First Principles Modeling of Phase Transformations in Materials

Ryan S. Elliott

Department of Aerospace Engineering & Mechanics

The University of Minnesota

Students

Dan Karls, Vincent Jusuf, Venkata Guthikonda, Slava Sorkin, Kaushik Dayal

October 19, 2007
Background

 – Michigan State University

M.S.E. Aerospace Engineering (1999)
 – The University of Michigan

M.S. Mathematics (2002)
 – The University of Michigan

 – The University of Michigan

Assistant Professor, Aerospace Engineering and Mechanics (2005)
 – The University of Minnesota
Solid-to-Solid Phase Transformations (PTs)

- Phase Transformations: crystal structures on the cusp of an *instability*

Chu & James (CuAlNi)
Arlt (BaTiO\textsubscript{3})

Shape Memory Alloys (SMAs)

- *shape memory effect*
- *pseudo-elasticity*

Materials Research Science and Engineering Center, at the University of Wisconsin - Madison,
www.mrsec.wisc.edu/Edetc/background/memmetal/
Scientific & Engineering Questions of Interest

• Why do these transformations exist and can we predict them from first principles?

I: First principles material model development (Dan Karls, Venkata Guthikonda)

II: Techniques for finding stable phases predicted by a model (Vincent Jusuf)

III: Techniques to solve engineering Boundary Value Problems (BVPs) based on these models (Slava Sorkin, with Prof. Tadmor)

IV: Study the possibility of finding phase transformations in biological- and nano-structures (Kaushik Dayal, with Prof. James)
I: First Principles Materials Modeling

- Effective Interaction Potentials (EIP)
 \[\phi(r; \theta) \] — temperature-dependent
 - “effective” change in behavior with temperature
 - fit to known material properties
 - predict other properties

- Captures the temperature dependent properties of phase transformations in shape memory alloys

- Molecular Dynamics (MD) studies
 - Understand nonlinear dynamics of phase transformations (time consuming)
 - Build statistical models that capture correct physics (efficient)
II: Finding Predicted Stable Material Phases

Suppose we have an excellent material model. How do we know what it predicts?

- Branch-Following and Bifurcation (BFB) techniques

Develop efficient and automatic methods to perform BFB investigations
- Automatic branch-following
- Automatic bifurcation point detection and identification of bifurcating branches
- Challenging issues in both applied math and computational science
II: Finding Predicted Stable Material Phases

- EIP models with BFB techniques
 - stress-induced transformations

Identification of stress induced transformation

Identification of other stable structures

Vast amount of information about the material’s energy function
II: Finding Predicted Stable Material Phases

- Example: motion of atoms in unit cell for one equilibrium path

Diagram:

- **Atom 1**
 - Motion in the x, y, and z directions

- **Atom 2**
 - Motion in the x, y, and z directions

- **Atom 3**
 - Motion in the x, y, and z directions
III: BVPs with First Principles Material Models

- Quasi-Continuum methods for phase transforming materials
 - Cascading Cauchy-Born kinematics (CCB)
 - Modeling and simulation issues for first-order PTs
IV: PTs in Biological- & Nano-Structures

- Objective Structures (Prof. James)
 - Generalization of the idea of a crystal
 - "each atom sees identically the same environment"

- Find formulas to generate *all* possible objective structures
- Develop numerical BFB techniques for objective structures and look for phase transformations