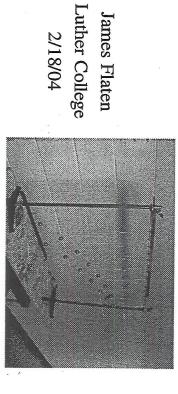
Pendulum Waves A Lesson in Aliasing



2/18/04

Outline

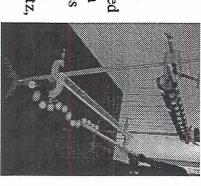
- "Pendulum Waves" apparatus
- "Mach's Wave Machine" -- analysis of standard sinusoidal traveling waves
- Extending the analysis -- pendulum waves are traveling waves, but with a twist!
- A lesson in aliasing (AKA sampling error)

Pendulum Waves apparatus

- Richard Berg, Univ. of Maryland -- origins unknown (but this is not Mach's "Wave Machine")
- What continuous function might that be?
- Thanks to Kevin Parendo

Mach's Wave Machine Standard Sinusoidal Traveling Waves

- Discussed in W. Weiler's Physikbuch #3 entitled "Schwingungen und Wellen," published ~1910
- A set of identical uncoupled pendula, launched one at a time, show traveling waves
- Thanks to Ronnie Cooper, Alex Nugent, Andrew Foltz, and Timo (Lego) Mechler



Motion of a single oscillator

$$y[t] = A\cos\left[\left(\frac{2\pi \, rad}{T}\right)t + \phi_{init}\right] = A\cos\left[\omega \, t + \phi_{init}\right]$$

- Displacement from center described by variable y which varies with time t.
- amplitude A. Object moves back and forth sinusoidally with
- Object goes through 2π rad of angle in period T. Call $2\pi rad/T$ the angular frequency ω .
- Angle Φ_{init} is used to get location right at t = 0

Describing a series of oscillators supporting a traveling wave

- Each oscillator gets its own ϕ_{init} which grows linearly with position down the line x.
- To ensure that ϕ_{init} changes by 2π rad as x grows by 1 wavelength λ , try $\phi_{init}[x] = \left(\frac{2\pi \ rad}{\lambda}\right) x = k \ x$

$$\phi_{init}[x] = \left(\frac{2\pi \, rad}{\lambda}\right) x = k \, x$$

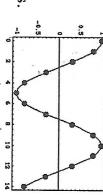
• Thus a traveling wave (moving left) is described by $y[x, t] = A\cos[\omega t + \phi_{init}[x]] = A\cos[\omega t + kx]$

Animating this traveling wave functional description

• At t = 0 that describes a cosine shape where kx gives each oscillator a unique ϕ_{init} .

$$y[x, t=0] = A \cos[k x]$$

• When animated, each oscillator cycles in the same time *T* and a wave pattern appears to move down the set of oscillators.



Now try to use similar ideas to describe "pendulum waves"

• Begin with a normal traveling wave description

$$y[x, t] = A \cos[\omega t + k x]$$

• In this case all oscillators are displaced by A at time t = 0 so

$$y[x, t=0] = A \cos[k x] = A$$
 so apparently $k = 0$!

• The key difference here is that the pendula do not have the same length, so ω is itself a function of x.

$$y[x, t] = A \cos[\omega t] \Rightarrow \Delta \cos[\omega x] t$$

Figuring out the function [x]

- Call the overall cycling time Γ (is about 20 sec).
- Next, number the pendula n = 20, 21, 22, ... where the n^{th} pendulum has a period $T_n = \Gamma/n$.
- Thus $\omega_n = \frac{2\pi \, rad}{T_n} = \frac{2\pi \, rad}{\Gamma/n} = n \left(\frac{2\pi \, rad}{\Gamma} \right)$

• Now if the spacing between pendula is d, then they are located at x = 0, d, 2d, 3d, ... which means

$$x_n = (n-20) d = n d - 20d$$
.

• Solving that for n gives x for the nth pendulum. $n = \frac{x_n + 20d}{d} = \frac{x_n}{d} + 20$

$$t = \frac{x_n + 20d}{d} = \frac{x_n}{d} + 20$$

•Thus
$$\omega_n = n \left(\frac{2\pi \, rad}{\Gamma} \right) = \left(\frac{x_n}{d} + 20 \right) \left(\frac{2\pi \, rad}{\Gamma} \right)$$
 and hence, continuously, $\omega[x] = \left(\frac{x}{d} + 20 \right) \left(\frac{2\pi \, rad}{\Gamma} \right)$

Proposed math description for a "pendulum waves" function

• Putting it all together, we have
$$y[x, t] = A \cos[\omega[x] t] = A \cos\left[\left(\frac{x}{d} + 20\right)\left(\frac{2\pi rad}{\Gamma}\right)t\right]$$

Try animating that.

Rewriting that expression

• This may be easier to understand when rewritten as

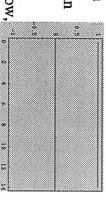
$$y[x, t] = A \cos \left[\left(\frac{2\pi \, rad}{\Gamma \, d} \, t \right) x + \left(\frac{40\pi \, rad}{\Gamma} \right) t \right]$$

which means $y[x, t] = A \cos[k[t]x + \omega_{20}t]$

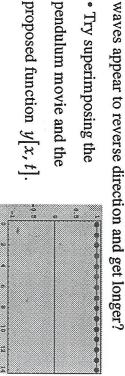
where
$$k[t] = \left(\frac{2\pi \, rad}{\Gamma \, d}\right) t$$
 so $\lambda[t] = \frac{2\pi \, rad}{k[t]} = \frac{\Gamma \, d}{t}$.

• Thus y[x,t] describes a traveling wave that begins with $\lambda[t=0]=\infty$ and then the wavelength λ shrinks as t^{-1} .

y[x,t] actually explain <u>all</u> the patterns the pendula show, -easier to understand, but can That makes the animation including those after $t = \Gamma/2$ when the pendulum



pendulum movie and the proposed function y[x, t]. Try superimposing the



Wow! Aliasing!

- pendula at all times, even though y[x, t] continuously \bullet Thus the proposed function y[x,t] does match the shrinks and never reverses direction!
- Notice that $\lambda[t=\Gamma/2] = \frac{\Gamma d}{\Gamma/2} = 2d$, exactly what we expect for the out-of-phase pattern.
- Similarly $\lambda[t=\Gamma]=\frac{\Gamma\,d}{\Gamma}=d$. Thus when the pendula "come back in phase again" there is actually a full cycle of y[x, t] between adjacent pendula!

Aliasing (AKA sampling error)

- Notice that for times $t > \Gamma/2$ there are more peaks and valleys in the function y[x, t] than there are pendula, so the pendula cannot possibly capture the true complexity of y[x, t].
- Indeed, at certain times the pendula appear to show a pattern much broader than y[x, t] that appears to travel to the right while y[x, t] consists of shrinking waves that travel to the left.

- Periodic (under)sampling of a periodic function can lead to patterns in the data that are very misleading.
 This is called "aliasing" or "sampling error."
- Aliasing is due to a (usually-unintended) coupling between the frequency of the signal and the frequency at which the signal is being sampled.
- For example, aliasing can occur if data is collected only at certain times.
 e.g. strobe effects
- In the case of pendulum waves, information about the functional shape is available at all times, but only at certain <u>locations</u> (the positions of the pendula).

References

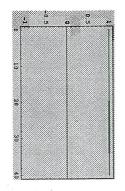
• J. A. Flaten and K. A. Parendo, American Journal of Physics, 69 (7), July 2001, pp. 778 - 782.

This paper also explores questions like "Does the function y[x, t], examined only at locations where there are pendula, look identical at $t = (\Gamma/2) + \varepsilon$

and $t = (\Gamma/2) - \varepsilon$ (times equally spaced before then after the out-of-phase time)? Answer: Yes!

Addendum

- One could extending the apparatus to longer and longer pendula, building n = 19, 18, 17, ..., 1, 0!
- If x is now measured from the n = 0 pendulum, we realize that pendulum waves are just a limited view of a collapsing accordion function.



www.mrs.umn.edu/~flatenja/pendulumwaves.shtml

www.physics.umd.edu/lecdem/services/demos/demosg1/g1-82.htm