Figure 3: Surfaces separating at high speed, v > v,, showing FECO fringes (top),
schematic side-view (middle), and optical microscope view (bottom) of the surfaces.
Homogeneous nucleation of a vapor cavity is shown in D (t = 10.01 sec), after
which the cavity grows rapidly and then collapses (D to F). Note that in picture
F (1 sec after inception) the cavity has still not totally disappeared (evaporated or
collapsed).
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9 What happens to the dissolved gas?

The cavitation of a liquid into a gas is a phase change. When the pressure
is increased the vapor bubble collapses into a liquid. We may ask if a gas
bubble (say air) which is not vapor can also condense into a liquid. The
inward force at the boundary of a small spherical bubble due to surface
tension is very strong, much too strong to be balanced by vapor pressure,
and gas subjected to this pressure would quickly pass into solution in the
liquid. Moreover, very small bubbles should collapse under the action of
attractive Van der Waals forces even when surface tension vanishes.

A common postulate to explain cavitation is that pockets of gas and
vapor are able to persist in equilibrium under normal conditions by being
trapped in crevices in small hydrophobic solid particles such as dust particles
which are thought to be usually present in liquids. Such impurities are sites
for cavitation but not all or even most of the gas which disappears into a
liquid can be trapped in these pockets. Moreover, the argument fails if there
are no particles, or if the particles in suspension are mainly hydrophilic, with
hydrophobic ones being removed by flotation.

The influence of nucleation sites, whatever they may be, can be greatly
reduced by working with thoroughly cleaned and degassed liquids which
are temporarily subjected to very high pressures. The cavitation thresh-
olds in such prepared liquids are greatly increased because the gas there is
thoroughly dissolved. Dissolved gas is thermodynamically part of the lig-
uid and the maximum concentration of dissolved gas is determined by the
temperature and pressure. It is important that dissolved gas at a certain
temperature and pressure does not come out of, and is indistinguishable
from, the liquid. I wonder what is meant by “dissolved gas”: how is liquid
with dissolved gas classified as a material or as a thermodynamic state?
What are the intermolecular forces that hold the gas molecules in solution?

In dilute solutions, the gas concentration in the liquid neighboring a
gas bubble is determined by the partial pressure of the gas according to
Henry’s law and mass will be transferred into or out of the bubble according
to whether the concentration of dissolved gas is greater or less than the
saturation concentration. This may explain why you can dissolve small
bubbles into a degassed liquid at high pressure; the dissolved gas available
is less than saturation. The transport of gas from gas bubbles is typically
modeled as ordinary diffusion into a liquid, as in the case of miscible liquids
(see Epstein & Plesset [1950], Birkhoff et al. [1958], Scriven [1959]).

We are interested here in exploring the utility of regarding the dissolution
of gases into liquids as a phase change in which dissolved gas has condensed
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into a liquid and the condensed liquid is miscible. At a minimum, I would
like to know if a miscible liquid model can be used to model the truth,
whatever that may be. In the cavitation literature one encounters phrases
like “non-condensable dissolved gases” describing a condition of matter I do
not understand.

Gases dissolved in liquids experience intermolecular forces between lig-
uid and gas molecules. We could think of a gas molecule as a bridge between
two liquid molecules. Of course, you can liquefy gases, but the thermody-
namic conditions under which a substance is gas or liquid in isolation need
not, indeed should not, apply when the substance is dissolved in another
liquid. If our dissolved gas has condensed into a miscible liquid phase the
solution properties, like the viscosity and density of the mixture, might re-
semble those of binary mixtures of miscible liquids. Water with dissolved
air would have a different viscosity and density than pure water, but since
the properties of condensed air are unknown, it is difficult to test our idea.
The change in material properties due to mixing are difficult to detect when
the solvent and solute have nearly the same properties.

To test the idea that dissolved gas can be modeled as condensed and
miscible, we can use data on foamy oils, which are heavy oils containing
dispersed gas bubbles. These oils give rise to obvious foaminess when the
pressure is dropped rapidly at the well head. Foamy oil can be thought to
be like a very viscous beer in which bubbles are released from gas in solution
as the pressure is reduced. Foamy oils are good for our tests because the oil
viscosity is so much larger than the viscosity of the dissolved gas.

Unlike miscible liquids, condensed gas cannot be mixed into the solvent
in all proportions; there is a saturation concentration given as “solubility,” a
weight fraction, in the literature on foamy oil. Solubility is a thermodynamic
quantity depending on temperature and pressure typically ranging from 0.1
to 10%.

Canadian researchers (see Peng et al. [1991] for a recent review) have
done intensive studies of solubility of gases in bitumen from the Alberta
tar sands. The solubility is the concentration of dissolved gas at saturation
and it is a function of pressure and temperature. Viscosity and density
of the saturated bitumen was measured for different gases. The results of
these measurements are consistent with the idea that dissolved gases can be
described as a condensed and miscible liquid.

Tumasyn et al. [1969] studied the effect of COg on oil viscosity. Their
experiments clearly showed that oil viscosity decreases with the amount of
carbon dioxide dissolved. Furthermore, the drop in oil viscosity was higher
for oils which has a higher viscosity when no CO, is present, as would be
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true for miscible liquids.

Svrcek and Mehrotra [1982] studied gas solubility, viscosity and density
for mixtures of Athabasca bitumens and dissolved CO2, CH4 (methane)
and Ng (Nitrogen) gases at saturation. They found that the viscosity and
density of saturated oils depends on the gas, bitumen, temperature and
pressure and is such that more gas is dissolved at higher pressures and lower
temperatures. The viscosity of the solution drops precipitously with the
amount of dissolved gas. The viscosity of bitumen without gas is more or less
independent of pressure and drops more rapidly with temperature than does
the saturated bitumen. The saturation concentration of COy, CHy, and NO,
in bitumen increases with pressure at each fixed temperature; the increase is
linear for pressures below 5 MPa and is almost linear above. The solubility
and viscosity are greater at lower temperatures; at room temperature the
viscosity of dissolved COs in bitumen drops nearly two orders of magnitude
from the value of degassed bitumen, apparently because more condensed
CO, is added as the pressure is increased. The solubility and reduction in
viscosity is greatest for carbon dioxide and least for nitrogen.

The reduction of viscosity of bitumen with increasing concentrations of
liquefied gas and the fact that different condensed gases lead to different
reductions is consistent with the miscible liquid model. The parameters
governing solubility are not so easily modeled.

The miscible liquid model may also be applied to density measurements;
assuming that the solution is an ideal mixture the density of the solution
ought to be equal to fq¢ + fo(1 — ¢) where py and p, are densities of the
bitumen and the condensed gas and ¢ is the volume fraction of gas. The vol-
ume fraction of condensed gas can be obtained from the measured increase
in the solution volume with concentration (the swelling factor in figure 5 of
Peng et al. [1991]). The measurements of Svrcek & Mehrotra [1982] show
that the density of carbon dioxide and nitrogen in bitumen is independent
of pressure, hence concentration, whereas the methane in bitumen solution
decreases linearly with pressure; that is, with concentration. The ideal mix-
ture theory then implies that the density of carbon dioxide and nitrogen
condensed in bitumen is nearly the same as the density of the bitumen, but
the density of condensed methane is smaller.

The interfacial tension between partially miscible liquids is smaller than
the tension before mixing and if the liquids are completely miscible the
tension vanishes. Since gases are soluble in liquids, even in the dilute case
to which Henry’s law applies, a reduction in tension is expected and is
observed. If the partial pressure of the gas is raised to a value in which all
the gas is driven into solution, the tension between gas and liquid vanishes.
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We may therefore expect the tension between gas and liquid to decrease
as the gas pressure is increased, with an abrupt drop to zero as a bubble
collapses to solution under the action of Van der Waals forces. A precise
mathematical model for this reduction to zero tension has yet to be given.

An implication of this drop to zero surface tension is that the tension at
cusp tip in a liquid-air cusping experiment of the type done by Joseph et al.
[1991] would give us a true cusp and not to the molecularly small rounded
tip required by finite tension according to the excellent analysis of Jeong
and Moffat [1992]. The streaming of air bubbles from the cusp tip could
then only start when the gas saturates in the neighborhood of the cusp tip.

Supercritical gases can dissolve into liquids, possibly without condens-
ing. Supercritical gases exhibit liquid-like behaviors and are usually called
supercritical fluids. A supercritical fluid is a highly compressed gas near or
above its critical temperature and pressure points. At the critical tempera-
ture of a substance, the vapor and liquid phases have identical densities. A
gas cannot be liquefied when it is above its critical temperature no matter
how high the pressure. Above the critical temperature and pressure, the
substance exists as a supercritical fluid. Critical temperatures are usually
much higher than the substance’s normal boiling or triple point (see White
& Houk [1986]).

Carbon dioxide can exist as a liquid, solid, gas or supercritical fluid.
The triple point pressure and temperature of carbon dioxide is 5.2 atm and
-57°C; the critical pressure and temperature is 73 atm and 31°C. Carbon
dioxide cannot be liquefied when the temperature is above 31°C.

Van Wassen et al. [1980] presented order of magnitude estimates for
pure substances in the gaseous, supercritical fluid and liquid states:

Phase Density Diffusion Viscosity
g/cm3 cm? /sec poise
Gas: 1 atm, 21C° 1073 1071 1074
Supercritical Fluid | 0.3 - 0.8 | 1073 —10=* | 107* — 1073
Liquid 1 107° 1072

The properties of gases in solution are not known, but may be more like
condensed liquid as is suggested by data on viscosity of saturated bitumen.

Supercritical fluids can be dissolved in liquids and used as solvent in
extraction processes (Williams [1981]). Everyday experience of liquids pro-
vides the readily accepted proposition that liquid carbon dioxide could be
used as a solvent. This would be understood in terms of the intermolecular
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forces resulting from the close packing of solvent molecules about a solute
molecule, and this could be related to the density of the liquid. It can
therefore be intuitively accepted that supercritical carbon dioxide having a
similar density could also act as a solvent.

Mackay and Paulaitis [1979] modeled the supercritical fluid as an ex-
panded liquid instead of a highly compressed gas. Values of parameters of
the mixtures they used were consistent with known results.

Studies of mixtures of gases in bitumen reveal that the distinction be-
tween supercritical fluids and condensed gases in solution cannot be sup-
ported. In the experiments of Svrcek & Mehrotra [1982] the mixture of
carbon dioxide and bitumen which were created at high pressure and low
temperatures of 23 and 24°C were well within the region in which carbon
dioxide is liquid. No difference of kind can be observed in the mixtures of
COsy and bitumen in the regions of high pressure and low temperature in
which CQOs itself is liquid or supercritical. In fact, the reduction in viscosity,
apparent diffusivity etc. are greater at the high pressure and low tempera-
tures for which the CO; alone is liquid. There is no indication in the data of
a difference in the condition of the dissolved gas; there is nothing to suggest
that the dissolved gas is not condensed.

10 The effect of polymeric additive on cavitation

Unfortunately, most of the studies of cavitation in non-Newtonian fluids are
restricted to the same extremely dilute solutions of polymer in water which
reduce drag. Reviews of these studies have been given by Arndt, et al.
[1976], Hoyt & Taylor [1981], Arndt [1981] and Trevena [1987]; they show
that the polymer reduces the cavitation index (suppresses cavitation) in
some flows, whereas in others the results are ambiguous and even depend on
the material of construction of the flow obstacle used to create low pressure.
The suppression of cavitation with polymers might be expected to coincide
with a reduction in the breaking strength of the solution; this does not
appear to be the case. Sedgewick and Trevena [1978] studied the effects
of polyacrilamide additives on the breaking tension of water using a static
Berthelot tube method and a dynamic bullet piston method. In the static
case, the presence of the polymer additive did not noticeably change the
breaking tension, but in the dynamic tests the breaking tension was reduced;
the greater the concentration of polymer the greater was the reduction. To
understand these contradictory results it is necessary to better understand
how polymer additives modify the state of stress in a flowing fluid.
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Mathematical studies of the effects of polymer additives on cavitation
have not been published. There are two difficulties: the choice of the con-
stitutive equation and the calculation of the pressure; the “pressure” in an
Oldroyd B fluid and in a second order fluid are not in the same relation to
the mean normal stress. The composition of the stress into a pressure and
a part related a-priori to deformation is not unique, but the state of stress a
point given by different constitutive equations applied to the same problem
can be compared.

Ellis and Ting [1970] constructed an argument based on the second order
fluid noting that this fluid “... appears capable of explaining the observed
cavitation pressure due to flow.” Their idea is that cavitation suppression
is due to an overpressure in the region of the obstacle where the pressure
would ordinarily be low enough to permit cavitation in the case of water.
Further, they attribute the difference to the presence of a correction term
in the Bernoulli equation for a second order fluid.

Lumley agreed with the arguments and conclusions of Ellis and Ting
but he objected to using a second order model “... since it includes only
in a rudimentary way the effect of molecular extension...” which Lumley
argued was responsible for drag reduction. He gets a similar result using a
centerline Bernoulli equation for an Oldroyd B model.

Here, I am going to construct a mathematical analysis based mainly on
the second order theory in which the idea of Ellis and Ting is put to test; we
find there is a basis for the overpressure they mention, at the boundary of a
rigid solid, and there is a Bernoulli equation in potential flow with an extra
term. However, the extra term contributes to the promotion rather than
to the suppression of cavitation. It is certain that the second order fluid is
far from an ideal model for the fast flows usually studied in experiments on
cavitation. On the other hand, the second order fluid is the only model of
a viscoelastic fluid, other than the linear viscoelastic model, which admits
a pressure function in potential flow (Joseph & Liao [1996]). Moreover,
the second order fluid admits a pressure function of an entirely different
origin, for perturbations of Stokes flow, which allows one to draw conclusions
following from the no-slip or incomplete slip condition of real obstacles on
which cavitation bubbles appear that cannot be studied in potential flows.
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11 Potential flow cavitation of viscoelastic fluids

The constitutive equation for a second order fluid is usually given as

T = —pl+nA+a;B+ayA?, (38)
A
B = (96—t+u-VA+AL—|—LTA,
8’U,Z'
= Vu (L = —
u( v a,L.j)’
A = L+L7,
o = —lIJl/Q, 0522\1‘14-\1'2 (39)

where ¥; > 0 and W9 < 0 are the coefficients of the first and second normal
stress differences. (A typical value for estimates is ¥y = —0;/10)

The “pressure” p in (38) is not the mean normal stress; it is better for
cavitation studies to write (38) as

T=—p51+8 (40)

where, since TrA = divu = 0 and TrB = TrA?,

1 1
ﬁ:—gTrT:p—g(oq—i-ag) TrA? (41)
and
1
S =B+ aA? - g(al + ) TrA?2, TrS =0 (42)

The reader has already been alerted several times to the fact that the use
of p in cavitation studies has no rational foundation.

Joseph [1992] has shown that equations of motion for a second order
fluid admit all potential flow solutions; that is, velocity fields of the form

u=Ve, V=0 (43)
give rise to solutions of
pcé—ltl =divT, divu =0 (44)

where T is given by (38) and p has a Bernoulli equation with an extra term:

,
0
p+p&—éi‘rA2+pa—fz

= 0 (45)
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The extra term

N

—%’I‘race A?2=j3Vu:Vu<0 (46)
is positive whenever the climbing constant B = 3aq + 2ap is positive and it
acts in opposition to inertia p|u|?/2. Using the estimate ¥y = —0; /10 we
get

IB: AU +\111/2 = %\I}l > 0.

Since nearly all polymeric solutions climb rotating rods we may assume that
B > (. Looking at p in (45) we might conclude that the compression due to
the extra term in the Bernoulli equation is increased, suppressing cavitation
as was supposed by Ellis and Ting [1970]. However, the mean normal stress
P is another (more relevant) pressure given by

_ u? 1 0
P+ pu — —(5a1 + 2a2)Vu: Vu + p_(p =0 (47)
2 3 ot
gives rise to a different result. Since
bay + 2a9 = 20Uy — \D1/2 <0 (48)

the extra term in the mean normal stress promotes rather than suppresses
cavitation.

I have argued that cavitation at any point in a flowing liquid depends
on the state of stress and breaking stress there. For potential flow

0
B:(E+u-V)A+A2 (49)
and the deviatoric part S of the stress T is given by
S = (n+az)A + (a1 +ap)[A% - S1Tr A7) (50)

and the mean normal stress —p is given by (47) as

Op |uf® 1 2
—p=+p— — = —(2Uy — Uy /2)Tr A 51
P=tpg tro — 5202 = 01/2) (51)
since —2Ws + Uy /2 > 0 the term with TrA? is positive, tensile promoting
cavitation. Therefore the suppression of cavitation must arise from devia-
toric part of the stress. However, the deviator has both positive and negative
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eigenvalues (see Joseph [1992]) with the positive ones corresponding to ten-
sion, promoting cavitation.

The progressive reduction of the breaking strength with increasing con-
centration which was observed by Sedgewick and Trevena [1978] is consistent
with the analysis just given, but the use of a second order fluid model to
study cavitation in potential flows is not justified, too many effects are left
out of the model.

12 Flow cavitation on solids

We can study flow cavitation for nearly steady flow of a viscoelastic fluid over
bodies on which the no-slip condition applies as a viscoelastic perturbation
of Stokes flow. The second order fluid arises universally as the asymptotic
form taken by all the special models in common use. Though the motions
to which such an analysis can rigorously apply are restricted, the rheology
for those motions is completely general; every special model has 7, a1, s as
limiting values of model parameters in nearly steady slow motion.

The perturbation of Stokes flow with a second order fluid gives rise to
a pressure function for motions in two-dimensions (Tanner [1966]) and for
motions in three dimensions when a; = —ay (Giesekus [1963]). The impli-
cations for forces on solid particles of the two-dimensional reduction were
studied by Joseph [1996] and Joseph & Feng [1966] who showed that the
normal stress on each and every point on the boundary of a rigid solid is
given by

\1’1 ap
Ton —ps + %( 8: +u- Vps) - T'y (52)
where n is a coordinate along the outward n on the boundary ¥y = —2041,5;/

is the shear rate of the Stokes flow at that point and ps is the Stokes flow
pressure obtained from solving Vp, = nV?u for no-slip boundary condition.
For steady flows over stationary bodies like those used in cavitation studies
we get

Thn = —ps — —— (53)

which is positive in tension; the viscoelastic contribution —\111%/2 /4 is a com-
pression. In the three dimensional case with a; + as = 0, the Stokes flow
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%sin& where 0 is

problem can be solved and ps = poo — %n%cosﬁ and '(;/ = g
the polar angle.

The shear rate 'c))f is greatest where the streamlines of the Stokes flow
are most crowded; these are the “high” velocity points on the body. Since
compressive stresses are generated at “high” velocity points, we get addi-
tional “pressure” due to viscoelasticity precisely at the “cavitating” points
where the pressure is lowest in potential flow. The compressive contribu-
tion —\Ill'c;/2 /4 is largest, for example, near the equator of a sphere where
cavitation bubbles would appear if no polymers were present.

Van der Meulen [1973] has shown that cavitation inception on a hemispherical-
nosed stainless steel body in a water tunnel is greatly reduced by the presence
of polyethylene oxide, while a teflon coating showed a much smaller effect.
If gas is nucleated at the surface of the hydrophilic stainless steel body it
will be replaced by water. The additional pressure due to (52) is effective
in suppressing this nucleation of gas. The teflon coated sphere is hydropho-
bic. Since it likes gas, the liberation of cavitation bubbles is not so evident
and not readily replaced by water. The addditional pressure should also
work here, but its overall effect could be less evident due to the adhesion of
nucleated gas on the teflon.

The formula (53) should not be expected to apply strictly to the high
speed flows in which cavitation is suppressed in experiments. Moreover,
¥, is not known in the dilute solutions used in these experiments. It is
nevertheless of interest to use (53) for an estimate, to see if it gives rise to
a pressure level large enough to effect cavitation.

To construct such an estimate we first use data from figure 3 of Arndt
et al. [1976] for flow at U = 18.3m/s of a 20ppm solution in water of
Polyox WSR-301 over a 2R=7.62cm diameter hemispherical nosed body.
Estimating 7 = O(U/R) we get v ~ 500sec™!, 42 ~ 2.5 x 10%sec™2. To get
pressure increases of the order of the vapor pressure; i.e., one hundredth of
an atmosphere we would need to satisfy

Uy

- (25 % 105sec™2) = 10

4 dynes

(54)

cm?

or

100, = 0(1)5= (55)

cm

This is a value of ¥y smaller than those which can be measured on rheome-
ters but it is possibly larger than the value of U1 which could be expected
from solutions so dilute as 20ppm.
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A second estimate taken from data in Table 2 in the paper by Ellis,
Waugh and Ting [1970] for flow of different fluids over a 1/4 in radius hemi-
spherical nose body; typical shear rates are of the order of

U 500 1

— &~ — = 2000

r1/4 sec
For fluids, like aqueous 50 ppm polyox, for which cavitation suppression was
observed we need ¥, larger than

gm

1000, = O(l)c—m. (56)

Ting [1978] studied cavitation on flat top posts protruding from a disk

rotating in aqueous polyox FRA solutions with concentrations of 100, 250

and 500 ppm. The 0.29cm diameter posts were 0.29cm high and cavitation

suppression was observed for values of Re = pUd/n > 10° where, for water
p/n =100"! and d = 0.29. Hence

o U
v d/—2 =~ 5000sec

corresponding to estimates like (54) giving rise to

T; ~ 1.6 x 107382, (57)
cm
Dilute polymer solutions might have normal stress coeflicients larger than
(57) but nothing is known. In section 12 we will argue that these viscoelastic
effects, with very small ¥ = 2nA; where A; is the relaxation time of the
fluid, may be seen on small but not large bodies.

The estimates following from (53) are perhaps not so outrageous as to
eliminate consideration of the mechanism of inhibition of cavitation incep-
tion by shear-induced normal stress. This mechanism has not much in com-
mon with mechanisms involving extensional effects due to the irrotational
stretching of polymer coils which are popular in theory of drag reduction.
Some of the problems encountered in estimating the viscoelastic effects in
an irrotational strain field were discussed by Arndt et al. [1976] and they
appear to support an alternate explanation presented first by Arakeri and
Acosta [1973] which is discussed next.

Arakeri and Acosta [1973] have shown that polymer additives influence
the point of laminar separation and inhibit cavitation inception. Van der
Meulen [1976] did holographic studies in which he shows that when poly-
mers are added, separation of the boundary layer does not occur and the
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boundary layer exhibits a turbulent character. This may be compatible with
the inhibition of cavitation inception by shear induced normal stresses. In
a Newtonian fluid, the position of separation is controlled by the pressure
variation on the solid surface. In a viscoelastic fluid the normal stress T,
is not given by pressure alone and terms contributed by normal stresses due
to shearing do not vanish; obviously the fluid at the boundary of a solid can
sense T7,, only and various decompositions of the stress giving rise to dif-
ferent expressions for the pressure are not relevant. To their credit, Ellis et
al. [1970] recognize this when they say (p. 463) that “... cavitation bubble
inception is inhibited by an actual change of principal stress (or less pre-
cisely, pressure)...” The effects of viscoelastic contributions to the variation
of T,,,, on the boundary of a solid which determines the position of points of
separation are not clear. Arndt [1981] notes that “... All that can be said
at the moment is that available experimental and theoretical information do
not provide any clear cut criteria for the determination of early transition
in the flow of polymer solutions.”

13 Size effects and the elasticity number

A very interesting and robust effect in cavitation inception inhibition is that
the inhibition is large for small bodies and is negligible for large bodies.
Arndt et al. [1976] studied cavitation in two recirculating water tunnels
using four hemispherical nosed bodies ranging in size from 6.3mm to 203mm.
They found that the desinent value of the cavitation index was reduced
as much as 50% on the smaller bodies but the effect on the 203mm was
negligible. The effect persisted even in well degraded polymer solution.
Huang [1971] noted that the cavitation inception reduction was much smaller
when a larger model was used in a water tunnel. A small propellor was
observed by White [1971] to exhibit greatly reduced cavitation, in agreement
with the diameter effect hypothesis.

A size effect scaling with the square of the radius is consistent with the
equations governing the motion of viscoelastic fluids over bodies. For ex-
ample, in the flow of a second order fluid the effects of inertia proportional
to pu? and viscoelastic normal stresses proportional to \I'%Q are in oppo-
sition and estimating 'C)JI ~ u/a where a is the particle size, we find that
viscoelasticity dominates near the body when ¥y /pa? is large.

The same scaling follows from analysis of Oldroyd B fluids made di-
mensionless by [a, U, a/U, nU/a] = [length, velocity, time, stress]. The
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dimensionless equations for momentum and stress then take the form

Re(%—‘;Jrvu-vu) :—véwrv-fr,
T-I—DeT:A-I-i—fDeA

where V- u =0 and

v
T:%—’f-l-u-VT—Vu,T—T-VuT.

The parameters are:

Re =Uap/n (Reynolds number),
De=UM/a (Deborah number),
Ao/A1  (retardation / relaxation time ratio).

The maximum elastic effects are for A = 0 (Maxwell model). The fluid is
Newtonian when Ay = A; and 0 < Ag/A < 1.

Huang, Hu and Joseph [1997] used these equations to study the sedi-
mentation of an ellipse with semi-major axis a in an Oldroyd B fluid. They
found that the results correlated better with

E = De/Re = M\in/pa® (elasticity number)
and
M = vV ReDe =U/c (viscoelastic Mach number)

where ¢ = /n/A1p is the speed of shear waves. They found that when the
elasticity number is smaller than critical the fluid is essentially Newtonian
with broadside-on falling at the centerline of the channel. For larger elastic-
ity numbers the settling turns the long side of the particle along the stream
in the channel center for all velocities below a critical one; identified with a
critical Mach number of order one.

The elasticity number depends on the fluid and the particle size and not
on the velocity. It says that small particles can experience elastic response in
circumstances in which larger particles have essentially Newtonian response,
as in experiments on cavitating flows over bodies. On the other hand, the
Mach number does not depend on the particle size. The elastic response of
small particles is thus rather firmly implied by direct and elementary study
of the equations governing the motion of Oldroyd B fluids.
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14 Discussion

It is perhaps useful to think of cavitation as a topic in a more general theory
of breaking and mixing of incompressible materials in which cavitation and
fracture of amorphous solids are different, but perhaps related phenomena.
Such a theory might lead to better understandings of the dynamics of mixing
and mixers which is an important but as yet undeveloped subject.

The breaking of an incompressible continuum is obviously controlled by
breaking stresses and cavitation is not different. The fluid knows the state
of stress at a point but it cannot decompose this stress into a pressure deter-
mined by the flow dynamics and a constitutively determined extra stress. It
is however useful, and is always possible, to define the pressure as the mean
normal stress, even when, as in many viscoelastic fluids, it is not originally
so defined; in this case the extra stress is deviatoric, with plus and minus
entries on its leading diagonal.

It may be assumed that in each liquid or solid there is a field of breaking
strengths defined at each and every point of the continuum; this strength
field could be discontinuous with singular values at nucleation sites. The
breaking of a liquid requires that we compare some function of the principal
stresses with the strength criterion; for instance it would be consistent with
the literature on cavitation to look for the tensile strength of liquids. In this
case we look at the magnitude of the maximum value in the diagonalized
extra stress, which must be positive and compare it to the breaking strength
(cavitation inception) of the liquid. Our comparison requires that we distin-
guish also the direction of the maximum tension in the moving continuum,
which is determined by diagonalization of the stress tensor; we could look
at equi-tension lines and seek the locus of maximum values. It is not com-
pletely clear that the maximum tension is the right criterion, though it is
in some sense conventional and does appear to agree with experiments on
the tensile strength of liquids. One interesting consequence is that we could
test the criterion and the directionality of this criterion by setting the pres-
sure level slightly above the breaking strength in a pure shear flow between
parallel plates in which the maximum tension is 45° from the flow direction.

The state of stress in a flowing polymeric liquid could in principle have
strong effects on cavitation. The evidence from experiments with dilute
solutions used for drag reduction weighs strongly for cavitation inhibition,
though neutral inhibition results for cavitation on large bodies and a reduc-
tion in the breaking strength of liquids with polymer concentration have been
reported. It is argued that potential flow approximations are not appropri-
ate for cavitation studies except possibly in the case of acoustic cavitation.
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An analysis of cavitation inhibition of polymeric liquid based on the second
order fluid model, in which the original pressure in the model is embed-
ded in a more appropriate decomposition based on the mean normal stress,
shows that inhibition will not arise in potential flows, increased cavitation is
predicted. It was stressed that the definition of pressure in non-Newtonian
fluids is not unique and differs from one constitutive equation to another,
but the mean normal stress is uniquely defined and sets an appropriate level
against which one can measure the differences between principal compressive
and tensile stresses.

Another positive feature of the second order fluid model for studies of
cavitation is that a pressure function can be derived a-priori for flows which
perturb Stokes flow as well as for potential flows. In the Stokes flow per-
turbation the no-slip condition is applied so that the analysis is appropriate
for discussions of cavitation which originate from nucleation on solid bound-
aries. An additional normal stress Ty, equal to —\111%'2 /4 which is always
compressive and proportional to the square of the shear rate at each point on
the boundary of a solid body is equivalent to a viscoelastic pressure which
is large at places where the flow is fast, the opposite of inertia. Though
the speeds of cavitating flows are larger than those for which analysis based
on second order models is valid, estimates of the size effects do give rise to
additional pressures which could suppress nucleation at solids. An impor-
tant additional effect is that the variation of “backpressure” which controls
the position of points of separation would be changed by the presence and
variation of this additional viscoelastic pressure.

All evidence from experiments indicates that cavitaton inhibition is much
more pronounced on small than on large bodies. This observation is con-
sistent with the analysis of response Oldroyd B fluids. The controling pa-
rameters of these fluids are the Reynolds number Ua/v and the Deborah
number UM/a. The Deborah number shows a size dependence of the re-
quired kind, but the number depends on U which also depends on a. The
elasticity number E which is the ratio De/Re = Av/a? is independent of
U and it indicates enhanced elasticity for small bodies in a given fluid and
the size effect is proportional to a? rather than a. The predictions of vis-
coelastic response based on the elasticity number should be robust since it
arises from direct analysis of dimensions but it has not yet been tested in
cavitation studies.
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