
AEM 4321 / EE 4231: HW#2

1. First Order Systems: Step Response

Consider the following first order system:

10ẋ+ 3x = −4u (1)

x(0) = 1 (2)

(a) Is this system stable? What is the time constant for the system?

(b) Sketch the response for this sysem with the following input:

u(t) =

{
0 t < 0 sec
6 t ≥ 0 sec

(3)

Label on your plot the initial value, final (steady-state) value, and the approximate time to reach the
steady state.

2. Cruise Control: Open Loop

In class we discussed a simple model for a car:

mv̇ = −bv + F (4)

where v := velocity (m/s), m :=mass (kg), and b := wind drag coefficient (N s/m). F is the force generated
due to the engine (N). Assume that F is proportional to the engine throttle angle: F = ku where u := engine
throttle (deg) and k := force constant (N/deg). Then the vehicle model can be written as:

mv̇ = −bv + ku (5)

v(0) = v0 (6)

(a) The course webpage contains a Simulink diagram of this vehicle model. The webpage also has a file
OpenLoopPlotsA.m that simulates the system and generates a plot of v(t) vs. t. The files use the following
parameters: m = 2000 kg, b = 20 N s/m, and k = 40 N/deg. Modify the files (or create your own) to
simulate the system with v(0) = 15m/sec and u = 15 deg. Hand in a plot of v(t) vs t. Make sure all
axes are labeled with the signal names and units. Label on your plot the initial value, final (steady-state)
value, and the approximate time to reach the steady state.

(b) In steady state, what value of the throttle is required to make the car reach a desired velocity vdes? This
gives the throttle u needed to achieve a vdes, i.e. u = f(vdes).

(c) Use the formula from part (b) to implement an open-loop strategy in Simulink. Specifically, modify your
diagram from part (a) to include the open-loop controller:

Simulate this model with v(0) = 15 m/sec and the desired velocity profile:

vdes(t) =

{
15 m/sec t ≤ 5 sec
25 m/sec t > 5 sec

(7)

Hand in a plot of the response of v(t) vs. t. At t = 5 sec, vdes changes to 25 m/sec. How long does it take
for the car to reach 24 m/sec? Does this seem like a reasonable speed of response for a cruise control?

(d) When the car is on a slope, there will be an additional gravitational force Fg(t) = mg sin θ(t), where θ(t)
is the road slope at time t.

Including this disturbance force in our car model gives:

mv̇ = −bv + ku− Fg (8)

v(0) = v0 (9)



Add this disturbance force to your Simulink model assuming the force profile is:

Fg(t) =

{
0 N t ≤ 10 sec
100 N t > 10 sec

(10)

Simulate the model with v(0) = 25 m/sec and vdes(t) = 25 m/sec for t ≥ 0. Hand in a plot of the response
of v(t) vs. t. How much does the vehicle speed change due to the road slope disturbance? How much
would the vehicle speed change if Fg(t) = 350 N for t > 10 sec? Note that 350 N corresponds to a very
small road slope (≈ 1 deg). Does this seem like acceptable performance?

(e) Hand in a print-out of your final Simulink diagram.

3. Cruise Control: Proportional Feedback Control

In this problem we investigate a simple closed-loop strategy known as Proportional Control. Here, the throttle
is chosen to be proportional to the tracking error:

u(t) = Kp(vdes − v(t)) (11)

where vdes − v(t) is the tracking error, and Kp is the proportional gain (deg sec/m).

(a) Take your Simulink diagram from Problem 2 and replace the open loop controller with the proportional
controller given above, making the appropriate signal connections. Simulate the model with v(0) = 15
m/s, Fg = 0 N, and

vdes(t) =

{
15 m/sec t ≤ 5 sec
25 m/sec t > 5 sec

(12)

Perform simulations with 3 different gains Kp = 5, 10, 20 (deg sec/m). On a single plot, show v(t) vs.
t for each of the gains (hint: use the hold on command in MATLAB). Label each curve based on its
corresponding value of Kp. On another plot, show the throttle u(t) vs. t for each gain (again, label the
plots). How does the performance change based on Kp? How does the performance compare to the open
loop performance in Problem 1(c)? In particular, comment on the speed of the response and steady-state
value of v(t).

(b) Next, simulate the system with v(0) = 25 m/sec and vdes(t) = 25 m/sec for t ≥ 0, and

Fg(t) =

{
0 N t ≤ 10 sec
100 N t > 10 sec

(13)

Again, simulate with the three gains Kp = 5, 10, 20 (deg sec/m) and generate plots of v(t) and u(t) vs.
t. How does the ability of the proportional controller to maintain vdes compare to the open-loop results
in Problem 1(d)? How does the performance vary with Kp? Hand in a print out of your final Simulink
diagram.

(c) You may have noticed that the responses in part (a) don’t converge to vdes. In other words, there is a
steady state error. Let’s use our understanding of first order systems to understand the steady-state error
that appears in the simulation results. The closed-loop system is described by (ignoring Fg):

mv̇ = −bv + ku, v(0) = vo (14)

u = Kp(vdes − v) (15)

vdes =

{
vo m/sec t ≤ T sec
v1 m/sec t > T sec

(16)



Put this closed-loop system in the form of our standard first order system with vdes as the input and
v as the output variable. Do not plug in the numeric values of the variables. In other words, all your
work should be done symbolically. What is the time constant of the closed loop system? What is the
steady-state value of the speed? How do the speed of response and steady state value of v(t) depend on
Kp?

(d) One practical consideration is that the throttle cannot be opened by more than 90 deg. Thus, the throttle
input on the real system must satisfy 0 ≤ u(t) ≤ 90 deg for all time. This is known as actuator saturation.
Based on the simulation results in parts (a) and (b), what limitations does this place on Kp? What impact
will this have on the speed of response?


