wake model, the evolution of the associated
system of point vortices can be reduced to tracking the separations between the base pairs of vortices (X and
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Fig. 3 Level curves ofH define trajectories with qualitatively different behaviors in phase space (X, Y ) and physical space (x, y).
Representative phase-space trajectories of three wake regimes—E1, O1, and O2—are highlighted in (a), with corresponding
vortex trajectories in physical space shown in (b)–(d) (colour figure online)

Y ). Further, the motion is parameterized by the linear impulse of the base pairs, though it is more convenient to
express this parameterization in terms of the non-dimensional strength γ and the vertical component of linear
impulse P . As shown in [4], γ and P constitute two independent parameters that can be chosen to realize
different regimes of motion within the 2P wake model.

As shown in [4], the idealized 2P wake model can exhibit twelve distinct regimes of motion, each char-
acterized by different patterns in the vortex trajectories. In particular, Basu and Stremler identify numerous
subclasses of orbiting, exchanging, passing, scattering, and mixed patterns in the vortex trajectories. Figure 3
shows level curves of the Hamiltonian for a 2P wake with γ = 3

7 and P = 0 in tile (a), which corresponds
to all possible phase-space trajectories. We highlight three regimes for this particular wake: an exchanging
regime (E1) and two orbiting regimes (O1 and O2). Representative vortex trajectories of each regime in
physical space are shown in tiles (b)–(d) of Fig. 3, with the corresponding phase-space trajectories highlighted
in tile (a). From the figure, it is clear that each wake regime has a distinct pattern in phase space and in physical
space. Our goal in the present investigation will be to distinguish between these patterns from corresponding
hydrodynamic signal measurements.

As noted in the work of Stremler and colleagues in [4], the E1, O1, and O2 regimes correspond to “typical”
(practically relevant) motions. For instance, the O1 regime was matched to experimentally observed patterns
of a physical vortex wake in [38]. Indeed, unlike other regimes, E1, O1, and O2 arise over a broad range of
values for the wake parameters (γ,P). Scattering and passing wakes only arise in limiting cases with γ = 0
and γ = 1/2, respectively. The mixed wake regime consists of elements of both orbiting and exchanging
motions, which is expected to be a difficult edge case and will not be considered here. Thus, in the current
study, we will only consider the more typical E1, O1, and O2 regimes for 2P wakes, which will be generated
over a range of (γ,P) values.

3.2 Fish-like body modeling

The fish-like body in this study is modeled as a bound vortex sheet by means of a vortex panel method [17].
Here, the bound vortex sheet is represented as a set of point vortices that is appropriately distributed along
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Fig. 4 A snapshot of a 2P wake in the vicinity of a fish-like body is shown in (a), and the associated wake-vortex trajectories
are plotted in (b). In (a), free and bound point vortices are depicted as blue dots. In (b), blue curves depict the vortex trajectories
associated with the same 2P wake in (a), with γ = 3/7 and P = −0.605. The minimal lateral separation h between the wake
vortices and the body is defined as in (b) (colour figure online)

the body surface. Further details on vortex panel methods can be found in standard texts, such as [17]. Many
variations of panels methods can be found in the literature. Here, we summarize specific details of a simple
variant that is used in this study.

The vortex panel method discretizes a body into P panels. Two points on each panel p are of particular
interest: (1) The panel quarter-chord point will correspond to the location of a point vortex with unknown
strength Γ

panel
p (i.e., the point at which the panel’s bound vorticity is confined), and (2) the panel three-quarter-

chord point will represent the point at which the no-flow-through boundary condition will be imposed (i.e., the
“control point”). Note that the lumped vortex panel method enforces the Kutta condition by construction, since
the circulation at the trailing edge is always exactly zero. Further, Kelvin’s circulation theorem is enforced
through the presence of a “starting vortex” with strength (− ∑P

p=1 Γ
panel
p ) that resides in the far field. In the

present development, the only external flow influences to be considered are the freestream velocity U∞ and
the velocity induced by a nearby wake Uwake. Taking U∞ and Uwake to be evaluated at each of the control
points (xc̄, yc̄), we impose the flow tangency condition at each control point:

P∑

p=1

ac̄pΓ
panel
p = − (U∞ + Uwake) · n̂c̄, (14)

where n̂c̄ is the outward unit normal vector at control point c̄ and

ac̄p = Γ
panel
p

(
yp − yc̄, xc̄ − xp

)

2π
(
(xc̄ − xp)2 + (yc̄ − yp)2

) · n̂c̄ (15)

is an “influence coefficient” that represents the normal velocity induced on control point c̄ due to unit bound
circulation on panel p. The panel strengths Γ

panel
p can be determined by solving the system of P linear equa-

tions in (14). An example of streamlines generated by the combined wake-body model is shown in Fig. 4. Note
that we assume the swimmer is coasting here, and so have not included the influence of body motions in our
formulation; such considerations can be included by appropriately modifying the right-hand side of Eq. (14),
and may improve detection in practice [1].

We now describe how to determine the velocity Uwake induced by a nearby vortex wake on each control
point. For each vortex α among the N in the strip, denote the position as zα = xα + iyα and the strength as Γα .
Then, the velocity induced by the singly-periodic systemof point vortices at the control point (xc̄, yc̄) is given by

Uwake =
N∑

α=1

Γα (− sinh(Δyα), sin(Δxα))

2L (cosh(Δyα) − cos(Δxα) + ε)
(16)

where Δxα = 2π
L (xc̄ − xα), Δyα = 2π

L (yc̄ − yα), and ε is a regularization parameter that is used to ensure
smoothness of solutions. As the wake evolves according to (4), the induced velocityUwake at each control point
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will change accordingly, and is thus a function of time. As such, the panel strengths will also be a function
of time and (14) must be solved at each time step. In combining the vortex panel method with the idealized
wake models, we have assumed that the wake induces a velocity on the body, but that the body does not alter
the wake dynamics. We employ this simplifying assumption in order to preserve the integrability of the wake
models, thus ensuring that the model remains suitable for objective validation of the wake detection protocol.

The time-varying nature of the hydrodynamic signature on the fish-like bodywill be leveraged to detect and
classify wake regimes. According to the recent review in [40], most of the research and development of bioin-
spired hydrodynamic reception systems has focused on structures based on the superficial neuromast, which
effectively measure local velocities. In the remainder of the study, we will focus on time-series measurements
of local velocity at a single control point on the fish-like body. For the wake detection and classification task,
we will work with a signal U ′ that corresponds to the velocity at a specified control point with the tangential
component of the freestream velocity subtracted out. Subtracting the tangential component of the freestream
from the raw signal allows the sign of the velocity induced by a nearby wake to be used for more refined
discrimination between wake types, and can be used to distinguish between, e.g., vK and rvK wakes, as will
be discussed in more details later.

4 Results: wake signatures and classification

With the ideal-flow model established in Sect. 3, we are ready to construct a library of wake signatures and
assess the efficacy of the wake detection and classification protocol.

4.1 Wake signatures and measured hydrodynamic signals

In this study, aNACA0020 airfoil with chord length c is used tomodel a fish-like body. The airfoil is represented
by a total of P = 40 vortex panels. The dynamic wake-body simulations are performed with a fourth-order
Runge–Kutta time-marching scheme; sensor measurements are sampled uniformly every 10−4 convective
time units. In all the results presented, the measured hydrodynamic signalU ′ at a control point corresponds to
the tangential component of local velocity with the tangential component of the freestream removed. Unless
otherwise stated, the sensor measurementsU ′ are taken at a single point on the mid-chord on the wake side of
the body. Looking ahead to the feature extraction procedure, we note that the relative timescales of the wake
evolution and U∞ can greatly influence performance in practical applications. In principle, the signalU ′ must
capture at least one period of wake evolution in order to perform reliable feature extraction. Here, we consider a
slowly coasting body, such thatmultiple periods ofwake evolution are available formeasurementwithin a single
convective time unit. In principle, one could simply wait longer to ensure that multiple periods of evolution
are captured in the signal U ′. However, doing so is typically not justified, since wake vortices can dissipate
due to viscous diffusion, ultimately limiting the amount of information that can be used for feature extraction.

A total of 200 different wake realizations are simulated to build up the library and to subsequently
assess the performance of the wake detection protocol. Multiple realizations of wake signatures are col-
lected from each of the 2S (i.e., von Kármán (rvK) wakes and reverse von Kármán (rvK) wakes) and 2P
wake regimes (i.e., E1, O1, and O2). For the study at hand, we take care to ensure that some consistency
is maintained between the different wakes that are considered. Wake parameters are chosen such that all
2S and 2P wakes have vortices with comparable strengths. All 2P wakes are generated with γ = 3/7 and
P ∈ {0,−0.55,−0.605,−0.71,−0.803,−0.85,−0.9,−0.95}, such that the practically relevant E1, O1, and
O2 regimes are realizable [4,38]. In order to realize 2S wakes with comparable strengths to these 2P wakes,
vK and rvK wakes are constructed with |Γ | ∈ [0.3, 0.5].

Further, the lateral separation between the wake and body must be consistent, in order to draw a fair
comparison; otherwise, some signaturesmay be stronger orweaker by virtue of this geometric parameter, rather
than by the nature of the wake dynamics. To this end, we also note that the vortex trajectories of 2P wakes lead
to a time-varying lateral separation between the wake vortices and the body axis; thus, the separation between
the wake axis and the body axis may not be the most relevant parameter to keep fixed between realizations if
an objective assessment is desired. Instead, we define h to be the minimal lateral separation achieved between
wake vortices and the body axis, over the course of the wake evolution (see Fig. 4).

Representative time-series measurementsU ′—normalized by the absolute value of the time-averaged sig-
nal |U ′|—for the different wake regimes with h = 0.2L are shown in Fig. 5. With the exception of vK and
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Fig. 5 Sensor signals U ′ have notable qualitative differences between different wake regimes. The representative signals shown
here correspond to a Γ = 0.4, b Γ = − 0.4, and c–e γ = 3/7, P = − 0.803 withH = − 0.2, 0.4, and 0.13, respectively

rvK wakes, the signals appear to be qualitatively different from one another; indeed, the signals appear to have
different frequency content. This suggests that a feature vector based on a frequency-domain representation
of the signal may be well suited for the classification task. In the case of vK and rvK, the sign of U ′ can be
used to distinguish between these wakes, as will be discussed later. In the next section, we describe a specific
feature extraction method that can be used to build up an effective wake classification library.

For the purposes of the present study, h is assumed to be known. As we will see, the set of features that will
be used for classification will be the same regardless of the separation h, though quantitative differences will
arise. As such, with h given, the protocol can switch between classification libraries to determine the wake
type. An attempt was made to determine h directly from the wake signature data; however, the fish-like body in
this study is taken to be in a purely coasting configuration, making the parameter h unobservable. It is expected
that appropriately designed kinematics can be used to improve classification performance, even enabling h to
be determined within the protocol. Indeed, the modeling framework and detection protocol can be extended
to include arbitrary body kinematics, and such considerations will be the subject of future investigations.

4.2 Feature extraction from frequency-domain signatures

As seen in Fig. 5, different wake regimes impart distinct hydrodynamic signatures on the body, which can be
characterized by differences in frequency content. To verify this, we compute the frequency spectra of each
signal in Fig. 5 by means of a fast Fourier transform (FFT). Prior to performing the FFT, the mean signal is
subtracted in order to avoid a frequency peak at zero and to facilitate the proposed feature extraction. Note
that frequency content can also be efficiently computed online using short-time Fourier analysis when the
sensor measurements are in the form of a datastream, as is needed in practical real-time applications [42]. The
frequency-domain representations of each of these representative signals, shown in Fig. 6, show qualitative
differences between each wake regime as well—again with the exception of the vK and rvK wakes. For exam-
ple, 2S wakes exhibit a single dominant frequency with a large amplitude, whereas 2P wakes are more broad
banded; this feature alone can be enough to distinguish a 2S wake from a 2P wake.

The frequency-domain representation is a convenient one compared to the time-domain representation of
the signal for wake detection because—all else equal—it is less sensitive to implementation details, such as
measurement start time. Thus, we will extract feature vectors from each signal’s frequency-domain represen-
tation. The frequency signatures in Fig. 6 each display a distinct “bell” shape. Thus, we choose to summarize
the frequency-domain signatures by fitting a Gaussian bell curve,

F(x) = a exp

(
− (x − μ)2

2σ 2

)
. (17)

Note that the specific shape of the Gaussian bell curve is fully defined by the parameters (μ, a, σ ), which are
determined by the fitting procedure. An example is shown in Fig. 7. A feature vector for each wake realization
i can then be defined using the parameters of the associated best-fit Gaussian bell curve:
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Fig. 6 Different wake regimes impart distinct signatures on the fish-like body, which can be seen in the frequency domain. The
frequency-domain signatures shown here correspond to spectra from the corresponding plots in Fig. 5

Fig. 7 A Gaussian fit to the frequency signature yields a convenient, concise, and effective set of parameters (μ, a, σ ) for use as
a feature vector in the wake classification task (see Eq. 17). The example plotted here corresponds to the E1 signature in tile (c)
of Fig. 6. The parameters of the best-fit Gaussian bell curve (drawn in red) concisely summarize this signature as a feature vector
(colour figure online)

Vi = (μi , ai , σi ). (18)

In the next section, we use the feature vector defined in (18) to build up a classification library for wake
detection, but first it is worth investigating the influence of sensor location and separation distance h on the
measured signals and the resulting feature vectors. For a fixed separation h, one might suspect that sensor
signals will vary significantly from one measurement location to another, especially for the more complicated
wake signatures of regimes E1 and O1; however, a qualitative comparison of the time-series signals from
different sensor locations reveals only slight differences. Figure 8 shows the comparison of hydrodynamic sig-
nals imparted by E1 and O1 wake regimes measured at the mid-chord (x/c = 0.5), the maximum thickness
point (x/c = 0.2), and the leading edge (x/c = 0) when h = 0.2L . The frequency-domain signatures and
associated feature vectors are included as insets to Fig. 8. Although the feature vectors will have quantitative
differences between them, the qualitative similarity between feature vectors indicates that our proposed feature
extraction approach is an appropriate one regardless of sensor location. For brevity, in the remainder we only
present results for the mid-chord sensor location x/c = 0.5.

Finally, we consider the influence of the minimal separation h on the wake signatures, and thus on the
choice of features for classification. As seen in Fig. 9, the qualitative nature of the wake signatures remains
relatively consistent between h values. The primary difference is in the magnitude of the spectra, which will
lead to differences in the element a of each feature vector. However, the other two elements of the feature vector
(i.e., μ and σ ) appear to be insensitive to h, suggesting that an appropriate normalization procedure for a may
extend the capabilities of the protocol for arbitrary h. Indeed, if such a procedure can be made independent of



Detecting exotic wakes with hydrodynamic sensors

Fig. 8 Wake signatures measured at different locations along the fish body are qualitatively similar. Time- and frequency-domain
signatures and corresponding feature vectors are presented for E1 and O1 wakes at the three sensor locations shown. The E1
and O1 wake signals are generated based on the same wake parameters used in Figs. 5 and 6

Fig. 9 Frequency domain comparison of sensor measurements simulated with different value h. The measurements are simulated
at the mid-chord sensor location

h, then this would preclude the need to determine h ahead of time. In the remainder of the present study, we
assume h = 0.2L is known.

4.3 Wake classification

At this point, a classification library can be built up using the feature vectors defined in (18). The library is
constructed by collecting an equal number of distinct feature vectors from each wake regime. The classification
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Fig. 10 The wake classification library is built up in feature space with library entries from many wake types and regimes. In
(a), an example of a classification library with a total of 150 entries is presented, equally distributed between the five regimes
considered. The 2S and 2P wakes separate into distinct clusters here. A blown-up plot of the 2P and 2S clusters is shown in (b,
c), respectively. Note that the 2P regimes are fairly well separated, whereas the 2S regimes are blended together (colour figure
online)

library with 150 entries is presented in Fig. 10. We will report on the influence of “training size” (i.e., the
number of library entries) on classification outcomes momentarily.

Aquick studyof Fig. 10 reveals that 2S and2Pwake types are fully partitioned into distinct clusters in feature
space. A closer look at the 2P clustering in Fig. 10b shows that the various 2P wake regimes also partition rela-
tively well, though some overlap between wake regimes is observed. Interestingly, many of these overlapping
points correspond to wake signatures generated close to regime boundaries. In contrast to the 2P wake regimes,
the partitioning of the vK and rvK configurations of 2S wakes do not partition as nicely (see Fig. 10c)—as is
expected based on our previous observations of the associated signatures in both the time and frequency domain.

As mentioned in the development of the general wake detection framework of Sect. 2, once a library of
feature vectors is available, numerous alternative classification algorithms can be applied to determine the
likelihood that the signature from an unknown wake belongs to a particular class of wakes stored in the library.
Here, we make use of the relatively simple k-nearest neighbor (KNN) algorithm [5,39]. Given a user-specified
value k, the KNN algorithm uses a distance measure to determine which k entries among the set of all library
entries {V1, V2, . . . , Vr } are closest to the test vector Vtest. Once the k nearest neighbors have been determined,
a majority voting procedure is used to assign a label to the test vector; that is, the unknown wake is determined
to belong to the same class as the most frequent class among the set of k nearest neighbors. In the present
study, we use the Euclidean distance as a measure of distance for the KNN algorithm; this assumes that each
element of a feature vector has an equal contribution to characterizing a wake regime. Although the choice of
weighting can be treated as a tuning parameter, we find that equal weightings yield adequate performance here.

We show a simple example of the KNN classification procedure at play in Fig. 11. Here, the test vector is
denoted with a black ×, and the k = 5 nearest neighbors are circled in red. For the example shown, all k = 5
nearest neighbors correspond to O1 wakes, and thus, the measured hydrodynamic signal is determined to also
be an O1 wake.

We now return to the issue of “blended” clusters of vK and rvK feature vectors. Based on the feature
vectors presented in the library, it appears that vK and rvKwill be virtually indistinguishable from one another.
However, noting the strong separation between 2S and 2P type wakes (note the logarithmic scale of a), we
can say with reasonable confidence that a 2S wake can be distinguished from a 2P wake. Thus, once a wake
is classified as 2S, we can invoke an additional criterion to determine whether that particular 2S wake is vK
or rvK. Since the primary distinction between vK and rvK wakes is the configuration of oppositely signed
vortices, we can expect that the sign of the time-domain measurements U ′ will be opposite between vK and
rvK wakes. Indeed, this happens to be the case in general (see Fig. 5 for one example), and so if a wake is
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Fig. 11 An example of the wake library from Fig. 10 used for classification with a KNN algorithm applied to a test signal (denoted
by ×). The k = 5 nearest neighbors are circled. The test signal is correctly classified as O1 in this example

Fig. 12 A summary of the wake detection protocol used in this study

determined to be of the 2S type by the KNN classification procedure, an additional step is required to check
the sign of U ′ to determine whether the 2S wake is vK or rvK. A similar procedure can be used to determine
whether a classified 2P wake type corresponds to P > 0 or P < 0, though in the present study we only
consider the P < 0 case. The full wake detection and classification scheme is summarized in Fig. 12.

In the remainder of this section, we aim to assess the performance of the wake detection and classification
approach described above. We are primarily interested in the classification accuracy rate, which can be quan-
tified by applying the method to a number of “test signals” with known wake regimes. Then, the accuracy rate
can be defined as the fraction of correctly classified test signals over the total number of test signals. However,
since the accuracy rate will be influenced by various parameters, such as the number of nearest neighbors k
and the number of entries in the classification library, robustness of accuracy rate to these parameters is the
better measure of performance.

Figure 13 shows the accuracy rates corresponding to these different protocol parameter values. In this
study, a total of 50 test signals were realized by drawing from a random set of 2S and 2P wake models, each
constructed in a manner consistent with the generation of library entries (i.e., adhering to the same parameter
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Fig. 13 A study of accuracy rate as a function of algorithm parameters reveals that the wake detection protocol has good
performance. The number of nearest neighbors k and the number of library entries are both varied in this study. Accuracy rate is
measured based on 50 test signals from randomly generated wakes, and is defined as the number of correct classifications over
the total number of test signals

Fig. 14 As h increases, the 2P sub-regimes begin to blend together in feature space (note the logarithmic scale of a). Nonetheless,
wake types 2S and 2P remain well partitioned in feature space as h increases (Refer to Fig. 10 for h = 0.2)

ranges and constraints). The accuracy rate of the wake detection method for the 50 test signals considered
varies from 68 to 98%, depending on k and the number of library entries. The worst accuracy rate of 68%
corresponds to the case with the smallest number of library entries and the largest number of nearest neigh-
bors, as is to be expected. When the number of nearest neighbors k exceeds the number of library entries
for a given wake class, it stands that “out-of-cluster” library entries will necessarily be included within each
evaluation, thus degrading the classification performance. This point highlights the importance of properly
choosing k based on the construction of the classification library. For all other testing parameters, the accuracy
rate is consistently above 90%, with accuracy rates above 95% in the majority of runs. The high accuracy rate
over a broad set of parameters indicates a well-performing wake detection protocol. The strong performance
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Fig. 15 Accuracy rate decreases with increasing separation distance h as well as with increasing number of nearest neighbors k.
In all cases, the accuracy rate is above 85%

Fig. 16 Representative wake signatures with SNR = 3. Signatures are generated by 2P wakes with γ = 3/7 and P = − 0.803.
Tiles (a–c) correspond toH = − 0.2, 0.4, and 0.13, respectively. The red curves are the original signals, and the blue curves are
the noise-corrupted signals (colour figure online)

Fig. 17 Accuracy rate decreases with decreasing SNR. Additionally, as SNR decreases, the accuracy rate becomes more sensitive
to the number of nearest neighbor points k. Results here are based on 50 test signals from randomly generated wakes using a
classification library with 150 entries

here can be attributed to a suitable feature extraction method, which was informed by a close examination of
representative wake signatures during the data collection and library construction process.

Beyond parameters associated with the wake detection protocol itself, other parameters—such as mea-
surement noise and the separation distance h—can also influence the performance of the protocol, and will
be considered now. To investigate the role of the separation parameter h, we repeat the library construction
and wake detection study above, but now for a set of different separation values h = {0.2, 0.4, 0.6, 0.8, 1}.
Figure 14 shows the results for h = 0.4 and h = 0.8. As seen in Fig. 15, accuracy rate decreases with increasing
h. Examination of the wake classification library in Fig. 14 reveals that the 2P sub-regimes begin to blend
together in feature space with increasing h, making the distinction between E1, O1, and O2 wakes more and
more difficult. Interestingly, the 2S and 2P clusters remain well separated as h increases, and thus wake types
remain distinguishable with larger separation distance.

Of course, the hydrodynamic signals imparted on the body will become weaker as h increases, and so will
requiremore sensitive sensors to detect the faint velocity fluctuations associatedwith distant wake vortices. The
sensors required for detecting the smaller velocity fluctuations imparted by distant wakes would inherently
be more sensitive to sensor noise as well, which has the potential to adversely influence feature extraction
and classification performance. Here, we investigate the influence of measurement noise on classification per-
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formance by introducing a synthetic additive noise signal to the time-series measurements. Specifically, we
study performance in the face of additive, independent and identically distributed zero-mean Gaussian noise
over a range of intensity levels. Here, the intensity of the noise environment is quantified in terms of the
signal-to-noise ratio (SNR), defined as the ratio of the magnitude of the mean to the standard deviation of the
measured signal. A large SNR corresponds to a low-noise environment, whereas a small SNR corresponds
to a high-noise environment. Figure 16 shows representative noise-contaminated signals with SNR = 3. We
study the protocol for SNR = {1, 3, 10, 30, 100}, in each instance considering classification performance
using 50 noisy test signals. The accuracy rates for different SNR levels are reported in Fig. 17. For low-noise
environments (high SNR), the number of k nearest neighbors has negligible influence on the accuracy rate. For
high-noise environments, accuracy rate decreases for any given k. Further, for SNR less than 10, the accuracy
rate decreases with increasing number of k nearest neighbors. These observations indicate that in high-noise
environments, protocol performance can be improved by choosing a smaller number of nearest neighbors.
Even for SNR= 1, the classification accuracy rate can reach ≥ 70% with a proper choice of k.

5 Discussion and conclusions

The results of the present study serve as a proof-of-concept demonstration for the viability of exotic wake
detection based on hydrodynamic signals. A dynamic wake model was combined with a vortex panel
method to study the hydrodynamic signatures imparted by various dynamically distinct wake regimes on
a fish-like body. We found that different wake regimes impart distinct hydrodynamic signatures whose
qualitative differences can be detected in time-series measurements taken at a single point on a fish-like
body. Further, we found that the ability to detect these qualitative differences was insensitive to the sensor
location.

An examination of wake signatures in the frequency domain revealed that a Gaussian bell curve—defined
by the parameters (μ, a, σ )—could be fit to the frequency signature to provide a concise summary of the wake
as a feature vector. Subsequently, feature vectors from a wide range of wake regimes were collected and stored
for use in a wake classification library. After doing so, we invoked the k-nearest neighbor algorithm to compare
the signatures from unknown wake regimes with entries in the wake classification library. The performance of
this wake detection protocol was assessed by considering the accuracy over a range of algorithmic parameters;
this assessment study showed that the wake detection protocol performed with an accuracy rate of over
95% for a majority of algorithm parameter values. The notable performance of the wake detection method
over a wide range of algorithm parameters indicates that the feature extraction approach was appropriate for
summarizing the wake signatures; indeed, the ability of the wake detection protocol to reliably distinguish
between wake regimes shows that the feature vectors effectively captured the primary qualitative distinctions
between signatures from dynamically distinct wakes. The results of this proof-of-concept study indicate that
future investigations moving beyond the ideal fluids models considered here will benefit from determining
appropriate feature vectors for the given context.

One challenge we observed was an inability to reliably distinguish between wake signatures with wake
dynamics evolving near regime boundaries. A closer inspection of the “failure cases” in the performance
assessment revealed difficulties in distinguishing between wake regimes that evolved close to the separatrices
in phase space. Indeed, these were the same wake regimes that had similar feature vectors to one another and
were more closely clustered together in the classification library. This observation suggests that even with a
richly populated library, the wake detection accuracy rate is unlikely to reach 100%. Further, this suggests
that other wake regimes not studied here—such as the mixed regime reported in [4] that exhibit qualities of
both orbiting and exchanging regimes—may require special consideration when devising a wake detection
protocol.

The influence of sensor noise and separation distance on classification performance were also investigated.
Sensor noise was studied over a range of SNR levels. Although low SNR degraded performance in general,
we found that classification accuracy can be improved by choosing a relatively small number k of nearest
neighbors in the algorithm. Additionally, the influence of separation distance h on classification performance
was studied. As the separation distance h was increased, the features associated with 2P sub-regimes were
found to become less distinct and to blend with one another. Overall classification accuracy decreased with
increasing h; however, the distinction between 2S and 2P wake types remained clear in feature space for up to
a full body length of separation.

We note that the study here demonstrates the viability of using hydrodynamic signals to detect and classify
wakes in an idealized setting;muchwork remains to be done to demonstrate the viability of doing the same in the
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face of numerous practical real-world challenges. In the present study, numerous constraints were imposed—
both on the wake parameters and on the relative location and orientation of the body-wake system—in order
to demonstrate the viability of classifying wakes from their hydrodynamic signatures. In future investigations,
wake classification libraries will need to be constructed with a richer set of entries that incorporate factors such
as the relative alignment of the wake and body as well as the two-way coupling of hydrodynamic interactions
between the two. Further, only velocity measurements taken at a single point on the body were considered
here, which could limit the ability of wake detection protocol to distinguish between wake-generating systems.
For example, at a sufficient distance, a 2P wake and 2S wake will impart strikingly similar hydrodynamic
signatures.

In addressing these practical challenges, we can draw inspiration from biology once again. For exam-
ple, the lateral line system is composed of arrays of both superficial and canal neuromasts, giving marine
swimmers access to a multimodal and distributed sensing system. Indeed, multimodal distributed sensing will
be more likely to succeed at distinguishing between wakes when body-wake alignment and separation are
unknown and need to be accounted for. Moreover, measurements of pressure and pressure gradients—as in
canal neuromasts—may serve to amplify hydrodynamic signals and yield improved performance. It may also
be possible to devise swimming gaits that are optimized for wake sensing and detection. Recent studies of
biological swimmers show that properly timed head motions can lead to a threefold sensitivity of the lateral
line system without compromising other performance objectives, such as propulsive efficiency [1]. Certainly,
distributed and multimodal sensing combined with sensing-optimized gaits will play a role in making wake
detection protocols more practically relevant for use in bioinspired robotic swimmers in the future.
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