
Worst Case Analysis of a Saturated Gust Loads
Alleviation System

Andreas Knoblach∗

Institute of System Dynamics and Control, German Aerospace Center (DLR), 82234 Weßling, Germany

Harald Pfifer† and Peter Seiler‡

Department of Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis

In order to determine a guaranteed upper bound for worst case “1-cosine” gust loads
of flexible aircrafts, the usage of the worst case energy-to-peak gain of linear parameter-
varying (LPV) systems has been recently proposed. A limitation of this approach is that it
cannot deal with nonlinearities. This paper uses integral quadratic constraints (IQCs) to
circumvent this restriction and to consider the saturation of a gust loads alleviation system.
Based on the dissipation inequality framework, a linear matrix inequality constraint which
bounds the worst case energy-to-peak gain of saturated LPV systems is given. In order
to reduce the conservatism, an iterative procedure to refine local IQCs is proposed. The
conservatism of this approached is analyzed at the example of a two-dimensional thin airfoil
in combination with a saturated gust loads alleviation system.

I. Introduction

In order to certify a new aircraft, it must be proved that it can withstand loads caused by turbulence and
gusts.1 According to the CS-25 of the European Aviation Safety Agency (EASA),2 two types of excitations
have to be considered: discrete “1-cosine” gusts and continuous turbulence. In the first case, an aircraft
model is excited with a single “1-cosine” gust profile and the model outputs, e. g. the wing root bending
moment (WRB) or the vertical accelerations, are computed and the simulation is repeated for several gust
lengths. Moreover, the complete process has to be performed for many flight points such that the entire flight
envelope (defined by velocity, altitude, loading etc.) is covered. Finally, the maximum and minimum peak of
every output for all these simulations define the limit loads due to discrete gusts. The other type of excitation
– namely continuous turbulence – considers the stochastic nature of turbulence. Here, the von Karman wind
turbulence model is used to excite the aircraft and the results are evaluated by stochastic means. The limit
loads are derived from the root mean square (RMS) value of the model response. A detailed description of
discrete gusts and continuous turbulence scenarios can be found in Ref. 1.

Since these millions of simulations are very time consuming, there is a need for fast and reliable algorithms
to identify worst case flight points and to compute maximum loads. To that end, it has been recently
proposed in Ref. 3 to use the worst case energy-to-peak gain or mathematically speaking the induced L2-L∞
norm. This approach allows an extremely fast computation of an upper bound for the peak loads. However,
this method is restricted to parametrically uncertain or linear parameter-varying (LPV) systems. Since a
nonlinear gust load alleviation system has to be considered in many cases, the applicability of using the worst
case energy-to-peak gain is limited.

The major nonlinearity of gust load alleviation systems is saturation. Since the interconnections of linear
time invariant (LTI) systems and saturation occur very often in practice, they are intensively studies in the
literature. Most approaches can be put into the context of integral quadratic constraints (IQCs), see e. g.
Refs. 4, 5, and 6. Recent results in Ref. 7 extend the IQC framework to LPV systems, which allows the
analysis of saturated LPV systems.
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The aim of this paper is to investigate how IQCs can be used for the analysis of a saturated gust loads
alleviation system. The paper is structured as follows: The interconnection of LPV an system and saturation
is described in Section II. A brief summary on IQCs is provided in Section III. The focus lies on the description
of saturation by IQCs. The analysis interconnection and an upper bound for the worst case energy-to-peak
gain of saturated LPV systems is given in Section IV. Additionally, an iterative procedure to refine local
IQCs is proposed. The effectiveness of the proposed method is investigated in Section V. This investigation is
pursued at the example of a two-dimensional thin airfoil in combination with a gust load alleviation system.

II. Saturated LPV Systems
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Figure 1. Saturated LPV system

The paper considers a system under saturation given by the feedback interconnection, denoted Fu(Gρ, sat),
of an LPV plant Gρ and a saturation nonlinearity sat as shown in Figure 1(a). The saturation w = sat(v) is
defined by

w = sat(v) =

v if |v| < σ

sgn(v) · σ otherwise,
(1)

where σ denotes the saturation limit. The saturation nonlinearity is depicted in Figure 1(b). LPV systems are
a class of linear systems whose state space matrices dependent on a scheduling parameter vector ρ : R→ Rnρ .
The parameter is assumed to be a continuously differentiable function of time and the admissible trajectories
are restricted, based on physical considerations, to a compact subset P ⊂ Rnρ . In addition, the parameter
rates of variation ρ̇ are assumed to lie withing the hyperrectangle Ṗ defined by

Ṗ :=
{
q
∣∣∣ |qi| ≤ νi ∀i ∈ {1, . . . , nρ}} , (2)

where νi are nonnegative numbers. The set of all admissible trajectories is defined as

A :=
{
ρ
∣∣∣ ρ(t) ∈ P, ρ̇(t) ∈ Ṗ ∀t ≥ 0

}
. (3)

The state-space matrices of an LPV system are continuous functions of the parameter, e. g. A : P → Rnx×nx .
An nth

x order LPV system Gρ is defined by

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))
[
w(t)
d(t)

]
(4)[

v(t)
e(t)

]
= C(ρ(t))x(t) +D(ρ(t))

[
w(t)
d(t)

]
. (5)

Throughout the remainder of the paper, the explicit dependence on t is occasionally suppressed to shorten
the notation.

III. Integral Quadratic Constraints for Saturation

This section describes constraints on the saturation function that can be incorporated in the input/output
analysis. The constraints are taken from Ref. 4 and fit in the more general framework of IQCs, which bound
the input/output signals of a bounded causal operator w = ∆(v). These constraints can be expressed in the
frequency domain as well as in the time domain. First, a definition for an IQC in the frequency domain is
given.
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Definition 1: Let Π : jR → C(nv+nw)×(nv+nw) be a measurable Hermitian-valued function. A bounded,
causal operator ∆ : Lnv2e → Lnw2e satisfies an IQC defined by Π if the following inequality holds for all v ∈ Lnv2 ,
w = ∆(v), and T ≥ 0 ∫ ∞

−∞

[
v̂(jω)

ŵ(jω)

]∗
Π(jω)

[
v̂(jω)

ŵ(jω)

]
dω ≥ 0 . (6)

In (6), v̂ and ŵ are Fourier transforms of v and w, respectively.

The multiplier Π can be factorized as

Π(jω) = Ψ(jω)∗MΨ(jω) (7)

which allows to connect the frequency domain formulation to a time-domain formulation.4,8, 9 This leads to
Definition 2 for an IQC in the time domain. It should be noted, that there are some technical restrictions
in the factorization of IQCs, see Refs. 4, 8, and 10. However, these restrictions do not apply to the IQCs
considered in this paper.
Definition 2: Let M be a symmetric matrix, i. e. M = MT ∈ Rnz×nz , and Ψ a stable linear system, i.e.
Ψ ∈ RHnz×(nv+nw)

∞ . A bounded, causal operator ∆ : Lnv2e → Lnw2e satisfies an IQC defined by (Ψ,M) if the
following inequality holds for all v ∈ Lnv2 , w = ∆(v), and T ≥ 0∫ T

0

z(t)TMz(t)dt ≥ 0 , (8)

where z is the output of the linear system Ψ

ẋΨ = AΨxΨ +BΨ1v +BΨ2w , xΨ (0) = 0 (9a)
z = CΨxΨ +DΨ1v +DΨ2w . (9b)

The notation ∆ ∈ IQC(Ψ,M) is used if ∆ satisfies the IQC defined by (Ψ,M).

∆

Ψ
z

v w

Figure 2. Graphical interpretation of the IQC

Figure 2 provides a graphical interpretation of a time domain IQC. The input and output signals of ∆
are filtered through Ψ . If ∆ ∈ IQC(Ψ,M), then the output signal z satisfies the (time-domain) constraint in
(8) for any finite-horizon T ≥ 0. Three classical IQCs from Ref. 4 for saturation are given in the following
subsections.

III.A. Memoryless Sector Bounded Nonlinearity
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Figure 3. Sector constraint ( ) for the saturation nonlinearity ( )

It is easy to see in Figure 3, that saturation lies in the sector defined by two lines with slope α = 0 and
β = 1, denoted as sector [0, 1]. More general, a memoryless nonlinearity Φ: R→ R lies in sector [α, β] if

(w(t)− αv(t)) (βv(t)− w(t)) ≥ 0 (10)
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holds for all v(t) ∈ R and w(t) = φ(v(t)). This can be equivalently expressed as[
v(t)

w(t)

]T [
−2αβ α+ β

α+ β −2

][
v(t)

w(t)

]
≥ 0 . (11)

Since (11) has to hold pointwise in time, it also holds when integrated over time

∫ T

0

[
v(t)

w(t)

]T [
−2αβ α+ β

α+ β −2

][
v(t)

w(t)

]
dt ≥ 0 (12)

for any T ≥ 0. Note that the converse is not true. Hence, the saturation function satisfies the IQC defined by

Ψ = I2 and M =

[
−2αβ α+ β

α+ β −2

]
, (13)

with α = 0 and β = 1. Note, that the sector IQC holds also for time varying, memoryless nonlinearities
w(t) = φ(v(t), t).

III.B. Popov IQC

In order to capture the time invariance of saturation, the Popov IQC can be used. Consider a memoryless
and time invariant nonlinearity w(t) = φ(v(t)), where φ : R→ R is a continuous function with v(0) = 0, and
w and v̇ are square integrable. Then, v and w satisfy the IQC defined by

Π(jω) = ±
[

0 jω

−jω 0

]
. (14)

However, since Π is not bounded on the imaginary axis, it is not a proper IQC. As a remedy, the loop
transformation from Figure 4 can be used. The operator ∆̄ satisfies the IQC defined by

Π̄(jω) = ±
[

0 jω
1−jω

−jω
1+jω 0

]
, (15)

In order to revert the low-pass filter, the non-proper filter s+ 1 must be added to the interconnection (see
Figure 4). This requires that the plant is strictly proper. The combination of the Popov IQC and of the
sector constraint IQC yields the classical Popov criterion.4

∆

Ψ̄

1
s+1s+ 1

∆̄
v

v̄
v

z

w

Figure 4. Popov IQC: loop transformation to yield a proper IQC

III.C. Zames-Falb IQC

Finally, saturation is described by a monotonic, slope restricted, and odd function which is the last property
satisfying a classical IQC. Consider w(t) = φ(v(t)), where φ : R→ R is a monotonic and odd function and
its slope is bounded by ∂φ

∂v ∈ [0, k] for a constant k > 0. Then v and w satisfy the IQC

Π(jω) =

[
0 1 +H(jω)

1 +H(jω)∗ − (2 +H(jω) +H(jω)∗) /k

]
(16)

where H(s) is an arbitrary rational transfer function whose impulse response has an L1 norm not larger than
one. Details can be found in Ref. 11.
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IV. Robust Performance Analysis of Saturated LPV Systems

IV.A. Uncertain LPV Systems

In Ref. 7, it is proposed to describe an uncertain LPV system by the feedback interconnection of an LPV
system Gρ with an nonlinear and/or uncertain operator ∆. This corresponds to an upper linear fractional
transformation (LFT), which is denoted Fu(Gρ, ∆). The exact relation w = ∆(v) is replaced by an IQC such
that ∆ ∈ IQC(Ψ,M). The dynamics of the resulting analysis interconnection (see Figure 5) is ruled by

ẋ = A(ρ)x+ B1(ρ)w + B2(ρ)d (17a)
z = C1(ρ)x+D11(ρ)w +D12(ρ)d (17b)
e = C2(ρ)x+D21(ρ)w +D22(ρ)d . (17c)

Note that x includes the states of Gρ and Ψ . In the following analysis, the uncertainty ∆ is removed and w
is treated as an external signal constrained by (8).

Gρ

∆

Ψ

d

w

e

v

z

Figure 5. Analysis interconnection

IV.B. Energy-to-Peak Gain of Uncertain LPV Systems

Although the induced L2-L2 norm (or for LTI system also H∞ norm) is commonly used in the robust
performance analysis framework, the induced L2-L∞ is more suited for loads analysis since it allows to
compute an upper bound for the output peaks. The induced L2-L∞ norm of an uncertain LPV system is
defined as

‖Fu(Gρ, ∆)‖L2→L∞
:= sup

∆∈IQC(Ψ,M)

sup
d∈L2\{0}
ρ∈A

‖e‖L∞

‖d‖L2

. (18)

In (18),

‖x‖L2
=

∫ ∞
0

(
x(t)Tx(t)

) 1
2 dt and ‖x‖L∞

= sup
t

(
x(t)Tx(t)

) 1
2 (19)

represent the L2 (or energy) signal norm and the L∞ (or peak) signal norm, respectively. The notations
x ∈ L2 and x ∈ L∞ are used to refer to signals with finite L2 and L∞ norm. The induced L2-L∞ norm
represents hence the worst case energy-to-peak gain over all uncertainties that satisfy the IQC (Ψ,M) and
over all admissible parameter trajectories.

Using the interconnection in (17), a theorem based on the dissipation inequality framework can be
formulated which bounds the induced L2-L∞ norm. The analysis leads to conditions that include the
parameter and the parameter rate at a single point in time, i. e. (ρ(t), ρ̇(t)). In order to emphasize that the
conditions depend only on the sets P and Ṗ, the parametric notation (p, q) ∈ P × Ṗ is introduced. The
following theorem is a minor modification of the worst case condition for the induced L2-L2 norm given in
Ref. 7.
Theorem 1: The induced L2-L∞ norm from d to e of an uncertain LPV system ‖Fu(Gρ, ∆)‖L2→L∞

with
D21(ρ) = 0 and D22(ρ) = 0 is smaller than a performance index γ if the interconnection is well posed for all
∆ ∈ IQC(Ψ,M) and if there exists a continuous differentiable Lyapunov matrix function X : P → Rnx×nx

with XT = X and a scalar λ > 0 s. t. for all (p, q) ∈ P × Ṗ

X(p) > 0 , (20a)
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A(p)TX(p) +X(p)A(p) +
∑nρ
i=1

∂X(p)
∂pi

qi X(p)B1(p) X(p)B2(p)

B1(p)TX(p) 0 0

B2(p)TX(p) 0 −γI


+λ

 C1(p)T

D11(p)T

D12(p)T

M [
C1(p) D11(p) D12(p)

]
< 0 , (20b)

[
X(p) C2(p)T

C2(p) γI

]
> 0 . (20c)

Proof: The proof is based on defining a storage function V : Rnx × P → R+

V (x, ρ) := xTX(ρ)x . (21)

Left and right multiply (20b) by [xT wT dT] and its transpose, respectively, to show that V satisfies the
dissipation inequality

V̇ (t) + λz(t)TMz(t) ≤ γd(t)Td(t) (22)

The dissipation inequality can be integrated from t = 0 to t = T with the initial condition x(0) = 0. Along
with the IQC condition (8) and λ > 0 this leads to

V (T ) ≤ γ
∫ T

0

d(t)Td(t)dt . (23)

A Schur complement on (20c) and the left and right multiplication with xT and x yield

1
γ e(T )Te(T ) ≤ V (T ) . (24)

Combine (23) and (24) and take the supremum w. r. t. T to conclude

‖e‖L∞
≤ γ ‖d‖L2

. (25)

A detailed proof of the analogous induced L2 norm can be found in Ref. 7.

An upper bound for the worst case energy-to-peak gain can be obtained from Theorem 1 by solving a
semidefinite program in the variables X, λ and γ. In order to arrive at numerically tractable conditions, a
gridding based approximation of the parameters space is used and basis functions are assigned for X(p), see
Refs. 12 and 13 for details. Note that for simplification the theorem is only given in terms of a single IQC
(Ψ,M). It can be easily extended to handle multiple IQCs.7

IV.C. Analysis using Local IQCs

In Section III, standard constraints from literature4,11 for the saturation function have been given. While all
these IQCs guarantee global robust performance of a system under saturation, all of them are independent of
the saturation level. Hence, they are expected to be very conservative for many practical applications. It is
well understood in literature, that performance results that only hold locally can greatly improve the analysis
of systems under saturation by incorporating the actual saturation level, see Refs. 14, 15, and 16. If the global
performance requirement is relaxed to only consider local performance, a modified, less conservative version
of the sector bound IQC can be used. The approach pursued in this paper is based on the notion of local
analysis of IQCs.17 There, a general framework for local analysis of systems under perturbations described
by IQCs is given. In this paper, the specific nature of the perturbation, namely the saturation function, is
exploited to obtain local conditions. The conditions are similar to the IQCs for saturations given in Ref. 5.

The global sector constraint for the saturation function is defined by the sector [0, 1]. It is easily seen that
the sector bound holds independent of the size of the input v, see Figure 6. If an L∞ norm bound on the
input v is known, i.e. |v| ≤ R, then a refined sector constraint can be given. Instead of checking over the
whole sector [0, 1], it is sufficient to only consider the smaller sector [σ/R, 1]. Recall that σ is the saturation
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Figure 6. Local sector constraint IQC for saturation: Because of |v| ≤ R, only the solid drawn part of the saturation ( )
can be reached, but not the dashed one ( ). This allows to decrease the sector from ( ) to ( ).

level. The smaller, local sector is depicted in Figure 6. In order to compute a valid bound on v, a bounded
disturbance energy ‖d‖L2

≤ 1 is assumed. Then, the induced L2-L∞ norm from the performance input d to
the saturation input v provides a valid bound on v.

In order to reduce the conservatism of the results, a possibly small bound on v should be determined.
This can be achieved by the iterative procedure in Algorithm 1.

Algorithm 1 Iterative refining of a local IQC
1: start with global IQCs, specifically use the sector [0, 1]
2: repeat
3: compute a bound on the saturation input ‖v‖L∞

≤ Ri+1

4: refine the local sector IQC to the sector [max(σ/Ri+1, 1), 1]
5: until Ri is converged
6: compute the induced L2-L∞ norm of the performance channel

In Line 1, the saturation is described by the globally valid IQCs from Section III. Specifically, the sector
[0, 1] is used. Line 3 consists in computing the induced L2-L∞ norm from d to v using Theorem 1. In
combination with ‖d‖L2

≤ 1, this norm provides an L∞ norm bound Ri on v. This bound is used in Line 4 to
define the locally valid sector constraint [max(σ/Ri+1, 1), 1]. Lines 3 and 4 are repeated until Ri is converged.
In the last step (Line 6), an upper bound for the worst case energy-to-peak gain of the performance channel is
computed. Note that in the last step the more common worst case energy gain can be alternatively considered
using Theorem 2 in Ref. 7.

V. Analysis of a Saturated Gust Loads Alleviation System

The proposed approach is used to compute the worst case energy-to-peak gain of a simple aeroservoelastic
system. A two degree of freedom airfoil in combination with a gust load alleviation system is considered. The
effects of different IQCs, several saturation limits and parameter rate bounds are investigated.

V.A. Aeroservoelastic System

The considered aeroelastic system, taken from Ref. 18, is illustrated in Figure 7. The equations of motion are[
m m · xcg

m · xcg I

][
ḧ

α̈

]
+

[
kh 0

0 kα

][
h

α

]
=

[
−L
τ

]
.

(26)

where h denotes the vertical deflection and α the pitch angle.a The lift L and the pitching moment τ are
given by [

−L
τ

]
= 1

2ρv
2
[
Qeig(s) Qgust(s)

] [ h
α
β

vgust

]
, (27)

The Theodorsen function Qeig(s) models the relation between the aerodynamic forces and the heave, the
pitching and the flap movement, denoted h, α, and β, respectively. The Sears function Qgust(s) maps the

aAll quantities are normalized and thus dimensionless.
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Figure 7. Aeroservoelastic system

vertical gust velocity vgust on L and τ . Both transfer functions are non-rational in the Laplace domain. In
order to yield a state space realization, R.T. Jones’ rational approximation is used. The functions depend
on the free stream velocity U∞, the half chord length b, the location of the aerodynamic reference axis xar,
and the hinge position xhp. Qeig and Qgust are explicitly given in Ref. 18. In this paper, the velocity U∞ is
considered as scheduling parameter. Ten equidistantly spaced grid points in the interval U∞ ∈ [0.3, 0.9] are
used. The rate bounds are U̇∞ ∈ [−0.1, 0.1]. The other parameters are compiled in Table 1.

Table 1. Model parameters

Sym. Explanation Value

kh translational stiffness 0.04

kα rotational stiffness 0.25

m mass 1.00

I inertia 0.25

xcg location of the center of gravity 0.20

ρ air density 0.80

b half chord length 1.00

xar location of the aerodynamic reference axis −0.20

xhp location of the hinge axis 0.80

The close loop configuration in Figure 8 is considered. The weighting filter

WGust :

{
ẋW= 1

10xW + 1
10d

vgust=xW
(28)

is used to shape suitable gusts with unit energy.3 The performance outputs are the spring forces

e =

[
eh

eα

]
=

[
kh · h
kα · α

]
. (29)

The first oder low pass filter

Gact :

{
ẋact=xact + u

v=xact
(30)

serves as an actuator model. Since the flap deflection β is assumed to be limited, saturation

β = w = sat(v) (31)
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is added. A simple gust load alleviation system which is based on a gain scheduled (by U∞) proportional
controller

K :
{
u =

([
4.2 −27.3 149.2

]
+ U∞

[
0.19 −49.4 138.6

]) [ vgust
eh
eα

]
(32)

is used to close the loop. The controller is tuned using systune.19 The tuning goal is to minimize the variance
of the performance output.

Since the parameter dependence of the resulting state space model is highly involved, it is not explicitly
given. However, it has ten states. A Bode diagram of the open and the nominal closed loop (i. e. without
saturation) is depicted in Figure 9 for different parameter values.

GAct

Wgust

K

d eh

eα

vgust

v wu

Figure 8. Closed loop of the aeroservoelastic system
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Figure 9. Bode diagram of the aeroservoelastic system: ( ) represents the open loop and ( ) the nominal closed loop.
The color indicates the free stream velocity.

V.B. Comparison of IQCs

The effect of different IQCs is investigated using the LTI model corresponding to the highest free stream
velocity. The globally valid sector [0, 1] is considered separately, in combination with the Popov IQC and
in combination with three different parameterizations of the Zames-Falb IQC. The Zames Falb IQC is
parameterized by a first order low pass filter

H(s) =
1

1
TZF

s+ 1
, (33)

where the three time values for the constants TZF ∈ {0.01, 0.1, 1} are used. Finally, the combination of the
sector IQC, the Popov IQC, and all three Zames-Falb IQCs is considered. The results are compiled in Table 2.
The best result is achieved using the sector IQC and the Zames-Falb IQC with TZF = 0.1. The results cannot
be improved by adding the Popov IQC or combining several Zames-Falb IQCs. For that reason, the sector
and the Zames-Falb IQCs with TZF = 0.1 are used below.
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Table 2. Results for several IQC combinations

Sec Sec/Pop Sec/ZF Sec/ZF Sec/ZF Sec/Pop/ZF
TZF 0.01 0.1 1 all

Norm 0.185 0.184 0.183 0.175 0.181 0.175

V.C. Convergence of Local IQCs

The convergence behavior of Algorithm 1 is investigated in this subsection. The LPV model from Section V.A
is used and the six saturation limits σ ∈ {0, 3, . . . 15} are considered. The Lyapunov function is parameterized
by a quadratic function. The results are depicted in Figure 10, where the induced L2-L∞ norm is plotted as
a function of the iteration. In the left subplot, the norm from the disturbance to saturation input can be seen
and, in the right one, the norm of the performance channel.

First of all, a fast convergence after the third iteration can be recognized. The upper bound for the worst
case energy-to-peak gain from the gust to the saturation input can be reduced by only 2%. However, the
proposed algorithm allows to reduce the upper bound for the performance channel by up to 69% (depending
on the saturation limit).

In order to estimate the conservatism induced by the description of saturation with IQCs, the robust
analysis results are compared to standard LPV analysis results for the open and the nominal closed loop. A
saturation limit of zero corresponds with the open loop. Using Algorithm 1 for a zero saturation limit leads
to conservative results, as can be seen in Figure 10 (compare ( ) and ( )). The reason for this is that a
zero saturation limit leads always to the sector [0, 1].

On the contrary, a very high saturation limit corresponds to the nominal closed loop. Specifically, an L∞
norm of the saturation input less than the saturation limit results in a never saturated system. Consequently,
the sector converges to [1, 1] which represents the smallest possible sector. In the considered example, the
upper bound for the robust norm for a saturation limit of σ = 15 ( ) becomes even smaller than the result
for the nominal closed loop ( ). The reason for this unexpected result is that the nominal LPV analysis is
already conservative. In case of the robust analysis, the additional state of the Zames-Falb IQC introduces
additional decision variables which reduce the conservatism. However, using a third order test function for
the Lyapunov matrix function ( ) yields consistent results.
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Figure 10. Convergence of local IQCs: The induced L2-L∞ gain is depicted as function of the iteration number ( ) for several
saturation limits indicated by the color. The results are compared to the open ( ) and the nominal closed ( ) loop results. In
case of the closed loop, a cubic test function for the Lyapunov matrix ( ) is additionally considered.

V.D. Influence of the Parameter Rate Bounds

In a last example, the influence of the parameter rate bounds is analyzed. To that end, Algorithm 1 is used
to compute an upper bound of the induced L2-L∞ norm for the saturation limits σ ∈ {0, 3, . . . , 15} and for
the rate bounds U̇∞ ∈ [−0.1ν, 0.1ν] with ν ∈ {0.0, 0.2, . . . , 1.0}. The results are illustrated in Figure 11.
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Regarding the saturation limits, the results from the preceding subsection hold for all parameter rate
bounds. For high saturation limits, the norm bounds converge to the nominal LPV analysis results ( ). As
expected, reducing the parameter rate bounds leads to a smaller upper bound. If the rate bound approaches
zero, the robust analysis converges to the maximum LTI norm w. r. t. all ten nominal closed loop models ( ).
The latter norm is known to be not conservative and provides consequently a lower bound for the worst case
performance.
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no
rm

Disturbance → performance output

Figure 11. Influence of the parameter rate bounds: The induced L2-L∞ norm is computed for several rate bounds and saturation
limits and compared to norms of the nominal closed loop ( ). Finally, ( ) indicates the maximum LTI norm of the nominal closed
loop.

Summarizing it can be said that the results are conservative if a low saturation limit is considered and
the system is most of the time saturated. On the contrary, for relatively high saturation limits, Algorithm 1
converges to the nominal case and is hence only slightly conservative.

VI. Conclusions

The analysis of saturated LPV systems using IQCs was discussed in this paper. In order to reduce the
conservatism of the analysis results, an iterative procedure to refine local IQCs was proposed. This method
was intensively studied at the example of a two-dimensional thin airfoil in combination with a gust load
alleviation system. While this approach works well in case of relatively high saturation limits, the results
are supposed to be conservative if the system is most of the time in saturation. However, this approach
allows to compute guaranteed upper bounds for gust loads of flexible aircraft with a nonlinear gust load
alleviation system. The meaningfulness of the nominal worst case energy-to-peak gain has been already
demonstrated in Ref. 3. Whether the conservatism in terms of gust loads analysis is still acceptable or is
to large for meaningful conclusions, has to be assessed using a generic aircraft model. This will be done in
future work. Another point is to include further IQCs from Refs. 5 and 6.
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