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Feedback flow control is developed to suppress the transient energy growth of flow dis-
turbances in a linearized channel flow. Specifically, we seek a controller that minimizes the
maximum transient energy growth, which can be formulated as a linear matrix inequality
problem. Solving linear matrix inequality problems can be computationally prohibitive
for high-dimensional systems encountered in flow control applications. Thus, we develop
reduced-order fluids models using balance truncation and proper orthogonal decomposition
techniques. These models are designed to optimally approximate system energy while pre-
serving the input-output dynamics that are essential for controller synthesis. Controllers
developed based on these reduced-order models are found to reduce transient energy growth
and to outperform linear quadratic controllers in the context of a linearized channel flow.

I. Introduction

In a wide sense, flow control is the manipulation of a fluid flow by passive or active means in order to
achieve a beneficial result [1]. Flow control is a burgeoning field of fluid dynamics where modern control
methodologies are applied to fluid systems to regulate, suppress, and control undesirable mechanisms that
lead to flow instabilities that degrade performance. Of particular interest in the current study is to use
feedback flow control to suppress flow instabilities that transition a flow from a low-drag laminar state
to a high-drag turbulent state. Laminar to turbulent transition in shear flow often arises at a Reynolds
number (Re) well below the critical Re determined from a linear stability analysis of the Navier-Stokes
equations about a laminar equilibrium profile [2]. Extensive studies have suggested that sub-critical transition
arises as a result of non-modal mechanisms for transient energy growth (TEG) of flow disturbances [2–5, 25].
In turn, numerous studies have sought to delay transition by reducing TEG through the implementation
of passive and active control strategies. This paper predominantly deals with the reduction of TEG using
modern feedback control theory, as discussed in future sections.

Active flow control via feedback is able to modify the natural dynamics of the system, and so can be
used to reduce TEG and delay transition. Indeed, numerous investigations have sought to reduce TEG
and delay transition using classical and modern feedback control techniques [6–10, 12]. Linear quadratic
optimal control synthesis has been a prominent control approach in many transition delay investigations
and has been successfully demonstrated for a number of flow control applications. However, linear quadratic
optimal control techniques may not be the most natural choice for TEG reduction. Linear quadratic control
techniques are optimal in the sense that they minimize the balance of the integrated perturbation and
input energies over some time horizon; although experience suggests that linear quadratic designs can be
tuned to reduce TEG, there are no guarantees that controllers that aim to minimize integrated energies will
minimize—or even reduce—TEG. Rather than designing controllers in this standard manner, it seems more
appropriate to design optimal controllers that explicitly include TEG reduction in the objective function.
Indeed, a more suitable control objective for TEG reduction would be to minimize the maximum TEG, as
proposed by Whidborne and colleagues [11, 13]. The maximum TEG is the peak energy that arises from a
worst-case or optimal disturbance [3]; thus, minimizing the maximum TEG ensures that TEG will be reduced
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from all disturbances. The associated controller synthesis problem for minimizing the maximum TEG can
be recast as a linear matrix inequality (LMI), which can be solved using numerical methods developed in the
optimization community (e.g., interior-point methods [14]). However, the associated LMI problems tend to
be computationally demanding for the high-dimensional systems encountered in flow control applications;
indeed, the memory demands of such methods scale as O(n6), where n is the state dimension [13].

One approach to overcoming the computational challenge of LMI-based controller synthesis is through
the use of model reduction techniques [23, 24]. Indeed, reduced-order models (ROMs) have been leveraged in
a number of flow control applications, including the use of global mode truncation for LMI-based synthesis in
channel flow [13]. Global modes capture physically relevant flow structures that contribute to TEG, making
the approach natural for model reduction. Moreover, global modes can easily be used to reconstruct the full
state of the system, and can thus be used to approximate the physical energy of the system—an important
consideration for TEG studies. However, despite their physical relevance and convenience, ROMs based on
global modes are not necessarily the best choice for controller synthesis in the context of TEG. Global modes
are not the optimal basis for capturing the energy of the system—proper orthogonal decomposition (POD)
is optimal for approximating system energy. Nor are global modes optimal for capturing the input-output
dynamics of the system—balanced truncation (BT) is optimal for approximating input-output dynamics.

In the present study, we advocate for a combined POD-BT approach (i.e., balanced truncation with output
projection [16]). for arriving at suitable control-oriented ROMs for TEG reduction. Specifically, we propose
to project the full-state output onto a reduced basis of POD modes, in order to optimally approximate the
physical energy of the system—a quantity that must be faithfully captured for TEG reduction. We then
leverage the balanced truncation technique to optimally capture the input-output dynamics of the system—
i.e., the dynamics from control inputs to POD coefficients. In the event that balanced truncation cannot
be performed directly, then the balanced POD method can be used instead [16]. The results of this study
indicate that this approach can reliably generate low-order fluids models that make LMI-based controller
synthesis tractable and effective at minimizing the maximum TEG on the full-order fluids system.

This paper is organized as follows: Section II is categorized into two sub-sections, where subsection II.A
provides a brief introduction to the LQR and LMI control synthesis methods. The subsection II.B details
the reduced-order modeling framework developed for fluid flows. We begin section III, by briefly describing
the linearized channel flow model used for reduced-order modeling and controller synthesis in this paper.
In subsection III.A we study the performance of the reduced-order models with respect to the full-order
model. The subsection III.B discusses the performance of controllers in suppressing TEG, the controllers
are developed using the reduced-order modeling framework introduced in this paper. Section IV draws
conclusions on the performance of the reduced-order models and controllers.

II. Reduced-Order Modeling and Controller Design

II.A. Controller Synthesis

Consider the linearization of the Navier-Stokes equations about a laminar equilibrium profile,

ẋ(t) = Ax(t) +Bu(t) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input vector, and t ∈ R is time. The perturbation
energy as a function of time is then given by,

E(t) = xT (t) Q x(t), t ≥ 0 (2)

where Q = QT > 0 is a weighting matrix. The maximum TEG (Θ) is defined as,

Θ = max
t≥t0

max
E(t0) 6=0

E(t)

E(t0)
, (3)

which results from a so-called worst-case or optimal disturbance [3].
Linear quadratic optimal control has been studied extensively for TEG reduction and transition delay [12,

13, 17]. The linear quadratic regulator (LQR) problem aims to find the control input that minimizes the
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integrated balance of state and input energy,

min
u(t)

J =

∫ ∞
0

(xTQx + uTRu)dt (4)

subject to the linear dynamic constraint in (1) and R > 0.
As we have already discussed, LQR control is not guaranteed to minimize or even reduce TEG. Here, we

instead follow the approach of [11, 13], and aim to find a feedback law that minimizes the maximum TEG, Θ.
A detailed derivation and description of the synthesis approach can be found in [11]. Here, we only present
highlights of the approach. To simplify our presentation here, we take Q = I. Note this is done without loss
of generality since the state can always be transformed as x̂(t) = Q1/2x(t) to satisfy this condition. Then,
a feedback control law that minimizes the upper bound Θu of the maximum TEG can be determined from
the solution to the LMI generalized eigenvalue problem [11]:

min γ

subject to I ≤ P ≤ γ I

P = PT > 0

AP + PAT +BY + Y TBT < 0

(5)

Here, γ upper bounds Θu, and so minimizing γ minimizes the maximum TEG. The resulting full-state
feedback control law is given by u(t) = Y P−1x(t). The LMI problem in (5) can be solved by standard
techniques [14]; however, these standard algorithms can be computationally demanding, with memory re-
quirements scaling as O(n6), where n is the state dimension [13]. This is a prohibitive property of the LMI
formulation for high-dimensional systems, such as fluid flows. In the next section, we discuss an approach for
generating reduced-order models that can make these computations tractable for many applications, while
still yielding controllers that perform well on the full-order system.

II.B. Control-Oriented Reduced-Order Modeling

The development of LMI-based controllers becomes challenging in the context of the high-dimensional sys-
tems of interest in flow control applications. In this section, we outline an approach for model reduction that
will be suitable for LMI-based synthesis aimed at minimizing the maximum TEG, described above. Since
the notion of energy is central to TEG, it will be important to faithfully capture the system energy with the
resulting reduced-order model (ROM). Further, since we are interested in control system design, it will also
be important to faithfully capture the input-output dynamics of the system. Both of these objectives can be
achieved through the use of balanced truncation with an output projection onto a reduced set of dominant
POD modes. Indeed, it is well-established that POD modes constitute an optimal reduced basis for approxi-
mating the system energy. Further, by treating the associated POD coefficients as system outputs, balanced
truncation can be performed to optimally capture the response of POD coefficients to control inputs. A
more detailed discussion of these ideas can be found in [23]. Here, we briefly summarize the general ideas
surrounding the model reduction procedure.

To compute the POD modes (Φr), we first transform the system such that Q = I, as described pre-
viously. In this new basis, we require the impulse response matrices Gi(t) from the ith input to the
full-state output for each of the p inputs. Here, we numerically form a matrix of impulse response data

H :=
[
G1(t) G2(t) · · · Gp(t)

]
and perform a singular value decomposition (SVD) of H to determine

the dominant POD modes using the snapshot POD method. The leading r < n left singular vectors are
stored in a matrix Φr, corresponding to the set of r dominant POD modes that optimally capture the system
energy. Specifically, we have

E(t) ≈ zT (t)ΦT
r Φrz(t), (6)

which is the closest approximation of the energy defined in (2) (recall that POD modes here were computed
in a transformed basis such that Q = I).

With the POD truncation completed, we next augment the original system in (1) with an output equation
that corresponds to the POD coefficients z(t),

ẋ(t) = Ax(t) +Bu(t)

z(t) = ΦT
r x(t).

(7)
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At this point, note that the number of outputs is equal to the number of POD modes r that have been
retained for energy modeling; however, the state dimension is still n > r. We now proceed to perform a
balanced truncation of the system in (7) in order to reduce the number of states in the model to s < n, while
optimally preserving the input-output dynamics.

To do so, we first perform a balancing transformation x̄ = Tx such that the controllability Gramian Wc

and observability Gramian Wo are equal and diagonal. A truncation can now be performed in this balanced
coordinate system, thus allowing the s most controllable and observable modes (i.e., those with relatively
large Hankel singular values (HSVs)) to be kept, and the n − s least controllable and observable modes
(i.e., those with relatively small HSVs) to be discarded.

The reduced-order system after truncation is of the form:

˙̄x1 = Ā11x̄1 + B̄1u (8)

y = C̄1x̄1 (9)

where x̄1 ∈ Rs, Ā11 ∈ Rs×s, B̄1 ∈ Rs×p, and C̄1 ∈ Rr×s. In this work, we take the number of states in the
reduced-order model to be the same as the number of POD modes used for output projection (i.e., r = s);
therefore, we will use r to report the order of the reduced model in section III.

III. Results

The linearized channel flow problem has been used as the system model. The controller synthesis approach
and the ROM approach described in previous sections have been applied to this model. The channel flow
equations are linearized about the laminar solution. After linearization, another approximation of spatial
discretization has been performed. The system has been discretized in the stream-wise, span-wise and wall-
normal directions, and this is done using the Fourier-Fourier-Chebyshev spectral collocation method. To
provide actuation, wall-transpiration using blowing and suction with zero net mass flow is applied at the
upper-and lower-walls of the channel. This system uses simultaneous wall normal actuation with the rate of
flow as the system input. Full details of this model are outlined in [18].

y

x

z

UPPER WALL

LOWER WALL

U(y)

Stream-wise

Figure 1: A schematic representation of the channel flow coordinate system.

We investigate the performance of the reduced-order model compared to the full-order model. In this
paper, we study the system with stream-wise and span-wise wavenumber pair (α, β) = (1, 0). The resulting
full-order model has the state dimension n = 199. While we study a system using a single set of wavenumber
pairs, the Reynolds number (Re) and dimension of the reduced-model (r) are varied to analyze controller
performance.

III.A. Reduced-order models

To analyze the performance of the reduced-order modeling approach, we compare the frequency response of
the ROM with that of the full-order model (FOM). For multiple-input multiple-output (MIMO) systems,
it is common to study the variation of the system’s principal gains, which can be used to assess a system’s
input-output behavior [21]. From the frequency domain analysis, the ROMs seem to reasonably capture the
frequency response of the full-order system for r ≥ 6 at Re = 1000, 3000 and Re = 5000 (Figure 2).

To better understand the performance of the ROMs, we perform a time-domain analysis by subjecting
the system to an arbitrarily constructed input signal that contains multiple frequencies. The results for
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Figure 2: Frequency response of FOM and ROMs shows the singular values over frequencies for 3 different
Reynolds number (Re).

the time-domain analysis at Re = 3000 are shown in Figure 3. Even though a frequency domain analysis
provides a reasonable approximation at high and low frequencies with r = 6, we can see in Figure 3 that the
model of order r = 6 performs poorly to capture the dynamics of the FOM; in contrast, ROMs with r ≥ 10
capture the time-domain response much better. To better quantify this, we use the root-mean square error
(RMSE) between the FOM and ROMs as a metric to evaluate the performance of the reduced-order models
performance in the time domain. The RMSE between the FOM and various ROMs is shown in table 1a. It
is clear that a higher-order ROM will better approximate the FOM, as is expected.
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0
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FOM
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 r = 10

 r = 20

 r = 50

Figure 3: Time domain response of various reduced-order models, when subjected to an arbitrary input
signal with multiple frequencies. A reduced-order model of r ≥ 10 captures the dynamics of the full-order
model of dimension n = 199. The increase in r enables better capturing the full-model dynamics.

We next compare the HSVs between the ROMs and the FOM (see Figure 4b). In our system, the four
dominant input-output modes are associated with the actuator dynamics, but these are not plotted here.
We also analyze the contribution of the POD modes in Figure 4a, as POD modes are used in our system to
find the closest approximation of energy. It is necessary to capture most of the energy of the system, and
thereby an appropriate number of POD modes must be chosen. From the results here, it can be seen that
the first 9 POD modes capture > 96% of the energy; however, it is necessary to have at least 50 POD modes
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r=5 r = 6 r = 10 r = 20 r = 50

RMS Error 3.6509 0.8222 0.0840 0.0029 8.8797× 10−6

Table 1: RMS Error between full-order model and reduced-order model decreases with increase in r. The
dimension (n) of the full -order model is n = 199 and the Re = 3000.

to capture > 99.99% energy. For the LMI-based synthesis conducted here, it is required that the number of
POD modes and the number of balancing modes must be the same (i.e., r = s). Thus, the model dimension
is dictated by analysis of both the HSV analysis and the cumulative energy analysis.
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(a) Cumulative energy contribution of each POD mode at
Re = 3000 & r = 40.
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(b) Normalized Hankel Singular Values of the system at Re =
3000 & r = 40.

Figure 4: POD and Hankel Singular Values of the system with Re = 3000.(a) 9 POD modes capture ≈ 96%
of the energy while 50 modes are essential to capture ≈ 99.99% energy. (b) The Hankel Singular Values
(HSV) are normalized by the sum. The HSV shows the contribution of each mode in capturing input-output
dynamics.

III.B. Feedback Control

In this section, we use the ROMs from the previous section to design control laws, then implement these
controllers and study performance on the FOM. The performance here is reported in terms of the response
of energy to an associated optimal disturbance, which is calculated using the methods described in [22].
The controlled response for LQR and LMI-based control for Re = 3000 is reported in Figure 5. As r is
increased, it is seen that the ROM-based LQR controller quickly starts to approximate the performance of
the full-order LQR controller. For the LMI-controller, we see that for r < 38, the resulting controller will not
outperform LQR controllers developed on the FOM or any ROMs; however, for r ≥ 38, the ROM-based LMI
design reduces the maximum TEG relative to these other control approaches. For r = 40, the ROM-based
LMI controller reduces the maximum TEG to almost half of that attained by LQR controllers. Note, even
at r = 40, this significant reduction in the order of system relative to n = 199.

For r = 40, the 30 dominant eigenvalues of each of the closed-loop systems are plotted alongside the
uncontrolled FOM in Figure 6. The uncontrolled system has two poles at zero, which are integrators
associated with the actuator dynamics. It can be seen in Figure 6 that the LMI controller mostly alters
the spectrum of eigenvalues with real part ≥ −0.5. The closed loop system with LMI and LQR on the full
order model place the eigenvalues with real part ≤ −0.6 very close to each other. Comparing the LQR-FOM
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Figure 5: In figure 5a through 5e, LMI controllers performance in suppressing transient energy growth gets
better as the order of the reduced system is increased, while the LQR controller developed on the reduced
system starts performing similar to the LQR developed on the full-order model at order approximately
r = 20. The inset in (c) & (d) shows changes observed in transient energy.
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with LQR-ROM eigenvalues reveals a striking similarity, helping to explain the similarity observed in the
response of these controlled systems. The streamwise velocity profiles associated with the five dominant
modes from each system are reported in Figure 7. It can be seen in Figures 7a through Figure 7e, that the
LQR controllers developed on the reduced-order model and full-order model have a very similar performance.
In contrast the LMI control yields modes that are dissimilar to both the LQR controllers in various regions
along the wall-normal direction, except for in Figure 7a where the LMI control closely resembles the LQR
control.

We also performed a robustness assessment of the LMI controller designed for Re = 3000. A study was
conducted by varying Re by 10%, which was found to cause the LMI controller to destabilize the system. In
this respect, both LQR controllers outperformed the LMI controller; they were found to be more robust to
parameter uncertainty
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Figure 6: 30 dominant eigenvalues of the uncontrolled and controlled system.

Finally, we conduct controller designs for Re = 5000 and Re = 10000 (see Figure 8). Note that the
Re = 10000 case is linearly unstable without control. We find that the model order required to achieve
adequate control performance differs between these systems. However, in all cases, LMI-based synthesis
using a ROM is able to outperform the LQR-based controllers in terms of reducing TEG.

IV. Discussion and Conclusion

In this study, we have shown that it is possible to develop controllers to minimize the maximum transient
energy growth using ROMs. The ROMs introduced in this paper have been shown to be effective in capturing
the input-output response of the original system, while also maintaining a faithful approximation of the
system’s energy. The use of ROMs for controller synthesis enables us to achieve a superior reduction in
TEG relative to linear quadratic designs; however, it should be noted that the ROM-based LMI controllers
developed here were found to be sensitive to Re variations, thus lacking desirable robustness properties.
This is a disadvantage for flow control since exact models are rare. Future work will need to investigate
techniques by which to robustify these controller synthesis techniques.

V. Acknowledgments

This material is based upon work supported by the Air Force Office of Scientific Research under award
number FA9550-17-1-0252, monitored by Dr. Douglas R. Smith.

8 of 11

American Institute of Aeronautics and Astronautics Paper 2018-3690



-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 LMI-ROM

LQR-FOM

 LQR-ROM

(a) Mode 1: The associated closed loop
eigenvalue are λLMI ROM = −0.0639−
i0.935, λLQR ROM = −0.0640− i0.9355
& λLQR FOM = −0.0640− i0.9355.

-1 -0.5 0 0.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
 LMI-ROM

 LQR-FOM

LQR-ROM

(b) Mode 2: The associated closed
loop eigenvalues are: λLMI ROM =
−0.0665 − i0.9355, λLQR ROM =
−0.0644 − i0.9359 & λLQR FOM =
−0.0644− i0.9359.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 LMI-ROM

 LQR-FOM

 LQR-ROM

(c) Mode 3: The associated closed
loop eigenvalues are: λLMI ROM =
−0.0676 − i0.3570, λLQR ROM =
−0.1130 − i0.4195 & λLQR FOM =
−0.1131− i0.4195.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 LMI-ROM

 LQR-FOM

LQR-ROM

(d) Mode4: The associated closed loop
eigenvalues are: λLMI ROM = −0.0757 −
i0.4826, λLQR ROM = −0.1149− i0.8839 &
λLQR FOM = −0.1149− i0.8839.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 LMI-ROM

 LQR-FOM

LQR-ROM

(e) Mode 5: The associated closed loop
eigenvalues are: λLMI ROM = −0.0966 −
i0.4487, λLQR ROM = −0.1155− i0.8852 &
λLQR FOM = −0.1149− i0.8839.

Figure 7: Real part of 5 most dominant eigenvectors for Re = 3000,r = 40 and the associated eigenvalues
are listed in the sub-caption.

0 10 20 30 40 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5
LQR-FOM

LMI-ROM

LQR-ROM

0 1 2 3 4

10
-3

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(a) The controller is implemented on a
system with Re of 3000 & r = 40.

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

LQR-FOM

LMI-ROM

LQR-ROM

0 1 2 3 4 5

10
-4

1

1.2

1.4

1.6

1.8

2

(b) The controller is implemented on a
system with Re of 5000 & r = 40.

0 5 10 15 20 25 30 35 40 45 50

2

4

6

8

10

12

14

LQR-FOM

LMI-ROM

LQR-ROM

0 0.02 0.04 0.06 0.08 0.1

1

1.5

2

2.5

(c) The controller is implemented on a
system with Re of 10000 & r = 20.

Figure 8: The LMI controller suppresses transient energy growth effectively in the sub-critical regime while
performing slightly better than the full-order LQR and much better than the LQR on reduced-order model
in the unstable regime. The inset in (a), (b) & (c) shows changes observed in transient energy.
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