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Introduction

  The nationwide increase in air traffic has severely burdened the National Airspace

System (NAS).  The volume of air traffic is expected to double over the next 20 years,

prompting the development of new innovations in air traffic control such as free flight.

One of the primary concepts behind free-flight is allowing pilots to change routes in real

time without consulting with Air Traffic Control (ATC).  Consequently, this allows the

airlines to save time and fuel by allowing them the freedom to choose flight routes that

take advantage of atmospheric conditions (such as wind and temperature).

  The theory of optimal flight routing was investigated as early as 1981 during a six-

month study called Operation Free Flight1.  The study included voluntary participation

from Eastern, United, and Pan Am Airlines along flight routes serving 27 different cities.

The Operation Free Flight study projected fuel savings for the airlines to be around $40

million annually while at the same time having insignificant adverse affect on the air

traffic control system.  A similar study was conducted by American Airlines from 1992

to 19952.  Over the period of this study American Airlines flew preferred “wind routes”,

whenever possible, which demonstrated fuel savings of $2.2 million annually.  A NASA

study estimated that user preferred routing could result in an annual cost savings for the

Airline Industry of over $1 billion3.
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  The main purpose of this note is to show dynamic optimization algorithms can be used

to find flight trajectories that take advantage of atmospheric conditions, resulting in flight

times shorter than those of direct routes.

Aircraft Model

  This note uses a point mass model of a commercial passenger jet.  The calculations

performed represent flight in a horizontal plane with variations in altitude restricted.  The

only control variable is the heading angle of the aircraft.  The point mass equations of

motion are given by the following:

xwVx +ψ= sin& (1)

ywVy +ψ= cos& (2)

  Where V is the true airspeed of the aircraft, wx and wy are the wind velocities in the east-

west and north-south directions respectively, and ψ is the heading angle of the aircraft

referenced from north.

  The true airspeed of the aircraft is dependent on the Mach number and temperature.  In

order to simulate the flight conditions for a commercial aircraft a Mach number of 0.8

and atmospheric temperature of –70.9 degrees Fahrenheit was used.  All heading changes

are instantaneous.

Atmospheric Modeling

  Calculation of minimum-time trajectories using a dynamic optimization algorithm

depends on wind gradients along the flight route, therefore, it is desirable to use an

interpolation method that provides the wind speed and direction at any point along the

flight route, gives reasonable wind gradients from one region of the country to next,

allows real winds aloft data to be used at interpolation nodes, and minimizes processor

time and memory storage.  The wind model for this note is a steady state model; therefore

wind gradients are due solely to position.  It should be noted that the purpose of this



interpolation scheme was to provide “realism” to the wind profile and not necessarily

accuracy.

  The main premise of this wind model is to use winds aloft data from certain cities

around the flight path.  As the aircraft moves along its trajectory the winds at the

aircraft’s location depends on the aircraft’s proximity to each city.

  Winds aloft data is given in the form of a wind magnitude and direction.  This data was

converted to wind velocities in the x and y directions, (i.e. wx and wy).  These velocities

are then applied to an interpolating set of equations.  For the sake of simplicity Figure 1

and equations (3) and (4) use only four general cities to display the concept behind the

wind model.  The actual calculations used seven nodes for the first set of results and

fourteen nodes for the second.
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  Where wxA is the wind magnitude at the aircraft’s location in the east-west direction and

the other wx’s are the wind magnitudes at the interpolation nodes.  The wind in the north-

south direction, wyA is calculated in the same manner.
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Fig. 1 Simplified city to aircraft distances used for weighted interpolation.



Problem Formulation

  The problem investigated in this note is to find the minimum time of flight from

departure city to destination city subject to equations (1) and (2).  Minimum time flights

that took advantage of the winds aloft were found using dynamic optimization algorithms

written in C.

  Dynamic optimization is the process of determining the control histories of a dynamic

system over a finite time in order to minimize a performance index.  The Combined

Function and Parameter Optimization Algorithm implemented for the optimal trajectories

in this note solves Bolza type dynamic optimization problems with terminal constraints

and open final time4.  The algorithm requires that the initial states be specified along with

initial guesses of the control history and unknown parameters (in this case final time).  In

addition, controller, parameter, and terminal improving step sizes must be selected.  The

control improve step size was 10-3 rads, while the parameter improve step size and

terminal improvement factor were 10-2.  Terminal, optimality, and parameter accuracy

were of the order 10-8.  The initial guess of constant control and final time depend on the

direction of flight and the user’s experience.  Convergence of the algorithm does not

guarantee a ‘global’ optimum; therefore several initial guesses are investigated.

  Forward and backward integration is performed using Hamming’s modified predictor-

corrector method, along with a special Runge-Kutta starter.  Definite integrals are

calculated using Simpson’s rule.

Nominal Calculation

  For the purpose of comparison, nominal calculations were also performed for the same

Mach number and atmospheric conditions as the optimal calculations.  The nominal

calculation consisted of a fourth order Runge-Kutta integration of equations 1 and 2

along a direct path between the departure and arrival cities.  In order for the velocity



vector of the nominal flight to always point towards the Destination City the heading

angle needed to be adjusted using equations (5)-(9).

    tanθ−=∆ yAxA ww (5)
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  Where ψc is the wind corrected heading angle.  The integration for the nominal

calculations is performed until the aircraft position is within a certain tolerance of the

Destination City.  This is achieved through numerical capture methods.

Results

  The first set of results in this note represents flights between Minneapolis, Minnesota

and San Francisco, California.  The atmospheric model used seven interpolation nodes

and flights were calculated to and from each city over a ten-day period.  The winds aloft

data for each day was taken from the Aviation Weather Center Website5.  The time saved

on flights from Minneapolis to San Francisco averaged 2.7 minutes per flight. The

average from San Francisco to Minneapolis was slightly less at 2.65 minutes per flight.

Generally, flights in the eastern direction have the advantage of a tail wind and therefore

flight times will be lower.  Obviously, the shorter the flight-time, the lower the

opportunity to save time.  The time saved for each flight over this ten day period is shown

in Figure 2.  The flight trajectory, ground speeds, and control histories for both the

nominal and optimal flight from San Francisco to Minneapolis on Day 10 is shown in

Figure 3.  This optimal flight path resulted in a time saving of 7.2 minutes.



Fig. 2 Time saved on San Francisco-Minneapolis Route.

  The second set of calculations modeled flights from Boston, Massachusetts to Seattle,

Washington and flights again from Boston to Orlando, Florida.  The wind model used

fourteen interpolation nodes.  Again, calculations were performed for a ten day period

however, for these calculations only a few of the nodes had their data changed from day

to day in order to get an idea of how sensitive an optimal flight would be to wind changes

only in a small region around the flight route.  The average savings from Boston to

Seattle were 2.4 minutes and 1.56 minutes for the Boston to Orlando route.  The results

for all calculations are shown in Figure 4.

  A study performed by Delta Air Lines utilized computer programs that optimized flight

routes for time and fuel subject to winds, weather, and air traffic6.  The results of the

Delta study found that implementation of free flight may result in an average reduction in

block times of two minutes.
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Fig. 3 Flight path, ground speed, and control history for San Francisco to
Minneapolis flight on Day 10.
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Fig 4 Time saved for Boston to Seattle and Boston to Orlando Routes.

  It should be noted that the day to day changes in the wind were relatively small.

However, even slight variations in wind can result in significant changes in the time

saved from one day to the next.

Conclusion

  This note investigates the timesaving an aircraft can achieve by taking advantage of the

atmospheric conditions.  Heading angle was used as the variable control.  By minimizing

a performance index a control history for the heading angle could be found that

minimized the time of flight between a departure and destination city.  A weighted

interpolation scheme was used to model the atmosphere.  Optimal calculations were

performed for ten day periods and compared with a nominal flight time.  Longer flights

such as those between Minneapolis and San Francisco as well as Boston and Seattle

saved on average over two minutes while the slightly shorter route between Boston and

Orlando saved about a minute and a half. One of the findings from this note is that on

certain days there will be no improvement over the nominal time.  Ideal wind conditions

that will allow for large improvements over the nominal time will occur when there are

large wind gradients on either side of the straight flight path.
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