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Modeling for Aircraft Control 
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Aeroservoelasticity (ASE) 

Efficient aircraft design 

• Lightweight structures 

• High aspect ratios 
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Flutter 
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Source: NASA Dryden Flight Research 
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Classical Approach 
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Flexible Aircraft Challenges 
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Flexible Aircraft Challenges 
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Body Freedom Flutter 
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Performance Adaptive Aeroelastic Wing (PAAW) 

• Goal: Suppress flutter, control wing shape 
and alter shape to optimize performance 

• Funding: NASA NRA NNX14AL36A 

• Technical Monitor: Dr. John Bosworth  

• Two years of testing at UMN followed by two 
years of testing on NASA’s X-56 Aircraft 
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Modeling and Control for Flex Aircraft 

1. Parameter Dependent Dynamics 

• Models depend on airspeed due to 
structural/aero interactions 

• LPV is a natural framework. 

2. Model Reduction 

• High fidelity CFD/CSD models have 
many (millions) of states. 

3. Model Uncertainty 

• Use of simplified low order models 
OR reduced high fidelity models 

• Unsteady aero, mass/inertia & 
structural parameters 
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Modeling and Control for Wind Farms 
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Simulator for Wind Farm Applications, Churchfield & Lee 

http://wind.nrel.gov/designcodes/simulators/SOWFA  

Saint Anthony Falls: http://www.safl.umn.edu/  

Eolos: http://www.eolos.umn.edu/ 

1. Parameter Dependent Dynamics 

• Models depend on windspeed due to 
structural/aero interactions 

• LPV is a natural framework. 

2. Model Reduction 

• High fidelity CFD/CSD models have 
many (millions) of states. 

3. Model Uncertainty 

• Use of simplified low order models 
OR reduced high fidelity models 

http://wind.nrel.gov/designcodes/simulators/SOWFA
http://www.safl.umn.edu/
http://www.eolos.umn.edu/
http://www.eolos.umn.edu/
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LPV Analysis 
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(Standard) Dissipation Inequality Condition 

Comments 

• Dissipation inequality can be expressed/solved using LMIs. 
• Finite dimensional LMIs for LFT/Polytopic LPV systems 

• Parameterized LMIs for Gridded LPV (requires basis functions, gridding, etc) 

• Condition is IFF for LTI systems but only sufficient for LPV 
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Theorem 

Proof: 



AEROSPACE ENGINEERING AND MECHANICS 

• Goal: Assess the impact of model uncertainty/nonlinearities 

• Approach: Separate nominal dynamics from perturbations 
• Pert. can be parametric, LTI dynamic, and/or nonlinearities (e.g. saturation). 

 

Uncertainty Modeling 
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• Goal: Extend analysis tools to LPV uncertainty for an 

 

 

 

• Approach: 

• Use Integral Quadratic Constraints to model input/output 
behavior (Megretski & Rantzer, TAC 1997). 

• Extend dissipation inequality approach for robustness analysis 

• Results for Gridded Nominal system 

• Parallels earlier results for LFT nominal system by Scherer, 
Veenman, Köse, Köroğlu. 

Robustness Analysis for LPV Systems 
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IQC Example: Passive System 

Pointwise Quadratic Constraint 
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General (Time Domain) IQCs 

General IQC Definition: 

28 

Comments: 
• Megretski & Rantzer (‘97 TAC) has a library of IQCs for various 

components. 

• IQCs can be equivalently specified in the freq. domain with a multiplier P 

• A non-unique factorization connects P=Y*MY.  

• Multiple IQCs can be used to specify behavior of . 
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IQC Dissipation Inequality Condition 
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Theorem 

Proof: 

Comment 

• Dissipation inequality can be expressed/solved as LMIs. 

• Extends standard D/G scaling but requires selection of basis 
functions for IQC. 
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Less Conservative IQC Result 
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Theorem 

Technical Result 

• Positive semidefinite constraint on V and time domain IQC 
constraint can be dropped. 

• These are replaced by a freq. domain requirement on P=Y*MY. 

• Some energy is “hidden” in the IQC. 

 Refs: 
P. Seiler, Stability Analysis with Dissipation Inequalities and Integral Quadratic Constraints, IEEE TAC, 2015. 

H. Pfifer & P. Seiler, Less Conservative Robustness Analysis of Linear Parameter Varying Systems Using 
Integral Quadratic Constraints, submitted to IJRNC, 2015. 
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Time-Domain Dissipation Inequality Analysis 

Summary: Under some technical conditions, the frequency-domain 
conditions in (M/R, ’97 TAC) are equivalent to the time-domain 
dissipation inequality conditions. 
 

Applications: 

1. LPV robustness analysis (Pfifer, Seiler, IJRNC) 

2. General LPV robust synthesis (Wang, Pfifer, Seiler, submitted to Aut)  

3. LPV robust filtering/feedforward (Venkataraman, Seiler, in prep) 
• Robust filtering typically uses a duality argument.  Extensions to the time domain? 

4. Exponential rates of convergence (Hu,Seiler, submitted to TAC) 
• Motivated by optimization analysis with ρ-hard IQCs (Lessard, Recht, & Packard) 

5. Nonlinear analysis using SOS techniques 
 

Item 1 has been implemented in LPVTools. Items 2 & 3 parallel 
results by (Scherer, Köse, and Veenman) for LFT-type LPV systems. 
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LPV Model Reduction 

• Both flexible aircraft and wind farms can be modeled with 
high fidelity fluid/structural models. 

• LPV models can be obtained via Jacobian linearization: 

 

 

• State dimension can be extremely large (>106) 

• LPV analysis and synthesis is restricted to ≈50 states. 

• Model reduction is required. 
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High Order Model Reduction 

Large literature with recent results for LPV and Param. LTI 
• Antoulas, Amsallem, Carlberg , Gugercin, Farhat, Kutz, Loeve, Mezic, Poussot-

Vassal, Rowley, Schmid, Willcox, … 

Two new results for LPV: 

1. Input-Output Dynamic Mode Decomposition 
• Combine subspace ID with techniques from fluids (POD/DMD). 

• No need for adjoint models.  Can reconstruct full-order state. 

2. Parameter-Varying Oblique Projection 
• Petrov-Galerkin approximation with constant projection space and 

parameter-varying test space. 

• Constant projection maintains state consistency avoids rate dependence. 
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Higher-Fidelity – Large Eddy Simulation (LES) 

• Simulator for On/Offshore Wind Farm Applications 

• 3D unsteady spatially filtered Navier-Stokes equations 

• Simulation time (wall clock): 48 hours 

 

 

Churchfield, Lee 

https://nwtc.nrel.gov/SOWFA 
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Linearized discrete-time Navier-Stokes 
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Linearized discrete-time Navier-Stokes 
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Linearized discrete-time Navier-Stokes 
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Typical Approaches in Fluids 

• Project onto the dominant modes of the system 

• Proper orthogonal decomposition (POD) 
• Lumley, et. al. 1967 

• Dynamic mode decomposition (DMD) 
• Schmid, Mezic, Rowley, Kutz, others 

Churchfield et. al. 

“NWTC design codes-

SOWFA” 
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Dynamic Mode Decomposition 

• Gather snapshots from simulation or experiments 

• Fit a linear operator to the snapshots 

Churchfield et. al. 

“NWTC design codes-

SOWFA” 

 01XXA
Intractable for 

large systems 
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Dynamic Mode Decomposition 
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• Subspace identification  

• Fit low-order, “black-box” ODE to input/output data 

• Katayama, Larimore, Ljung, van Overschee, de Moor, Viberg, 
Verhaegen, others 

 

Typical Approaches in Controls 

• Flow domain 

• Interactions 

• Forcing 

• Etc. 

input output

43 



AEROSPACE ENGINEERING AND MECHANICS 

Direct Subspace Identification (Viberg, ‘95) 

• Gather snapshots from simulation or experiments 

• Measurements of inputs and outputs 

• Fit a linear operator to the snapshots 
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IODMD 

• Project state data onto a subspace  

 

 

• Obtain a discrete reduced-order model of the system 

 

 

 

• Blends direct subspace ID with POD/DMD 

• Handles inputs/outputs 

• Full state can be reconstructed from reduced state 

• Input forcing increases the signal to noise ratio 

• Parameter-varying version that maintains state consistency 
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• Two turbine setup (NREL 5 MW turbines) 

 

 

 

 

 

 

 

• D = turbine diameter (126 m)  

• Neutral boundary layer 

• 7 m/s with 6% turbulence 
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Wind Turbine Array Setup 

• Two turbine setup (NREL 5 MW turbines) 

 

 

 

 

 

 

 

• Control inputs: Blade pitch angle, generator torque 

• Control outputs: Power at each turbine 
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Wind Turbine Array Setup 

• Two turbine setup (NREL 5 MW turbines) 

 

 

 

 

 

 

 

• Approximately 1.2 million grid points 

• 3 velocity components → 3.6 million states 

• Intractable for control design 
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• Forcing Input to first turbine  

 

 

 

 

 

 

 

IODMD with SOWFA 

Blade pitch angle 
changes from 0⁰ to 4⁰ 
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Flow Simulation 
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Reduced-order model 

• Choose 20 modes to construct a reduced-order model 

• 3.6 million states projected onto 20 modes 

• Tall QR computations can be done on a laptop (hours) 

• Retain input-output behavior 
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• Validation case – same setup with a different input 

 

 

 

 

 

 

 

Model applied to Validation Data 

Blade pitch angle 
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Model applied to Validation Data 

• Input-output behavior is retained on validation data 
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Flow Simulation 

• Reconstruct the full-state using a reduced-order model 
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Compare Individual Snapshots 

43 
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Conclusions 

 

Main Contributions in LPV Theory: 

• Robustness analysis tools 

• Model reduction methods 

 

Applications to: 

• Flexible and unmanned aircraft 

• Wind energy 

• Hard disk drives 
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