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ABSTRACT 

WE SHOW that solulions which create spherical voids are unstable relative to the formation of long, thin 
voids that point in the radial direction, for a large class of nonlinearly elastic materials. We compare 
sufficicnl conditions for the formation of such “filamentary voids” to criteria for crazing in glassy polymers. 

I. IN~R~XJ~TKIN 

IN 1958 GENT and LINDLEY observed a striking rupture phenomenon in short rubber 
cylinders that were bonded at their ends to parallel steel plates and pulled in tension. 
At a load that was in many cases less than a fourth of the ultimate breaking load, 
they observed the appearance of small, approximately spherical holes in the interior 
of the test piece. GENT and LINDLEY (1958) measured the load at which these internal 
flaws appeared as a function of the dimensions of the cylinder and of the type of 
rubber. They found that this load varied linearly with the Young’s modulus of the 
rubber, for eight rubber formulations with Young’s modulus varying from 10 to 60 
kg/cm’, and nonlinearly with the length. 

To analyze this phenomenon, they first calculated the maximum hydrostatic tension 
P,,,, (the maximum trace of the Cauchy stress) in a bonded cylinder pulled in tension. 
using an approximate stress analysis. The value P,,,,, that they obtained from their 
calculation depended on the material parameters and the dimensions of the cylinder. 
They gave these parameters definite numerical values based upon the known dimen- 
sions of the test-piece and upon the independently measured energy functions of the 
rubbers used in the tests. [STRINGFELLOW and ABEYARATNE (1988) have recently 
confirmed Gent and Lindley’s approximate stress analysis. They computed the stress 
in the interior of a bonded neo-Hookean cylinder and obtained values very close to 
those given by Gent and Lindley.] 

They then considered a different theoretical problem. They supposed that an infinite, 
incompressible elastic body contained a finite hole at the origin and was loaded at 
infinity by a pure hydrostatic tension P. They found an equilibrated radial deformation 
that solved this problem and which of course depended on P. At a critical value 
p = pzi’a’ they found that the deformed hole radius became infinite. Even though the 
cylinders in the experiments were not in a state of pure hydrostatic tension, Gent and 
Lindley theorized that the hydrostatic part of the stress is most important and they, 
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in effect. proposed the criterion that macroscopic holes will form in an inhomogeneous 
deformation at any place where the hydrostatic part of the stress reaches u critical 
value obtained in the TN&I/ problem with pure hydrostatic stress at infinity ; in short, 
their criterion for void formation is 

Hcrc “max” refers to 21 maximation over all points in the body. This criterion invol\cs 

no fret parameters once the energy function for the rubber and the test-piccc dimen- 
sions are assigned. Gent and Lindley compared the criterion (1.1) with experiment 
and the agreement bctwcen theory and experiment W~IS truly remarkable considering 
the range of dimensions and rubbers tested. Subsequent experiments by LINDSI:Y 
(1967) and GI;N,T and TOMPKINS (1969a) have confirmed the :tbove criterion, with 
some interesting qualifications in the work of GFNT and TOMF~KIW (1969h). GFW 

and PARK (1984) and CHO and GENT (I 988). 
A different point of view of this phenomena was made in ;I fundamental paper bq 

BAI.I. (I 982). He considered :I jitzitc ball of compressible elastic material. with no hole 
present initially, subject to a pure radial displacement ofamount imP I at its boundary. 
He found that for appropriate materials and for i sutticiently large the minimizr of 
the total stored energy among radial deformations contains ;I spherical cavity. For 
incompressible elastic materials. he considered the problem of given radial traction P 

on the boundary of 21 finite ball. He found that the equilibrium equations admit ;I 

weak solution with 21 traction-free cavity when P > P%f’ci’. the same critical value as 
given by GENT and LINDIXY (1958). The reason for this agreement. which is based 
upon the scaling laws for finite elasticity, was explained by BALL (1982). In addition. 
he analyzed the dynamic (radial) stability of the solutions with cavities and brietly 
considered the effect of surface energies. 

A major conceptual notion in Ball’s work is thr,r holes do not have to be present 
initially. Hence. the idea is applicable in principle to inhomogeneous deformations 
since it removes the necessity of having to judge the efl’ect of introducing (in the 
reference configuration) a sufficiently small hole at an arbitrary point in the body. 
surely a computational nightmare. Instead one can minimiLe the total stored energy 
in :I sufficiently large space (e.g. an appropriate subset of the Sobolev space W ‘.I’, 

I < p < 3 for a three-dimensional body) so that deformations with voids can compete 
for a minimum. Then one views the formation of voids as a (nonsmooth) bifurcation 
phenomenon. Ofcourse, it must bc determined that in such large spaces the expression 
for the total energy reasonably measures this energy. Questions of this nature are 
highly nontrivial and have been considered by BAIL and M~JRAT (1984). We discuss 

this point in JAMES and SPR’TOK ( I99 I ). 
To our knowledge all analyses of the phenomenon of void formation in elastic 

materials? have been concerned with the radial problem in which all deformations f: 

Q + [w’ that compete for a minimum are required to have the special form 

t Analyses by CHOW-WAIG and HOKGAN (198%, b). I IOWAN and AUEYAKATNI (19X6). HOKGA\ ;~nd 

PENCE (I 9XYa. b), POI~O-GLIDUGLI c/ rrl. (I 9X6). SIVALOGANATHAK (I 9863, b). and STI_AHT (1085) ha\e 
provided a rather complete picture of the radial problem for isotropic materials. while ANTMAX ad 

NWKON-MAKKEIW (19X7) have obtained resulta for radially or azimuthally reinforced materials. PEKK‘AK- 

SIWTOK and SI’ECTOR (19X8) have shown that the equations of nonlinear elxstodymlmics cim bc used to 
predict the spontaneous formation of spherically symmetric holes. 
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r(R) 
f(x) = R~, R = 1x1. (1.2) 

To realize the program of actually predicting the formation of voids at a stress 
concentration in an elastomer two questions naturally arise : (1) Are the radial solu- 
tions with holes minimizers of the energy when nonradial deformations are allowed 
to compete for a minimum? (2) What information from the analyses of homogeneous 
boundary-value problems in which f(x) = Fox on LX2 can be carried over to inhomo- 
geneous deformations that happen to take on the deformation gradient F,, at some 
point x0 E R? More specifically, under what conditions does GENT and LINDLEY’S 

(1958) criterion (1.1) follow from a minimum energy criterion? 
Regarding (2) we have previously shown (JAMES and SPECTOR, 1991) that if a void 

of any kind, not necessarily radially symmetric, reduces the energy in the boundary- 
value problem with linear boundary conditions f(x) = Fox, XE&~, then one can 
find a closely related deformation that reduces the energy of an inhomogeneous 
deformation that assumes the deformation gradient F. at some interior point. 

The answer to (1) clearly depends on the stored energy function. In this paper we 
show that, for a large and realistic class of stored energy functions, radial solutions 
with holes are not minimizers of energy. Our method is based on the following ideas. 
Consider first the radial problem with boundary conditions f(x) = lx at 1x1 = 1. The 
homogeneous deformation satisfying these boundary conditions, f(x) = fix, 1x1 < 1, 
induces a large volume change when f is large. A material may find it energetically 
unfavorable to undergo such a large change in volume and will instead open a spherical 
hole at its center. That is, the typical radial deformation that creates a traction-free 
hole has principal stretches of the form 

a(R), A(R), A(R), R = 1x1, (1.3) 

with ctA2 bounded and A(R) -+ + co as R + O+. Our analysis involves the same idea 
carried one step further. A deformation with principal stretches of the form (1.3) 
might also be judged energetically unfavorable because of the large change in area 

A(R)’ as R + O+ . We show that for a large class of stored energy functions the material 
would “prefer” to have principal stretches of the form 

a, A,, A2 (1.4) 

with ;1,;1? < A’(R). In order to realize a competitor with principal stretches (1.4), we 
construct, just outside of the hole, a short but very thin filamentary void, which points 
in the radial direction. Roughly, the filamentary void turns stretches of the form (1.3) 
into those of the form (1.4) and reduces the energy. 

The analysis of BALL (1982), as well as the analyses of SIVALOGANATHAN (1986a) 
and STUART (1985), contains certain growth assumptions that may be interpreted as 
saying that the materials are “soft” with respect to changes of single stretches (shear), 
but “stiff” with respect to changes in the product of the principal stretches (dilatation). 
In our assumptions the growth of the energy with respect to pairwise products of the 
principal stretches is important. These assumptions rule out the class of compressible 
materials originally studied by Ball, but do not rule out the materials studied by 
Sivaloganathan and Stuart. To emphasize the distinction between spherical and 
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filamentary voids. \ve note that our assumptions that promote the formation 
of filamentary voids allow any behavior whatsoever of the stored energy for pure 
dilatation. 

As noted above. Ball’s analysis (in the incompressible case) and Gent and Lindley’\ 
analysis dclivcr the same critical hydrostatic tension for spherical cavitation. Furthcl 
support for this connection is provided by an analysis of SIVALOGAYATHAN (1986a). 

who considers a finite ball subject to ;I radial displacement of amount i:- I at its 
boundary with and without a pre-existing cavity of radius R,, at the origin. He shows 
that the graph of hole radius vs i for radial minimizers with a preexisting hole tends 
to the analogous graph with no initial cavity as R,, + 0. This may be interpreted as 
saying that critical conditions for void formation and sudden growth of ;I p-e-existing 
void are identical. This conclusion must be tempered by results of GEYT and PARK 

(1984) and CHO and GENT (198X). They find that the critical conditions for cavitation 
IUXI- ;t very small inclusion arc not given by (I. I). and they interpret this to mean that 
the probability of finding a relatively large (large enough to omit surface cncrgp) 
precursor void within the small region of stress concentration is small. 

The filamentary void provides another mechanism for energy reduction, difierent 
from cavitation. A striking example of ;I rupture process that produces something 
resembling a filamentary void is the phcnomcnon of crazing in polymers. In fact. after 
writing the present paper, we found 21 striking photograph by DONALII PI trl. (I981 ) 
that shows tiny filamentary voids in thin sheets of polystyrene pulled in tension. This 
prompted LIS to write Section 7 which relates our results to crazing. A weakness of 
our results, which prevents a quantitative comparison, is that we do not give critical 
conditions for the formation of ;I filamentary void, but WC only say that if certain 
combinations of principal stretches arc sufliciently large. then ;L filamentary void will 
rcducc the cncrgy. Furthcrmorc. all polymers iii-e to some extent \ iscoelastic, as i\ 
true of the clastomcrs studied by Gent and Lindley. and out- thinking relies on the 
notion that most viscoelasticity theories have a Lyapunov functional which has the 
form of a nonlinear elastic cncrgy. In a subsequent paper w:e shall examine in more 
detail the connection bctwecn the formation of a lilamentary void and craying. 

, _. NOTATION 

WC Ict Lin be the space ofall linear transformations (tensors) from R’ into #R’ with 
norm 

IHI = [tract (HH’)]’ ‘. 

where H’ denotes the transpose of H. WC write 

Lin = (HELin:det H >O). 

Lin’ = [HELin:dctH GO). 

whcrc det denotes the determinant. Given two vectors a. b E Ri WC write a 0 b for the 
tensor product of a and b; in components 
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(a @I b),, = aibj. 
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We write V for the gradient operator in 172 3 : for a vector field u, Vu is the tensor 

field with components (Vu), = Ju,/ax,. Given any function @(a, b, . . , c) with vector 
or tensor arguments, we write e.g. ii@/aa for the partial derivative with respect to a 
holding the remaining arguments fixed. 

We call a bounded open region !A c R” regular provided that 22 has measure zero. 

For I d p d m we let /I - /I Q.m,p denote the I+““.“-norm on Sz and /I - IjR,,, denote the 

L”-norm on s1. Thus, in particular 

II f II R./I := II f II n.0.p = 
[j-,f(x),pdx]“p, 1 <p<cc 

ess ;;I: If(x p = x 

I:P 
If(x + IVf(x)lP dx 1 I , I < p < x. 

For 1 d p < m we define 

W’,P(Q) to be the completion of {fE CL(0, R’) : /If ~~R.I.p < + m} 

with respect to the Wm.P-norm and let 

W:.p(Cl) be the closure of C,* (Q R3) in W’,“(Q). 

3. DEFORMATION, STRESS AND STORED ENERGY 

We consider a three-dimensional homogeneous body that, for convenience, we 
identify with the region fi that it occupies in a fixed homogeneous reference con- 
figuration. Let 1 < p < 3. We call a function f: 0 + IX’ a de@-mation of the body 
provided that (i) f is one-to-one on 0 and, (ii)7 fE W”.)‘(Q) n L”(n). We denote by 
Def (!A) the set of all such deformations. 

Remark 3.1. The set of deformations has been chosen so that the energy will be 
well-defined, voids can form in the material, and the interpenetration of matter is 
prohibited. For p < 3 the spaces WI,“, even with the added requirement that the 
deformation gradient have positive determinant almost everywhere, is too large a 
space for nonlinear elasticity. One major difficulty is that such functions are not 
necessarily invertible. Furthermore, such functions can arise as the absolute minimizer 
of the energy in certain compression problems since the body is able to relax severe 

compressive strains by overlapping material (see JAMES and SPECTOR, 1991). The 
spaces W’.p for p > 3 do not suffer this pathology, but unfortunately do not permit 
the formation of voids. 

We assume that the body is hyperelastic with continuous stored energy function 
W: Lin + [w> u ( + a}. W gives the energy stored per unit volume in Q 

t More precisely, the function f belongs to an equivalence class that is contained in the indicated spaces. 
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WPf(x)) 

at any point x E fi when the body is deformed by a smooth deformation f. 
We further assume that W restricted to Lin’ is C’ and that W = + r; on Lin 

The derivative 

S(F) := dF W(F) 

is the PiolaaKirchhotT stress while the Cauchy stress is defined by 

T(F) := S(F)F’/det F. (3.1) 

We assume that the response of the material is invariant under a change in observer 
and hence that 

W(QF) = W(F) (3.2) 

for every FE Lin ’ and Q E Lin ’ with QQ’ = I. One consequence of this assumption 
is that T is symmetric. The eigenvalues of T are called the prirzcipal str’cs.sc.v. 

In Sections 5-7 we will consider isotropic materials that is, materials for which 
there is a symmetric function @ : (R ) ’ + [w“ with the property that for every FE Lin 

W(F) = @,(A, (F).).,(F), l>(F)). (3.3) 

vv:here A,(F) are the principu/ .strrtc~lzcs. i.e. the eigenvalues of (FF’ ) ’ ’ 

4. REWL.TS ON THE LOCAL. Rtxx~c~~o~ OF ENHWY 

We assume that there is a potential /~‘~(“(ii x R’, R) such that 

h,(x) := (ff P(x, f(x)) 

gives the body force exerted by the environment on the material at the point x when 
the body is deformed by a smooth deformation f. We let 

E(f. n) = 
I 

[ W(Vf(x)) -Rx, f(x))1 dx (4.1) 
(1 

denote the total energy when the body is deformed by f. Later, we shall introduce 
restrictions on W and /I so that the total energy is defined for all fin Def (fi). We use 
the term totd stored energy for the right-hand side of (4.1) with [j omitted. 

Let dEC’(fi) be one-to-one. We are interested in deformations that are 
local minimizers of the total energy and that have the same boundary values and 
orientation as d. We therefore let 

Kin,(a) = (fE Def (!2) : (f-d) E Wb+(Q), f(Q) c d(R)). : 

the set of kinematically admissible deformations. 
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Remark 4.1. The constraint f(Q) c d(Q) is used in the proof of theorem 4.2, where 
a certain deformation is altered on a sphere in R. It seems to us a reasonable restriction 
on deformations that are allowed to complete for a minimum. This constraint may 
be a consequence of other conditions one might impose in order to insure that a 
function fEDef (a) corresponds to a reasonable physical notion of a deformation 
that has finite energy and satisfies the boundary condition f = d on 80. 

Let f E Kin,(Q) satisfy E(f, !2) < + cc. We say that f is a strong local minimizer (in 

W’xP(fi) n L”(R)) of the energy E provided that there is an E > 0 such that 

E(f, Q) < E(g, a) 

for every g E Kin,(o) that satisfies 

Ilf-gll.,,+ /If-glln.I,p < E. (4.2) 

THEOREM 4.2 (JAMES and SPECTOR, 199 1). Let f E Kind (0) be a strong local minimizer 
of E( *, Cl). Suppose that f is C’ in a neighborhood of x0 E R and let 

F,:=Vf(x,); f,,(x):=Fo(x-x,,)+f(x,),xER3. 

Assume that W(F,) < CO. Then for every regular region 9 c R3 

s W(F,) dx d W(F, + Vu(x)) dx 
4 

whenever f. + u E Kinr,(g). 

(4.3) 

In other words a necessary condition for f to be a strong local minimizer is that, at 
each point x0 of smoothness off, the affine deformation fo(x) = Vf(x,J(x-x0) +f(x,) 
is a global minimizer of the total energy of any body that is composed of the same 
material but is not subjected to body forces. 

Remark 4.3. Theorem 4.2 shows that the introduction of a new hole as a method 
of energy reduction is a local phenomenon ; that is, it is possible to introduce such a 
hole at any point in the body without changing the deformation outside of a small 
neighborhood of that point. (Of course when equilibrium solutions are considered the 
introduction of a new hole will cause changes in the solution at all points in the body.) 
We think that the introduction of new holes in incompressible bodies is global in 
nature since we expect that the total volume of the body should not change in an 
isochoric deformation (even if the deformation is only contained in W’l’) and hence 
the introduction of a new hole can only be achieved by allowing the boundary of the 
body to move. This fact makes a rigorous justification of a failure criterion such as 
GENT and LINDLEY’S (1958) difficult for incompressible materials. 

5. THE ENERCETICS OF FILAMENTARY VOIDS 

5.1. Constitutive assumptions 

The formation of filamentary voids is promoted by assumptions that limit the 
growth of the stored energy for large, nearly isochoric shears while at the same 
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time require fairly strong growth for large equibiaxial stretches. Also, we wish 
to differentiate the phenomenon of the formation of filamentary voids from the 
formation of spherical voids by being completely noncommittal about the behavior 
of the energy for dilatation. We will henceforth assume that the body is isotropic 
and write the stored energy 

cD(r../~.-j~) = cb(~)+cb(P)+~(~)+~(~/~)+~(~~~)+~(~~~) +x(xP:~)+A(z /).;I). (5.1) 

where $EC”(R>, R), (?i: R’ + R, x: Iw’ + R, and A: (R‘)‘ + R. The assumption 
(5.1) entails no restrictions on @ so far because A is arbitrary. 

Our main constitutive assumptions are : 

S1 St#iw.ss for ryuihickl-id .stwlcA. 

(a) * is convex. 
(b) $(/) + + x as I + + tx. 
(c) x is nondecreasing, 
(d) 4. $, and A are nonnegative. 

S2. Sofit7r.s.s for isoclzotk futnilics of’shcar. There are constants C/ E (0. 3) and c > 0 
and a .function /r E C”‘( R , R) such that 
(a) q5(t) < c.[t”+/ “1 for all t > 0, 
(b) $(t) ,< c[t”+ 11 for all t > 0. 
(c) A(~,~,~)~l7(r~~y)[l+r”+~‘+;“‘+(x~~)”’+(~~)”~+(~~~)“‘] for all x>O. 

/I > 0, and ;I > 0. 

The convexity of 11 together with the nonnegativity of 4, t/j, and A insure that the 
material is stiff for equibiaxial stretch ; i.e. that @(cc, j_. i) grows at least quadratically 
in iv. uniformly in x. for large I.. The upper bounds on $. $. and A insure that 
the material is soft for isochoric families of shear, i.e. that @(a, /I’. /i/x/I) grows 
subquadratically in x and /I for each I\ > 0. These upper bounds also insure that 
certain deformations. which open cylindrical holes in the material, have finite energy. 

Rctnurk 5. I. The subquadratic growth of@(x, /i, k/x/j) is necessary for the formation 
of essentially cylindrical holes as is evident from the work of BAL,L (1982) specialized 

to the case tt = 2. At the expense of complicating our proofs greatly, our results 
remain valid when the constant c in S2 is different on different lines and when the 

value of y E (0, 2) changes from term to term. 

The constitutive hypotheses Sl and S2 yield a comparison between the energy ot 

a certain triaxial stretch and the energy of a related biaxial stretch. 

LEMMA 5.2. Let 5’1 and S2 be satisfied. Suppose that x, i. F’, (1). and (I are real 
numbers that satisfy 

(5.2) 

Then 



Filamentary voids in solids 791 

Proof. If we evaluate 4D at the indicated arguments we find, with the aid of (5.1), 
(5.2),, Sl(c) and (d), and S2 that 

c 

k :zz 1 [ 

(P’)2q+A- 2”+o~+E,- 2v(r’/~)4{r’)4 
aYo”+2~-‘(r’)Y+C1Y(y’)24 1 

I 
. 

f h(oa/12) 
[ 

a-‘/(r’)“+(y’)2Y+gV+SIY~ -“(r’)Y+~Y~2(r’)Y 

+a4!2p2(r')3r/:2 +*Y!2~-Y’2r~~Y’2(v’)y:2 1 
The desired result then follows from (5.2) and the convexity of $, i.e. 

$qn’) 3 lj(on”) -t- nq 1 -w)ly(d2). 

5.2. For~natio~ of a c.vl~ndrica~ hole t~~oug~~ a plate 

Let I-‘ c R’ be a regular region with (0, 0) E I. Given L > 0 define 

9p”,:=rx(-_,L). (5.3) 

A plunr radial d<formation of the plate PpLI. is a deformation fcDef (,Pk,) that 

satisfies 

f(x) = r(R)e,(x)tax,e,, XEPPL~,R > 0, (5.4) 

for some c( > 0 and rf C”([w2, W”). Here R = (x: +x:)‘!~ and 

e&(x) := 
( 

(x,e, +xze2)lR, R > 0 

el, i R=O - (5.5)? 

the radial unit vector. The special plane radial deformation given by (5.4) with the 

choice 

r(R) = AR, A= constant > 0, 

is called an e4u~~iaxjffi stretch. 
Let R0 > 0 be su~ciently small so that 

((x,,x2):x:+x: < R;) c r. 

FixwE(0, l)anddefiner~C”(R’,R’)by 

r(R) := 
[wR’+(l --w)R;]“~, 0 < R < R, 

R, R0 < R . 

Then, for each 01> 0 and i, > 0, 

p;(x) = h(R)e,(x) +cIx3e3, x E9kL, 

(5.6) 

(5.7) 

t We have put eR(0) = e, in (5.5) so that f is well defined at R = 0. 
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is a plane radial deformation of .‘P’ , (cf. proposition 5.4) that satisfies the boundary 
condition 

p: = b: on ?T x [-L, L], 

where 

b:(x):= 2Re,<(x)+x.\.3eT (5.X) 

is the equibiaxial stretch associated with pf. The deformation p: opens a circular 
cylindrical hole of radius i.( 1 -(II) “’ R,, in the plate. The principal stretches of Vp: arc 
(in no special order) 

i., = k’(R), i, = h(R)/R, il = Y, (5.9) 

where prime denotes differentiation with respect to R. 
We now show that. for A sufficiently large, the deformation (of a material governed 

by SI and S2) that introduces a hole in the plate has less energy than the associated 
equibiaxial stretch. 

PROPOSITION 5.3. Let the stored energy satisfy constitutive hypotheses SI and S3. 
Let l/ > I and suppose that 6 : (I, 8x’) + (0, u) is such that both 

0 < inf [oi(j,)j.‘] and sup [i(j_)E.‘] < + X. 
/ ‘a I l, -. I 

(5.10) 

or 

sup h(CG(A)k?) < + ‘X 
; ‘. I (5.1 I) 

[cf. S2(c)]. Then there is a ;I,, > I and a K > 0. which are independent of d and f., 
such that 

[ W(Vp;(x)) - W(Vb;(x))] dx < -2~C:’ 

for all i > iv,,. Here pj is the plane radial deformation given by (5.7), with cx = g(A). 
and b:’ is the associated equibiaxial stretch given by (5.8). 

Proc?f: We first note that (5.10) and the continuity of h imply (5.1 I). Next, by (5.6), 
0 < r’(R) < (r, and r’(R) = toR/r(R) provided 0 < R < R,,. Thus (5.9) and lemma 5.2 
imply that for 0 < R < R(, 

W(Vp$) - W(Vb:) < 8uYj~‘W”(r/R)“[(,+h(wai.~)] -I.‘( I -o)$‘(tui2). (5.12) 

The definition (5.6) of r( - ) shows that 

(5.13) 

for q < 2, and hence that the function Ir(R)/RI y is integrable on .Jp’, [. Also, Sl (a) 
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and S2(b) imply that $‘(t) is positive and nondecreasing for large t. Thus, if we 
integrate (5.12) over SL, we conclude, with the aid of (5.11), that there are c, > 0 
and c2 > 0, which are independent of L and 1, such that 

s [I+‘(Vp$)- W(Vb;)] dx d 2L(c,JG~~1’). 
Jp’ L 

The desired result is now immediate since q < 2. 

5.3. Kinematic description of the caps 

The deformation p: of the preceding section opens a hole through a plate and 
reduces the total energy relative to the associated equibiaxial stretch. We intend to 
use a deformation like p; to show that the conclusion of theorem 4.2 is violated and 
therefore that any deformation that at some point has principal stretches 2, 1, and c( 
[with suitable assumptions on !X = &(A) and with 2 sufficiently large] is unstable. In 
particular this will sometimes occur outside a spherical cavity. At this point we cannot 
use p; for this purpose because it does not satisfy linear boundary conditions at 
xj = f L. The linear boundary conditions are essential for applying theorem 4.2. The 
problem is that the hole pierces the top and bottom of the plate. To circumvent this 
difficulty we shall, in this section, place cups on the ends of the holes. Eventually, we 
will find it necessary to make the void very long and thin (& << L) in order to take 
advantage of the energy reducing nature of the cylindrical void relative to the caps. 

Fix OE (0, 1) and let 0~ C”(R, R) be a bridging function with 

et> > 0, 1<t<2 

PROPOSITION 5.4. Fix CI > 0,1 > 0 and L > 0. Define 

c;(x):=Ar(R,x3)eR(x)+ax3e3, xEYif3, 

(5.14) 

(5.15) 

where 

r(R, z) := 
[fI(z-L)R2+(1-8(z-L))R2]“2 0 9 0 d R < Ro, 

R, R. > R. 
(5.16) 

Then, c; ~Def (Pk”), i.e. c; E W”p(9’i+3) n L”(9i+3) for 1 <p < 2 and c; is one- 
to-one. Moreover, if the stored energy function satisfies S2 then there is a K, > 0, 
which does not depend on L, such that 

s W(Vc;) dx 6 K,. (5.17) 
./if’ 

Proof. It is clear from (5.15) and (5.16) that c; is bounded and one-to-one. We 
claim that c; E W”p(.?P)::+3) with weak derivative 



(J; := i.r,e,~ @eR+i(r/R)e, Oc, +xe, 0 el+ir,e,~ 0 e3 i1.e.. (5.18) 

where I’,< and I’; are the cli~ssical partial derivatives of I* . and e,(x) := e, x e,<(x) is the 

tangential unit vector. To prove the above claim WC first show that CT E L”(.P$- ’ ‘f. 
If we syuarc both sides of (5.16). take the partial dcrivativcs. and syunrc the results 

WC find that for 0 < K <: R,, and L+ I < r < L+ 3 

(S.19) 

L’Hospital’s rule shows that 

Using the definition (5.14) of (1. we conclude that t’ ,< and I^. are bounded on ,ipf ‘. 

The argument leading to (5.13) can be repeated with w replaced by 0 and y replaced 
by p to show that Ir( R)/‘RI” is integrable on .Pi ’ ‘. It t-allows that C’ E L.“(.P’ ’ / , ‘). 

To show that C: is the weak derivative of cz, we Ict $EC‘,; (_P$ ’ ‘) and let 
%, = jXE& t x. .2 .t , i-.ut < 8:). Then, by (~5.14)~~(5.16) and the divergence theorem 

where (19. Q. .vI) arc the cylindrical coordinates of the point s. The functions I/I. c;, 
and e,< arc bounded on .Yi ’ ‘. Thus. if WC let x 4 0. in (5.10) and wx the ~j(~~l~ijl~~te~i 

convergence theorem. WC get 

which proves that Vc: = Cj’. 
WC now assume that the stored energy satisfies S2 and WC show that t: has finite 

total stored energy. The definition (-5.18) of C: yields 
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1”; = 1.2 T 2, 0 R 
1;,,-&(a2+a2r;+a2rf)+a2a2r; = 0. 

Hence 

and therefore 

i, = %(r/R), 

i2 = cd~rR/iJ, 

A3 = ~{[(~1S~.r~)~+~~rI_]‘~~+[(,+~r~)~+~~r_?]”~f. (5.22) 

We also note that 

By (5.1) and S2, there is a constant C > 0 such that 

Therefore, in order to prove that the deformation c; has finite total stored energy, we 
shall show that RA,(R, z)“, Ri,(R, z)-” and R(A,(R, z)l.,(R, z))~, are integrable on 

(0, R,) x (-L L+3). 
By (.5.22)3 I,, 3 CL Since also rR and rz are bounded on 9;’ ’ we find from 

(5.21) that AZ and A, are bounded on Ytf3. The argument above, which shows that 

C; E Lp(Yi+3), also shows that AT is integrable on 9i+3. Putting these facts 
together, we have established the integrability of 

@;&Y, j,k~{l,2,3},j# k. 

It remains to examine the integrability of 1 ry and A2 ‘I. We note that (5.14) and (5.16) 
imply that r(R, z) 3 oR which yields the integrability of I_iy. The integrability of 1, q 
follows from the identity 

and (5.13). Finally, it is clear from (5.15) and (5.16) that the total stored energy 
E(c3, 9;’ ‘) is independent of L. 
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5.4. Muin result 

We now use theorem 4.2 and propositions 5.3 and 5.4 to show that by introducing 
a filamentary void at a point xg E R of large equibiaxial stretch, we can reduce the 

energy. 

THEOREM 5.5. Let the stored energy 

and S2. Let u > I and suppose that 6: 

0 < ;inf; [oi(i)i’] 

or 

function @ satisfy constitutive hypotheses Sl 
(1, x) + (0, u) is such that both 

and sup [oi(j,)i.‘] < x 
/ .I 

sup h(i(i)A’) < ‘Y_ 
2, I 

[cf. S2(c)]. Let I.,, be as in proposition 5.3 and let f E Kin<,(R) be C’ in a neighborhood 
of x”ER. Suppose that f is a sufficiently large equibiaxial stretch at x,, up to a rigid 
rotation : for some unit vector e, some proper orthogonal tensor Q, and some A 3 &,. 

QVf(x,,) = j-1 + (i(A) - A)e 0 e. 

Then f is not a strong local minimizer of the total energy E( . , !2). 

Proqfl Suppose on the contrary that f is a strong local minimizer of E( *. 0). Then 
by theorem 4.2, we have that for every regular region 9 c B!‘. 

j 
W(Vf(x,,)) dx < 

s 
W(Vf(x,,) + Vu(x)) dx (5.23) 

‘, ‘, 

whenever f, + u E Kinrlj(Y). Here 

f,,(x) := f(x,,)+Vf(x,,)(x-x,,), XE 9. 

However, we can apply proposition 5.3 to show that for any L > 0 and any j_ 3 i,, 

/_ 
[ W(Vp:) - W(QVf(x,,))] dx < - 2~LA” (5.24) 

. ,F” , 

where pr is defined by (5.7) with R0 fixed and k’ is independent of i. and L. Note that 
Q’p; cannot be used as a competitor in (5.23) because it does not satisfy the linear 
boundary conditions. We put “caps” on Q“py by defining for each L > 0 the function 
f’ : :P?;_~?~ + IR’ by 

i 

Q'c;(x,,x,,s,), L < .Yyj < L+3, 

fL(x) = Q’pf(x,. x:,.x <), -L < .Yj < L. 

Q’c’;(s,, .x2, -x3), -L-3 < .I-; < -L, 

[cf. (5.3), (5.5). (5.7), (5.14)-(5.16)]. Here, x,, ,x1, _ xi are components relative to the 
basis e,, e2, e3 = e. It is clear from propositions 5.3 and 5.4 that f’,EDef (9”:’ 3) 
and fL(x) = Vf(x,)x, x~k?P’:?,. Therefore, if we define uL(x) := f’-(x) -Vf(x,,)x, 
XEYLT,j I, then f,, +uL E Kin (Y’,+ ’ f,, i , 3). 
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We now combine (3.1), (5.24), and proposition 5.4 to conclude that 

s 
[ W(Vf(x,) + Vd(x)) - W(Vf(x,))] dx d 2K, -2d’L, (5.25) 

,y_+ 3 I. 3 

with K, and K independent of L. For L sufficiently large (5.25) contradicts (5.23). 

Remark 5.6. In the proof of theorem 5.5 we have fixed R, and we have let L + co 
in order to take advantage of the energy reducing nature of the cylindrical deformation 
relative to the caps. At the expense of a slightly more complicated argument, we could 
have fixed L and let R,, -+ 0. The important point is that the void must be very long 
and thin to force it to be energy reducing, which motivates the term “filamentary 
void”. 

Remark 5.7. Our construction of the filamentary void shows that the conclusions 
of theorem 5.5 are valid for certain anisotropic materials. The crucial assumptions 
are : that the material at the point x0 is transversely isotropic in the plane perpendicular 
to e, and that the stored energy function W satisfies both 

(i) (UJ4 
ifk 1 

for every FE Lin’ and some q E (0,2) and c : UT?’ + E-8, and 

(ii) W(F) = ~(a)+~(B)+~*(~)+~(aB)+~*(cr~)+~*(B~)+x(ctBy)+A(cc,B,y) 

whenever c(, /?, y are the eigenvalues of FFT, FFTe = y*e, and C#J, 1,9, x, and A satisfy 
Sl and S2. 

Our description of the filamentary void as well as our proof of its energy reducing 
property appears to require that the underlying smooth deformation be an equibiaxial 
stretch at the point where the void is to be inserted. This requirement is not essential, 
but was made to simplify both the analysis and the conceptual description of our 
results. In a more general deformation it is possible to achieve a reduction of energy 
by introducing a filamentary void with elliptical cross section. More precisely, given 
0 < CI < 2, d &, let 

g(x):=A,x,e, +A2x2e2+crx3e3, 

f(x) = r(R)e,(x) +x3e3, R = (xf +x:) I’*, (5.26) 

be deformations of the plate .!??I, [cf. (5.3)], where r is given by (5.6) and eR is the 
radial unit vector [cf. (5.5)]. Then g E Def (PkL), go f E Def (P’LL), and (go f)(x) = g(x) 
for x: +,xs 3 Ri. 

Let x0 E 9”LL, x0 x e3 # 0, and denote the principal stretches of V(go f)(x,) by v ,, 
v?, and v3. Then it is not difficult to show that 

A,r’ < v, < l,r/R, v3 = ct, 

A.,r’ < v2 < &r/R, vlvz = w;1,A2, (5.27) 

and hence that (cf. lemma 5.2) 



WW(g f)(x,,)) - W(Vg(x,,)) G 
8U”i%(/.‘) “(C+/7(OJctn,~~2)) -i,;.:(l -,!J)li/‘(CfJ~.,~.2) 1 ’ 

(5.7X) 
provided I < u. x E (0, u), and IL, E [(I ‘. i2]. 

The energy reduction achieved by the introduction of the filamentary void g f is 
now clear from (5.28). For example if WC let i., = 2. I., . = i:i. for some i: E (0, I] and 
suppose that h(tuaC’) is bounded uniformly in i_ for j. > I then the right-hand side 
of (5.28) will be negative for sufficiently large i.. 

Finally, a computation similar to that done in the proof of proposition 5.4 sho~vs 

that the “cap” g c i is contained in Def (.P$-’ ‘) and has finite total stored energy that 
is independent of L. Thus we arrive at the following result. 

THEORN 5.X. Let the stored energy function ct, satisfy constitutivc hypotheses SI 
and S2. Let (I > I. r,, E (0, I], and suppose that i : ( I. x ) + (0. N) is such that both 

0 < inf [G(j.)/l.‘] and ;uy [g(;_)i.‘] < + % 
/ .I 

“lq /Z(Li(i)i’) < + / (5.29) 

d’,.,, 11 

Then thcrc is a j_” > I such that any fE Kin,,(R) that satisfies property LS given belo\% 
is not a strong local minimizer of the total energy E( * 1 Cl). 

(LS) /’ is C’ ’ in a neighborhood of :I point x,, E R where the principal stretches i , . 
/,?. and i, of Vf(x,,) satisfy 

i., 3 i*. i, 15 [r:,,). , , L ,I. 7. 1 = i(i). 

Rcnz~h- 5.9. If/z is convex then hypothesis (5.29) is equivalent to (5. I I ). 

6. AN APPLKATION. INSTARIUTY OF RAIIIAI MINI~VIZERS 

BALL. (1982) considered the problem of minimiring the total cncrgy of ;I ball 
con~poscd of a l~omogencous, isotropic. comprcssiblc hyperelastic material among 
those deformations that are radial. orientation preserving. and satisfy given dis- 

placement or traction conditions on the boundary. In particular Ball shnwcd that 
when the load on the boundary is sutficiently large. the global radial minimizer of the 
energy will exhibit ;I spherical hole at its center for a large class of stored cncrg): 
functions. 

Motivated by Ball’s work others have shown that both radial minimizers and radial 
solutions of the equilibrium equations can exhibit spherical cavities under a wide 
range of constitutivc hypotheses. However. it is still not known whether the minimiycr 
of the energy among radial deformations is a global minimiTcr of the energy. 

Although it may be true that the radial minimizer is indeed a global minimi/cr fat 
many stored energy functions, we show in this section that ;I radial deformation that 
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exhibits cavitation cannot be a global minimizer of the energy for materials that satisfy 
constitutive hypotheses Sl and S2 of Section 5. We also show that the constitutive 
hypotheses of SIVALOGANATHAN (1986a) and STUART (1985) include some polyconvex 
materials satisfying Sl and S2. Hence, for these materials the radial solutions that 
exhibit cavitation are not global minimizers of the total energy. 

We now assume that the body in its reference configuration occupies the ball of 
radius PO 

%?:= {XEP?; 1x1 < P”}. 

A radial deformation of &I is a deformation f E Def (B) that satisfies 

qx) = df?x, p = 1x1 # 0, (6.1) 

for some p: [0, P,] + R. We say that a radial deformation is smooth provided 
that p~C’([0, P,], R) n C’((0, P,,), R). A radial deformation will exhibit cavitation 

provided that 

0 < P(O) = &J+ p(P). (6.2) 

LEMMA 6.1 (BALL, 1982, p. 566). Let f: 29 + R3 satisfy (6.1). Then fE W’,y(&?) if 
and only if p is absolutely continuous on every closed subinterval of (0, P,) and 

~~[ip(P)i’+~~~I]P:dP< +co. 

In this case the weak derivatives off are given by 

(6.3) 

(6.4) 

and hence the principal stretches are given by 

It follows from (6.4) that det F’f(x) = p(P)p’(P)/P’ a.e. XE~. Thus we will call a 
smooth radial deformation orientation preserving provided that 

p(P) > 0 for every P > 0. (6.5) 

We next note that by (6.4) almost every x E .@ in a radial deformation experiences 
an equibiaxial stretch. In addition, in radial deformations that exhibit cavitation this 
stretch becomes infinite at the center of the ball. The following result is therefore a 
consequence of theorem 5.5. 
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THEOREM 6.2. Let the stored energy satisfy constitutive hypotheses SI and S2. 
Suppose that f E Def (9) is a smooth, orientation preserving;! radial deformation that 
exhibits cavitation. If there is a sequence of radii P, + O+ such that 

or 

then f is not a strong local minimizer of the total energy E( * . M) 

(6.6) 

Proof: Equations (6.2) and (6.5) show that (6.6) implies ii + 0 as i+ K, 
Therefore (6.6) implies (6.7) and so we consider assumption (6.7) only. By (6.2) 
p(P)/P + + CTJ as P--t 0’ and hence there is a subsequence P: + 0’ of j P>) such that 

P; / , < P:. 

P(P:, I ,;P:+ I > p(P:),‘P:. (6.X) 

Let 

0 := I + sup p( PI). I‘, :=p(P’,)p(P’,)‘:(P’,)’ 

and define & : ( I. SY, ) --f (0. u) by 

#G(i) := 
P(C) if j_ = p(P:)iPi 

1-,/A‘ otherwise 

Then by (6.8) i is well defined and using (6.9) we find that 

(6.9) 

‘Therefore, by theorem 5.5 f is not a strong local minimizer. 

We will next replace (6.6) or (6.7) by an alternative physical assumption. which can 
be more easily adapted to the analyses found in the literature. In particular, in order 
for a radial deformation that creates a hole to be at equilibrium WC would expect, in 

the case of a vacuous hole, that there there are no radial forces on the surface of the 
hole. More precisely. let fEDef(.l) be a smooth radial deformation that exhibits 
cavitation. If f is the global minimizer of the energy then BALI. (1982) and SIVA- 
LWANATHAN (1986a) have shown, under various constitutive hypotheses, that the 
radial component of the Cauchy stress is zero on the surface of the cavity. In order 
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to allow for cavities with contents? we will make the slightly more general assumption 
that the radial component of the Cauchy stress is bounded as one approaches the 

surface of the cavity. 
We now consider a class of stored energy functions for which we are able to deduce 

the conditions (6.7) from the aforementioned bound on the radial component of the 
Cauchy stress at the surface of the cavity. This class of stored energy functions satisfies 
our Sl and S2 and at the same time can be further restricted to satisfy the constitutive 
hypotheses of other authors. We assume 

Q(4 BY Y) = 4(x) + $(B) +4(y) + $(aB) + NV) + $(BY) + &@Y) 

where 4, $, and 6 are C’, nonnegative and satisfy 

Cl. 4 is convex and 4(t) < c[P + t --‘I ; 
G2. $ is convex, lim, _ r $(t) = + co, and $(t) d c[t’+ 11; 
G3. s’(t) + + cc as t + + co ; 

for some c > 0, q E [ 1, 2), r E (0, 2), and SE [l, 2). For such a material the radial 
component of the Cauchy stress in a radial deformation is given by 

T(P):=P-‘X-TX = $#+)+~I//' pp +6 ppT (J) I( J2), (6.11) 

for PE (0, PO). 

THEOREM 6.3. Let the stored energy satisfy constitutive hypotheses Cl-G3. Suppose 
that fEDef (9#) is a smooth, orientation preserving radial deformation that exhibits 
cavitation and for which 

lim sup IT(P)1 < +a. 
p-o+ 

Then f is not a strong local minimizer of the total energy E( * ,a). 

(6.12) 

Proof. By G3 there is a z > 0 such that s’(t) > 0 for all t > r. Define 

i 

0, o<t<z 

x(f) := d(t) -6(T), T < t < m}7 h(t):= {lit:;: p:I’::j- 
Then it is clear that Cl-G3 imply that Sl and S2 are satisfied. We show that (6.12) 
together with Cl-G3 imply that (6.7) is also satisfied so that the desired result follows 
from theorem 6.2. 

Let f E Def (%I’> be a smooth orientation preserving radial deformation that exhibits 
cavitation and for which (6.12) is satisfied. Then it is clear from (6.2), (6.1 l), (6.12), 
and Cl-G3 that 

t We note that GENT and TOMPKINS (I 969a, b) have studied the creation of holes in an unloaded material 
that has been subject to high pressure over a long period of time. They modified criterion (1. I) to account 
for a pressure in the hole equal to the pressure that was imposed. 
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p(P)-,O+ as P+O’. 

If there is a sequence of radii P, + O+ such that 

(6.13) 

then we are done since h(v(P,)) is uniformly bounded. Thus we only riced to consider 
the case 

l.(P) + 0 as P+O’. (6.14) 

WC claim that, given (6.14), equations (6.12), (6.13), Gl and G2 imply that the 
constitutive function ci must satisfy 

lim inf d’(r) > ~ of,. (6.15) 
i to 

If not. (6.14) and the continuity of I’ yield a sequence P: ---f 0’ such that 

(6.16) 

However, (6.14) and the continuity ofp and p imply that 

P(P) --j 0 I (l(P) := P(P) p a s P + 0 + 

and hence we conclude, with the aid of(6. I3), GI and G2, that 4’(fi( P:)) and I)‘(o( P;)) 
are uniformly bounded. These uniform bounds and (6.16) contradict (6.12), i.e. fol 
this sequence T(P:) + - wJ. Therefore (6.15) must hold. 

Finally, we note that (6.15) yields for 0 < .Y < 0 and (T sufkiently small 

0 < ri(.s) = 6(a)+ -ii’(t) dr < G(a)+X-(o-x). 

which shows that (6.7)1 is satisfied 

Before stating our final theorem, we quote a result of SIVALOGANATHAN (1986;~) 
which establishes the existence of radial minimizers that open a hole. 

PR~PCXITI~N 6.4 (SIVALOGANANTHAN. 1986a). Suppose the stored energy function 

@EC“((IJX~)“) satisfies @_,(l,l,l) = 0 as well as the following constitutive hypotheses 
[in the notation of SIVALOGANATHAN (1986a)] 

HI. CD,, , (E.,, I.,. A,) > 0. 
H2. (~“,~,,(i,,~~2.~.1)-;1,~.,(3.,,~~,,E.l))i(~,-~~,) >O,A, #i.,. 
H.5. @, , (A, u, u) + ( + x ; - tx ) asi+ (+“u;Oj forfixeduE(O,r_). 

H7. (~,.,(~,,i2r~~j)~~,,(~,,~lri~))/(~r-~~,)+~),r,(~~,,3.~,~~) 3 Ofori., # j.,. 
H9. (i_‘i(i.‘-I)‘)~(l”~‘,j.,i.)EL’(6. -/-) forSE(l,z). 
HIO. There are constants k, M > 0 such that (O(n. A. /_)/ik7) 3 n/r for iL 2 k. 

El. @(I.,, k2, EL3) 3 C,‘_ , W(i,) where 
(i) Y EC”((O, x), (0. 33)). 
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(ii) Y(i)/A -+ + co as J + + co, 
(iii) Y(n) + + cc as 2 -+ O+. 

E2. There exist constants M, s0 E (0, co) such that 

I~,I(1,,c12~2,a3~3)~,1 < M(@(1,,&,A,)+l) if ]a,-1) <so, i = 2,3. 

Then 

803 

attains its infimum on the set 

Al:= (pi W’,‘(O, l):p(l) = &p > 0 a.e., p(O) b Oj. 

If pi EA;_ is an absolute minimizer of Z on Ai then pn E C’([O, 11) n C*((O, l]), and pa 
satisfies the corresponding Euler-Lagrange equation. Moreover, there is a i. > 0 
such that, for all 2 > Lo, pn exhibits cavitation and 

lim T(P) = 0, 
P+Of 

where T is the radial component of the Cauchy stress in the radial deformation pl. 

Remurk 6.5. For PO = 1 lemma 6.1 implies that for any radial deformation 
f(x) = [p(P)/P]x, P = Ix/. with finite stored energy, 

s W(Vf(x)) dx = 4711(p). 
J 

Therefore proposition 6.4 establishes the existence of a radial minimizer. 

Remark 6.6. A difficulty with the application of proposition 6.4 to our constitutive 
hypotheses is that the natural choice of Y in El is our 4. However, if we put 
Y = 4, the condition El(iii) would violate simple known sufficient conditions for 
polyconvexity (cf. BALL, 1977), these conditions being that 4 and $ are convex and 
increasing and 6 is convex. We would clearly like to include many polyconvex and 
therefore elliptic stored energy functions in our hypotheses. For this purpose we note 
that proposition 6.4 remains valid when El is replaced by the following hypotheses : 

El’. @(~,B,Y) 3 ~(CO+~(P)+~(Y>+~(~B>+~(B~)>+~(~Y>+~(~BY), 
where 4, $ and 6 belong to C”(lR’, Ra) and satisfy 

(i) lim,, _ O+ 6(u) = lim,. _ + r [6(0)/v] = + cc ; 

(4 lim, + + z 4(A) = +a or lit-n,,,, $(5) = +co. 

To see that this is true, we note that El is only used in the proof of proposition 6.4 
at one place, i.e. in SIVALOGANATHAN’S (1986a) proof of his proposition 4.1 which 
establishes the existence of minimizers of Z(p) in Al. An alternate proof of existence 
is given by BALL (1982, theorem 7.1) which can be easily adapted to the hypotheses 
El’ and Hl. 
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Finally, we use proposition 6.4 and theorem 6.3 to obtain a class of stored energy 
functions for which the radial minimizer is not a local minimizer among general 
deformations. 

THEOREM 6.7. Suppose that the stored energy function is given by 

@(% B, Y) = &a) + $W) +&1/) + ll/(@B) + VW?) + $(V) + 6(&), (6.19) 

where 4, $, and 6 are C ‘, nonnegative and satisfy Gl, G2. and G3 with c > 0, q E [I, 2). 
r E (0,3/2), s E [ 1,3/2). In addition, assume that @,,( I. 1, I) = 0 and 

G4. [@‘(r)] 3 0, 
I rqi’(ctr)l < c.[&t) + l] whenever ICI ~ 11 < c ’ I ’ 

G5. [r$‘(t)]’ 3 0, 

lt~,V(crt)l d c[t,b(t)+ I] whenever Ia- II < c’ ’ ; I 

G6. 6”(r) > O,lim,_, ,,+ 6(r) = + #y_‘. 
lr6’(~(t)l < c[s(t)+ I] whenever Ix- II < c ’ I 

Then there is a i, > 0 such that for j. > & the infimum of 

on the set Aj := {pi W’.‘(O, I): p(l) = i, p > 0 a.e., l)(O) > 0) is attained by a 

function p, EAT, and [)I, exhibits cavitation. However, the radial deformation 
f, E Def (a), d:= (x : 1x1 < I), defined by 

f,(x) := L’i;) x. P= /XI < I. (6.20) 

is not a strong local minimizer of the total energy E( * , ~3) on the set of Kin,(&) where 
d(x) = Ax, x E .g. 

Remark 6.8. A simple class of stored energy functions that satisfies the hypotheses 
of theorem 6.7 is given by 

o)(a,B,r) = ~,(a”+BY+~~9)+C?((CIB)‘+(BY)“+(Y~)’) 

where C, 30, c,>O, i=2, 3, 4, qE[1,2), s~[1,3/2), /~(l,r~). nr~(0,~) and 
c’< = mc-Ic,-sc,- _ yc,. [The term c~~x/I~/ is a null Lagrangian and is included so 
that Q satisfies the condition Q,,(l,l,l) = 0.1 The function (6.21) with the restrictions 
listed above is also polyconvex, quasiconvex [but not W ‘,“-quasiconvex for 1 < p < 3 
(see JAMES and SPECTOR. 1991)] and rank-one convex (cf. remark 6.6). 

Proof’ of’ Theorem 6.7. To prove this theorem it is sufficient to show that a function 
(PEC’~((~W>)~) of the form (6.19) satisfying Gl-G6 with qE[l,2), rE(O,3/2) and 
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SE [l, 3/2) necessarily satisfies Sivaloganathan’s hypotheses Hl, H2, H5, H7, H9, 

HlO, E2, and either El or El’. If so, then by theorem 6.3 fl is not a strong local 
minimizer, whereas by proposition 6.4 there is a pn E AI which minimizes I( *) on AA, 

and for A > lopA exhibits cavitation. 
Assume Gl-G6 are satisfied by @ having the form (6.19) with 4, $, and 6 in C 3 (II%‘, 

R’). By Gl, G2, and G6 we have 4” 2 0, I+V’ 2 0, 8” > 0. Hence, Hl is satisfied. The 
condition H2 applied to a function of the form (6.19) becomes 

(6.22) 

for 1*, # & and k # i, k fj. Clearly, G4 and G5 imply (6.22) and therefore H2. By 

(6.19) 

@,, (A, a, a) = #(A) + 2al+V(lla) +a26’@22). 

Thus since 4 and $ are convex and nonnegative G3 implies that the first part of H5 
holds. The second part of H5 follows from the convexity of 4, II/, and 6 together with 
G62. The condition H7 applied to (6.19) becomes 

(6.23) 

forA, # lb, and k # i, k fj. Thus the conditions 4” 3 0, $I’ > 0, and 8’ 3 0 imply 
(6.23) and therefore H7. Sufficient conditions for H9 are 

(6.24) 

However Gl with qE [l, 2) and r E (0,3/2) implies (6.24) ,,=, while G2 with SE [1,3/2) 
implies (6.24),,,. The conditions 6” > 0 (from G7) and 8(t) + + cc as t + + cc (from 
G3) and the nonnegativity of 4 and $ imply HlO. Recalling remark 6.6, we verify El’ 
rather than El. Clearly, G2 implies El (ilJr while the convexity of 6 yields 

(6.25) 

We divide (6.25) by t and let t + + cc ; it then follows from G3 that El;i, is satisfied, 
completing the verification of El’. Finally, E2 follows from G4,, G52, G63, the triangle 
inequality, and the fact that 4 and II/ are nonnegative. 
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Remurk 6.9. STUART (1985) gives existence theorems for radial equilibrium solutions 
with cavities under constitutive hypotheses that differ from those of Sivaloganathan. 
Stuart does not examine the stability of his solutions but he does compare the energy 
of the homogeneous deformation h(x) = j-x. XE.&. with the energy of solutions f, 
that exhibit cavitation and satisfy f,(x) = ix, x E (:.a. He also gives similar results fol 
boundary conditions of pressure and dead loading, which we do not discuss here. In 
our terminology his existence theorem states that under his constitutive hypotheses 
A 1 A7 (discussed below) there is a radial deformation f,(x) = [p, (P)iP]x that satisfies 

0, E (‘“([O. I]) n CJ((O, I)). 

,0,( I ) = i. > 0. 11: > 0 on (0. I ). (6.26) 

[P’Q., (p;(P).p)(P);‘P,p,(P),‘P)]’ = 2P~.2(p:(P)./,,(P)i’P.y,(P);‘P). 

Furthermore, he shows that there is j.,, > 0 such that for 0 < 2 < P.,, 

/J,(P) = P,P. (6.27) 

while for /_ > I.,, there are exactly two solutions of (6.26). one given by (6.27) and the 
other of which exhibits cavitation and satisfies T(P) + 0 as P + 0. Here. T(P) is the 
radial component of the Cauchy stress defined by (6. I I ). 

Thus, according to theorem 6.3 Stuart’s equilibrium solutions will be unstable 
relative to the formation of filamentary voids in the case where the stored energy 
function satisfies both his Al A7 and our 5’1 and S2. A relatively easy special cast 
to work out is the case of a function @(s[,/j,;‘) of the form (6.19) with 4. $. 6 in 
(“((0, x)) and satisfying GI, CT -, and G3 with c > 0, I’ = 0. I/E [I. 3), and .YE (I. $2). 
A lengthy computation shows that this stored energy function also satisfies Stuart’s 
Al A7if 

./I. (i,’ 3 0. (i,” 3 0. 
cl,‘(t) < A+Bt’. 
tcb”( 1) < A + Rt’ , 

n. I/b’ 2 0, I/?” > 0 
Q”(t) < A + Bt” . 

.13. d”(t) > ii,, > 0. 
h’(t) < -/ct. 0 < t < t,,. 

[or some constants ;I > 0. B > 0. I‘E (0. 2). II‘E (0, l/2), and I,, > 0. A simple function 
satisfying all the hypotheses is given by (6.21) with .Y > I. / > 2. and the qualifications 
listed there. Note that for the function (6.21) Sivaloganathan’s constitutive hypotheses 
are also satisfied so that in this case the cavitating equilibrium solutions found by 
Stuart are also radial minimizers. 

7. THE FILAMENTARY Vorr) ANI CRAZEIN<; IN GLASSY POLYMERS 

WC have shown that under appropriate constitutive hypotheses, a deformation 

of il material that at some point has principal stretches i.. j., z(i) with 
0 < (‘, < L’x(i) < i” and 2 sufficiently large is unstable relative to the formation 01 
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a filamentary void. These constitutive hypotheses embody the idea that the material 
is stiff for large equibiaxial stretches and is soft for a certain isochoric family of shear 

deformations. The generalization of our results given at the end of Section 5 shows 
that a similar instability involving the formation of a filamentary void with elliptical 
cross-section is possible with principal stretches 

;I, = k,l. 

A2 = k,l , 

I 

k, > O,kz > 0,O < c, < A2cQ) < c2 

%i = a(A) 

and with 2 sufficiently large. The void is termed a filamentary void because our 
methods require that it be made long and thin in order that the energy reducing nature 
of the essentially cylindrical deformation compensates for the energy excess in the tip 
region. Our hypotheses that promote the formation of filamentary voids as I* -+ + co 
place no restriction on the dilatational behavior of the stored energy ; h in S2 is an 

assignable function. 
The geometry of the filamentary void suggests a possible connection with the 

phenomenon of crazing in polymers such as polystyrene (low molecular weight), 
polycarbonate, and polymethyl methacrylate. In this section we present some quali- 
tative evidence both for and against this connection. 

Many authors who have studied crazing have interpreted it in terms of a material 
instability. That is, it is found to be an instability that occurs when certain conditions 
on stress, strain, and temperature are met locally and is independent of the nature of 
the loading device or the boundary conditions, unlike a buckling instability or the 
Treloar instability (see, for example, CHEN, 1987). This is especially clear from work 

by DEKKER and HEIKENS (1983) who compare a variety of crazing criteria to tensile 
experiments on polystyrene containing either well or poorly adhering glass beads. The 
adherence of the beads does not directly affect their criteria although it drastically 
changes the local stress distribution. Our treatment of filamentary voids similarly 
treats them as material instabilities, this idea being directly embodied in theorem 4.2. 

An early and influential treatment of crazing was given by STERNSTEIN et al. (1968) 
and later modified by STERNSTEIN and ONGCHIN (1969). They drilled I/ 16” holes in 
l/2” x 2” x l/3 1 u strips of polymethyl methacrylate and pulled them in tension. Crazes 
appeared in the specimen in regions adjacent to the hole; the crazes assumed curvi- 
linear trajectories beginning at the surface of the hole. Most of the crazes occurred in 
two symmetric regions that were near poles of the hole that were connected by a 
diameter that was perpendicular to the tensile axis. STERNSTEIN et al. (1968) observed 
both the direction of the crazes and the shape of the region of predominantly crazed 
material. To arrive at a criterion for crazing, they calculated a linear elastic solution 
for the stress field near a hole in an infinite plate pulled in tension. They found 
that the individual crazes pointed in the direction of the principal axis of stress 

corresponding to the minimum principal stress, while the first formation of a craze 
was governed by the v&e of the maximum principal stress c,. They also inferred 
from the absence of crazing in compression that conditions of dilatation [tr T > 0, cf. 
(3. l)] were necessary for craze formation. It is clear from their principal stress contours 
that various other criteria besides c, = ocrit would also fit the shape of the crazed 
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zone; later STERNSTEIN and ONWHIN (1969) formulated a craze criterion based on 
tr T := 0, + (T? + G? and the stress bias 0, ~ oz. Here o3 < CJ? < 0, represent the principal 
Cauchy stresses. STERNS-MN cl N/. ( 1968) also state “. [T]he craze always propagates 
transverse to the major principal stress vector, thereby maximizing the spreading 
stress on the tip of the craze. .The requirement that the formation of a craze 
necessitates an anisotropic driving force is stated by eq. (15) [a, # IT?. CJ # a,].” 
These remarks and our calculation seem to reflect a similar point of view. 

DEKUK and HEIWNS (1983) also compare various crazing criteria to results of 
their experiments on IO ’ m glass beads embedded in polystyrene. They lind that 
either a criterion for the maximum principal stress or the dilatation (I, +i2 +i?) can 
match their experimental results; they do not examine the stress-bias criterion of 
STERNSTEIN and ONGCHIN, nor do they compare principal stress axe3 with the tra- 
.jectories of the crazes. The idea that dilatation alone is a criterion for crazing seems 
to us to be inconsistent with the ideas of STERNSTEIN it (11. (1969) quoted above. and 
also does not relate very well to our calculation. as discussed below. 

In recent years a great deal of information on the microstructure of crazes has 
emerged, as presented for example in the review article by KRAMER (1983). It is found 
that the crazes observed for example by STERNSTEIN CI rd. (1969) and DEKKER and 
HEIKENS (1983) consist of thin bands of fibrous material with the fibers lying in a 

direction perpendicular to the band. As pictured by KRAMER (1983. Fig. 2~). a craze 
in its early stages of formation consists of many small filamentary voids. A striking 
photograph of these voids is shown by DONALD et al. ( 198 I, Fig. 1 c). Once a craze 
band is established, a meniscus instability similar to the SaffmanPTaylor instability is 
regarded as a mechanism for the advance of the craze tip. This mechanism is baaed 
on surface energy considerations at the craze tip and contains no bulk energy con- 
tribution of the polymer; in the analysis the polymer is modelled as a non-Newtonian 
fluid. It would be interesting to investigate whether this theory has a Lyapunol. 
function bearing some relation to our nonlinear elastic energy. 

GENT (1970) proposes a rather different criterion for crazing. Noting that crazing 
only occurs in glassy polymers that are capable of transformation to the rubbery 
state, he proposes a tnechanism whereby the material at a stress concentration first 
experiences a stress-induced phase transformation and then undergoes cavitation. 
Using his criterion for (spherical) cavitation [Eq. (I. I)] in the rubbery region. he then 
is able to account for the effect of pressure, preorientation and the presence of craze 
inducing liquids and vapors on crazing. The agreement between his theory and 
experiment. covering several very different physical phenomena, cannot be ignored. 
However. his cavitation criterion for the rubbery region could be replaced by a 
criterion for the formation of a filamentary void, rather than a spherical one. 

The idea that the material undergoes a stress-induced phase transformation at a 
flaw could easily be built into a stored energy function. For example. stored energy 
functions that exhibit martensitic and other structural phase transformations have 
been studied by ERICKSEN (1988), JAMES (1986) and many others. In these studies, 
calcul>rions of the effect of stress on transformation temperature are in excellent 
agreement with experiment. The hypotheses on the stored energy function Q(F, T) 
needed to cause a stress-induced phase transformation do not contradict our 
hypotheses Sl and S2, which promote the formation of a filamentary void. Thus, 
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a single stored energy function could be defined that necessarily gives a stress-induced 
phase transformation at an appropriate flaw and that also promotes void formation 
in the transformed zone, although at this time we would be more inclined to search 
for the possibility of a filamentary void in this zone. 

Indirect support for both Gent’s hypothesis and the use of thermoelastic energy 
functions comes from recent work of PLUMMER and DONALD 1989a, b). They show 
that in some polymers that exhibit high entanglement density and low molecular 
weight (such as polycarbonate) crazes will heal. That is, upon heating the crazed 
material to above the glass transition, the crazes diappear in the optical microscope 
and the material recovers its original material properties. It should be mentioned that 
high molecular weight polystyrene, for example, heals only after very long heat 
treatments and may undergo chain scission, suggesting that rather different models 
may be appropriate. For this reason we chose to discuss PMMA, PC and low 
molecular weight PS in this section. 

Several studies (DONALD and KRAMER, 1982 ; DEKKERS and HEIKENS, 1985 ; 
DONALD, 1985 ; PLUMMER and DONALD, 1989a, b) have focussed on the competition 
between crazing and shear yielding in polycarbonate, polystyrene, and polyphenylene 
oxide. Presumably a stored energy function could be defined that exhibited both the 
formation of filamentary voids and shear bands, the latter being a material instability 
associated with a loss of ellipticity of the stored energy function.? Such a competition 
does not seem to be inconsistent with Gent’s hypotheses, since many of the energy 
function appropriate for materials that undergo stress-induced phase transformations 
in fact lose ellipticity at some deformation gradient. 

Although the filamentary void forming deformation is not in general an energy 
minimizer, it is interesting to determine the energy reduction per unit volume achieved 
by different distributions of filamentary voids. In order to obtain more energy 
reduction it is clear that one should use as little cap (see Section 5.3) as possible, since 
there is an energy penalty proportional to the volume of the cap for each one used. 
More precisely, suppose that the unit cube is subject to a pure stretch with principal 
stretches [I., I_, &(A)] with 2 b 2, (see proposition 5.3). The deformation fL used in 
theorem 5.5 creates a filamentary void with domain 

O< R < Ro, -@+3) < xj < L+3, 

and achieves an energy reduction 

AE, < 2(K, -&‘L), 

where K, and IC are independent of L. If we scale fL using the usual scaling laws of 
nonlinear elasticity, we find that the deformation f;(x) := ;tfL(p- ‘x) occupies the 
domain 

O< R <pR,,, -&+3) < x3 -=c p(Lf3) 

and achieves an energy reduction 

t Analyses of the formation of shear bands in nonlinear elasticity due to a loss of ellipticity are given by 
many authors, see e.g. KNOWLES and STERNBERG (1978), ABEYARATNE (1980). 
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AE,, < 2p’(K, -h.j:‘L). 

Thus, in order to insert a periodic array of II x II filamentary voids in the unit cube we 

set /1:= (2nRo) ’ and L := nR,, ~- 3 to achieve the energy reduction 

n’AE ,:,,,<,,, 1 < 2r?(2rzR,,) ‘(K, -IC~“(~R,,-4)) 

I K, + 3k.i” 

= 4R:, 
- h-j,” R 

I1 
(7.1) 

which shows that many filamentary voids lowers the energy more than a few voids 
occupying the same volume. This should be contrasted with a similar calculation due 
to BALL (private communication; see also BALL and MURAT, 1984, proposition 3.3) 
which shows that a single spherical void at the center of a ball gives the same energy 
reduction as a ball filled with small spherical voids. The reason for this is due to the 
caps which scale differently than the cylindrical holes and which are regions of excess 
energy. The inclusion of surface energy proportional to the area of the new surface 
formed would contribute a positive term proportional to II to the right-hand side of 
(7.1) and therefore would mediate against the formation of infinitely many voids. It 
is interesting (but perhaps misleading) to note that crazes often consist of bands 
containing many fine parallel voids. 

An unsatisfactory aspect of the present analysis is that the behavior of the material 
appears to be crucially dependent on the growth of the stored energy function for 
arbitrarily large stretches and this growth can never be directly examined cxperi- 
mentally. (This point is also discussed BALL, 1982.) This feature is really a defect ol 
the analysis. That is, it is extremely likely that all materials satisfy “slow” growth 
hypotheses for large stretches and therefore permit the formation of various kind of 
spherical. elliptical, and filamentary voids. For example. Cauchy’s molecular theory 
of elasticity gives the stored energy function 

111 
Q(F) = 

(e, xe,)*e, 
1 4(ln’Fe,l)3 

li’.!1’.,1’ 
(7.2) 

where F is the deformation gradient (e,) arc reference lattice vectors. III is the mass 01‘ 
an atom, and the sum is taken over all triples of integers. A popular choice of the 
central force potential (h gives ~/I(V) - I’ “. for large r, which implies that for every 
fixed FE Lin 

(D(tF) + 0 as t ---) ‘% (7.3) 

It is then realized that at sufficiently large stretches voids may occur (as well as the 
possibility of shear instability)? and the other features of the stored energy become 
important in deciding which instability comes tirst. For example, GENT and LINI)L,~,\-‘s 
(1958) criterion for spherical cavitation, Pcrl, = 5&/6, only depends on the single easily 
accessible constant E, the Young’s modulus. but behind this criterion is the assumption 

t Cauchy’s energy (7.2) filils the condition ol‘stl-ong clliptlcity, II\ discussed. I-(Il. example. hy F.KI(‘KSI lu 

(1977). 
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that the stored energy has a simple form (verified 

stretches) that satisfies the crucial growth hypothesis 

r[g]do<co, 

811 

experimentally for moderate 

where &(tl) = Q(z)- l, 0, U) and the material is assumed to be incompressible. 
A final objection against the present approach could be the failure to account for 

viscoelastic properties of the polymer, particularly for T near Tg, the glass transition 
temperature, although many of the above mentioned criteria for crazing have relied 
on interpreting the experiments in terms of pure elasticity. This objection does not 
appear particularly difficult in that most viscoelasticity theories have a Lyapunov 
function consisting of a nonlinear elastic energy. If it is possible to reduce this energy 
by inserting a void, then it is likely that the associated viscoelasticity theory will have 
a dynamic solutionf involving the creation and evolution of a similar void. Of course, 
verifying this property for general theories of viscoelasticity involves great mathe- 
matical difficulties. In special cases, however, this hope is often borne out, for example, 
in the analysis by CALDERER (1986) of the radial motion of a viscoelastic sphere 
containing a void. Her principal hypothesis is a slow growth assumption on the 
underlying elastic energy, and under sufficiently large imposed hydrostatic tension a 
pre-existing hole grows suddenly to infinite size. The physical interpretation of the 
nonlinear elastic/viscoelastic relation described here is that under appropriate time 
independent boundary conditions, a void or filamentary void eventually appears. 

In summary, the formation of a filamentary void warrants further study as a 
possible explanation for crazing in glassy polymers. To test the idea, critical conditions 
for the formation of a filamentary void must be determined and meaningful stored 
energy functions for polymers must be found. Ideally, these functions would also 
model the glass transition (including the observed effect of stress on transition tem- 
perature) so a direct connection with GENT’S (1970) proposal could be established. 
Measurements of mechanical properties under carefully controlled conditions of 
multiaxial stress are particularly important. The difficulty with obtaining critical 
conditions for void formation from the theory is that the filamentary void has a 
complex geometry, particularly near the tip of the void. With a leap of faith, we would 
guess that in the equibiaxial case such critical conditions might turn out to be 

where E&, is the critical condition for circular void formation in the radial deformation 
of a two-dimensional elastic material defined by 

This guess is mainly based upon the observation in theorem 5.5 that the energy 
contribution of the caps scales away for long thin voids. The formation of a filamentary 

void also seems to be possible (under different constitutive hypotheses) when 2, and 
i.2 are fixed and c( > E,,it. A further speculation is that essentially the same critical 

t PERICAK~PECTOR and SPECTOR (1988) show that the equations of dynamic nonlinear elasticity have a 
time-dependent solution involving the creation and evolution of a spherical void. 
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conditions would be obtained for a sufficiently small preexisting filamentary void. 
This speculation is based on the fact that a similar connection between the creation 
of spherical voids and the growth of a preexisting spherical void has been established 
by SIVALOGANATHAN (1986a). A criterion such as the one given above would seem to 
indicate that commonly quoted criteria such as a “dilatational stress held” or 
“adequate free volume” are not sufficient conditions for crazing. Finally, a potential 
advantage of the present approach is the same advantage enjoyed by GENT and 

LINDLEY’S (1958) criterion for spherical voids--that conditions for instability are only 
dependent on measureable nonlinear elastic properties of the solid.l_ 
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