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Methods for adaptive control of flow separation based on dynamic mode decomposition
(DMD) are formulated and implemented on a canonical separated flow subjected to actuation
by a zero-net mass-flux (ZNMF) jet actuator. Using a linear array of unsteady surface pressure
measurements, dynamical characteristics of a laminar separation bubble subjected to forcing
are extracted by online DMD. This method provides reliable updates of the modal characteris-
tics of the separated flow as forcing is applied at a rate commensurate with the characteristic
time scales of the flow. Therefore, online DMD applied to the surface pressure measurements
provides a time-varying linear estimate of the nonlinear evolution of the controlled flow, thereby
enabling closed-loop control. From this adaptive model, feedback control is implemented in
which the Linear Quadratic Regulator gains are computed recursively as the model provided
by online DMD is updated. The controller’s explicit objective is to reduce the unsteady pres-
sure fluctuations measured by surface mounted microphones within the separated flow region.
Since this approach relies solely on observations of the separated flow, it is potentially robust
to variable flow conditions. The chord Reynolds number of these experiments is 105 and the
pulse-modulated zero-net mass-flux actuator slot is located just upstream of separation. It
is found that applying adaptive feedback control using the LQR approach to determine the
feedback gains results in slightly better flow reattachment (2% lower separation height) with
a 5% reduction in actuator effort as compared with the best open loop forcing case. This
approach does not require prior knowledge of the characteristics of the separated flow.

I. Introduction
A common goal of active flow control is to drive the dynamics of a particular fluid flow process to a more favorable

condition with as little external effort as possible. This is often achieved by leveraging the inherent aerodynamic
instabilities and allowing small inputs to be amplified to significantly impact the flow. Active flow control can be
employed to alter aerodynamic forces over a body to increase lift and reduce drag, enhance mixing for efficient
combustion processes, or target flow instabilities for aeroacoustic attenuation.

Boundary layer separation is at the heart of many detrimental conditions in aerodynamics. The increased pressure
drag, loss of lift, and enhanced oscillatory loads due to flow separation can result in unfavorable conditions over a wing
of an aircraft or blade elements in turbomachinery. Therefore, active flow control methods have been employed to delay,
reduce, or reattach separated flow. The underlying dynamics of boundary layer separation are characterized by as
many as three separate physical processes, which include the shear layer vortex amplification and convection due to
the Kelvin-Helmholtz instability, wake dynamics, and separation bubble oscillations [1]. Depending upon the flow
conditions, the frequencies associated with these processes may exhibit nonlinear lock-on [2].
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Regarding efficient separation control design and implementation, many parametric studies have been conducted
in which actuation parameters are varied, and the performance is evaluated a posteriori [3–7]. Oscillatory actuation
frequency was introduced as an important control parameter when Seifert et al. showed that control authority is
potentially increased when an unsteady component is introduced [8]. Several studies aimed at determining the
appropriate forcing frequency suggest forcing at the most amplified shear layer instability frequency results in flow
separation mitigation [9–12]. However, this is not likely a universal optimal forcing frequency since Raju et al. show
that the ideal forcing frequency varies with respect to actuator placement relative to the separation point [7].

Furthermore, the very goal of reducing the extent of a separation bubble by unsteady actuation suggests that the base
state of the separated flow will undergo nonlinear deformation which will alter the preferred frequencies of the flow.
Therefore, the optimal forcing frequency may vary as the base state is deformed. This is supported by the work by
Marxen et al. in which the authors provide evidence that the optimal frequency is near the most amplified frequency of
the controlled flow (as opposed to that of the uncontrolled flow) as identified by linear stability analysis [12]. This
provides motivation for adaptive closed-loop separation control in which the dynamical model of the separated flow is
updated as actuation is applied.

Moving to closed-loop separation control introduces additional complexity related to dynamical model derivation,
objective function specification, and state measurement and estimation. The study by Tian et al. employ a downhill
simplex approach to estimate the optimal control parameters for maximizing the lift to drag ratio for an experimental
airfoil [13]. In this experiment, the aerodynamic forces acting on the airfoil were provided to the controller by a load
cell. Additionally, Reese et al. use a neural network for adaptive system identification and control with the goal of
maximizing lift over an airfoil estimated by a limited number of pressure sensors [14]. While these approaches were
effective, they respond and adapt on timescales of the integrated aerodynamic forces. Also, for better or worse, these are
model-free or black box approaches that largely neglect the underlying flow physics. Another approach for closed-loop
separation control is developing a reduced-order model of the high-dimensional nonlinear dynamics. One such method
is the Galerkin projection [15]. This is physics based, but the reduced-order model will likely not be valid if the base
state deviates significantly due to forcing. Therefore, our objective is to provide an adaptive reduced-order model of the
separated flow with reaction times that are on the order of the fluid dynamic (as opposed to the integrated forces) time
scales that retains the essential physics of the separated flow.

Previous work shows that dynamic mode decomposition (DMD) serves to faithfully represent the stable limit cycle
characteristics of a separated flow [16, 17]. In particular, the same traveling wave behavior of the shear layer vortex
rollup and convection is captured by DMD derived from either the velocity or pressure fields, or unsteady surface
pressure data [17]. In order to leverage this capability in an adaptive, closed-loop control setting, online DMD [18] will
be employed to provide real-time dynamical system estimates of the separated flow that will be updated as forcing is
applied. The measurements used to identify the discrete linear model provided by online DMD are unsteady surface
pressure snapshots taken by a linear array of surface mounted microphones.

An adaptive closed-loop control approach is implemented that consists of feedback control for unsteady surface
pressure suppression by rapidly updating feedback gains from a linear quadratic regulator (LQR) process. The response
of the flow to control is measured by time-resolved PIV and fluctuating surface pressure measurements. Since this
approach adapts to the measured data and does not require a priori information regarding the dynamics of the separated
flow, this approach should be robust to a wide range of flow conditions.

II. Experimental Setup
This experimental study utilizes the canonical separated flow configuration described in [17, 19, 20] to remove

pressure gradient dependencies on airfoil curvature. Laminar boundary layer separation occurs over a flat plate model
due to an adverse pressure gradient imposed by siphoning a portion of the freestream flow through the ceiling of the
wind tunnel test section and reinjecting it further downstream. This section provides details regarding the experimental
design, data collection, real-time system, and the methods used for processing and analyzing the results.

A. Wind Tunnel Facility and Experimental Model
The Florida State Flow Control (FSFC) open-return wind tunnel facility housed the experiments for this study. The

FSFC wind tunnel has a 9:1 inlet contraction and a test section of 30.5 cm in height and width, and 61.0 cm in length.
Upstream of the contraction, anti-turbulence conditioning is accomplished by a honeycomb mesh and two screens. The
freestream turbulence intensity integrated above 4 Hz at this flow speed is u′/U∞ = 0.5%. The flat plate model used in
this study spans the entire width of the test section, has a chord dimension of c = 40.2 cm and thickness of w = 0.095c.
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The leading edge of the plate is a 4:1 ellipse, and the trailing edge is square. A Pitot-static probe mounted upstream
of the model monitors the freestream velocity, which is set to U∞ = 3.9 m/s to provide a chord Reynolds number of
Rec = 105. The value from the Pitot probe is fed to the wind tunnel drive computer, and a simple PID controller adjusts
the wind tunnel fan frequency to minimize variations in the freestream velocity. A schematic of the plate with relevant
dimensions is shown in Figure 1.

a) b)

 cm 

5.0 cm 

0.25c 0.25c 

0 cm Shear Layer 

Wake 

Separation Bubble 

𝑈∞ 

Fig. 1 a) Schematic of the flat plate model and flow separation system. b) Representation of the shear layer,
separation bubble, and wake, which are active regions of the flow with coupled dynamics.

A suction/blowing boundary condition is imposed to enable boundary layer separation on the top surface of the flat
plate. A DC motor driven fan pulls a portion of the freestream fluid through an acoustically treated perforated segment
of the test section ceiling and then redirects the flow back into the test section through a similar return duct. The setup is
designed to allow for the location and extent of the separation bubble to vary by changing the location of the plate with
respect to the ceiling fan. For the current case, a closed separation bubble is generated that exhibits mean reattachment
upstream of the trailing edge of the flat plate. The mean velocity profile upstream of the separation point is extracted
from PIV snapshots, and the shape factor is estimated as H = 2.67 at x/c ≈ 0.3. Comparing this to H = 2.59 for the
Blasius boundary layer indicates that the flow is laminar upstream of separation.

B. Actuation
A rectangular slot zero-net mass-flux (ZNMF) actuator is employed to force the separated flow. The ZNMF jet

sequentially ingests and expels surrounding fluid by varying the volume of a cavity underneath the slot. Thus, there
is zero time-average mass flux but a non-zero momentum flux [21]. The actuator orifice is 2 mm wide, is located at
x/c = 0.61, and spans the central 58% of the model. The actuator is comprised of four piezoelectric disks (APC Inc.,
PZT5J, Part Number: P412013T-JB) that serve to vary the volume of the cavity as unsteady voltages are applied across
the disks.

The disks are driven by a high frequency sine wave, modulated down to the natural frequency range of the current
separated flow. The frequency of the carrier sine wave is the fc = 2050 Hz. The actuator output is expressed in terms of
the momentum coefficient (cµ), which is defined as

cµ =
Ajv

2
rms

AsepU2
∞

. (1)

In this definition, is the area of the actuator slot Aj = Wj × Lj , and the separation area is the baseline length of the
mean separation region multiplied by S, which is the span of the plate (Asep = Lsep × S). The RMS velocity of the jet
is calculated from synchronized PIV measurements taken during control experiments.
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C. Unsteady Pressure Sensors
The unsteady pressure on the model surface is measured by an array of 13 Panasonic WM-61A electret microphones.

The diameter of the exposed microphone diaphragm of the WM-61A microphones is 2 mm, and the microphones are
mounted mid-span in 8 mm increments from x/c = 0.7 to x/c = 0.94. The microphones are powered by a 4 mA
constant current provided by an NI PXI-4498 data acquisition card. AC coupled, low-pass filters set to a cutoff frequency
of 500 Hz condition and filter the microphone signal prior to analog-to-digital conversion. This cutoff frequency is set
to ensure that the high frequency acoustic content from the actuator is sufficiently mitigated. Finally, the signals are
digitized by an NI PXIe-6358 card for data acquisition and real-time control at a rate of 10 kHz.

For the microphone spectra presented here, the decontamination approach using conditioned spectral analysis
described in [17, 22, 23] is employed. This effectively removes spurious signals captured by the microphones that are
not due to separated flow hydrodynamics. In this case, reference microphones are mounted near the separation duct
fan, and on the floor of the wind tunnel to identify contamination due to low frequency freestream unsteadiness and
acoustics from the wind tunnel and separation duct drive fans. The contaminant signals are then conditioned to remove
mutual coherence, then are used to remove the extraneous content from the surface mounted microphones.

D. Time-Resolved PIV
Both the separated flow region and actuator output are synchronously measured by Time-Resolved Particle Image

Velocimetry (TR-PIV) . The separation bubble measurement plane is oriented in the x-y plane, slightly offset from
mid-span to reduce reflections from the surface mounted microphones. The light sheet grazes the top surface of the flat
plate and the camera field of view has a streamwise extent of x/c ≈ 0.62 to x/c ≈ 1, and height of y/c ≈ 0.1. Within the
same plane, the actuator PIV region is bounded by x/c ≈ 0.59 and x/c ≈ 0.63, and has a height of y/c = 0.087. Olive
oil droplets with nominal diameter of 1 µm introduced to the flow from a TSI 9307-6 atomizer are used for PIV seed
particles[24]. The particles are illuminated by a high rep rate Nd-YAG laser operating in a single pulse configuration and
images of the illuminated particles are acquired by a Phantom v1611 high speed camera. For the current sample rate,
the resolution of the images is 1200 × 800 pixels and images are acquired at 10000 fps. In this case, the velocity vector
fields are computed in between each image, so the effective PIV sample rate is 10000 Hz. Once images are acquired,
image preprocessing and vector calculations are performed using LaVision DaVis 8.4.0 [25]. For the separated flow
PIV measurement region, a multi-pass cross-correlation algorithm is used to determine the velocity vectors. The initil
interrogation window size is 64 × 64 pixels and the final interrogation window size is 24 × 24 pixels with 75 % overlap.
This results in a vector resolution of 0.729 mm per vector. The final window size of the higher magnification actuator
measurement region is 48 × 48 pixels with 75 % overlap, which results in a vector resolution for these measurements
of 0.266 mm per vector. The uncertainty in each vector field calculation is calculated using the correlation-statistics
method for estimating PIV uncertainty [26]. The uncertainty of statistical quantities estimated by PIV snapshots is
propagated from the snapshot uncertainties. A total of 4800 PIV vectors are acquired per acquisition sequence.

III. Dynamic Mode Decomposition
For the current study, variants of Dynamic Mode Decomposition (DMD) are employed for baseline flow analysis,

and state space model identification for real-time control. Given many simultaneously sampled measurements of a
particular dynamical process, DMD provides a discrete-time linear system that estimates the mapping of a current
snapshot to the next snapshot in time [27–29].

The snapshot measurement vectors are denoted by italics as xk . The linear transition matrix provided by performing
DMD on the set of measurements is labeled ADMD , in which

xk+1 = ADMDxk . (2)

Snapshot matrices are built from the individual snapshots vectors as

X =


| | |

x1 x2 · · · xn−1

| | |

 , Y =


| | |

x2 x3 · · · xn

| | |

 . (3)

The previous snapshot matrix is denoted by X, and the current snapshot matrix (denoted by Y) is the previous snapshot
matrix shifted forward by one time step. Each snapshot vector consists of m simultaneous measurements, and a total of
n snapshots are recorded. The snapshot matrices have dimension m × (n − 1).
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The DMD transition matrix is then computed by multiplying the current snapshot matrix with the pseudoinverse
(denoted by +) of the previous snapshot matrix as [27]

ADMD := YX+. (4)

For no modal truncation, the number of DMD modes and eigenvalues will be min(m, n − 1). For the case in which it
is expected that fewer states are required to capture the dynamics, a reduced problem can be formulated by taking the
singular value decomposition (SVD) of the snapshot matrix X = UΣV ∗, in which ∗ denotes the complex conjugate
transpose. This result is substituted into (4) to yield

ADMD = Y[UΣV ∗]+ = YVΣ+U∗. (5)

The dimensional reduction is performed by truncating the SVD of X to include only the first r singular values, in which
a subscript r will denote a truncated matrix. From this, the reduced proxy system matrix can be determined by

Ã = U∗r ADMDUr = U∗r YVrΣ
+
r . (6)

The DMD results presented in this study from PIV measurements are computed using the Total Least Squares DMD
algorithm presented in Hemati et al. This consists of a preprocessing step that serves to remove the asymmetric treatment
of measurement noise inherent in the formulation of DMD provided above. [16]

A. Online DMD
The DMD formulation provided above requires that every snapshot of X be readily available to be manipulated in a

computer’s RAM to compute the SVD. This allows for the a posteriori dynamical analysis of a measurement ensemble
from a linear system perspective. However, for the current case, the separated flow can experience significant deviations
in its dynamics as forcing is applied. Therefore, the transition matrix identified by DMD for the baseline separated
flow case will not be valid once actuation in implemented. Real-time tracking of the deviations in the separated flow
dynamics will allow for more efficient control. This is accomplished by Online DMD using an array of surface pressure
measurements [17, 18].

Online DMD provides an updated DMD matrix as soon as a new snapshot becomes available. Therefore, the
variations in the dynamics are represented as a time varying linear system. As long as the size of the snapshot is not too
large, this update step can be done at a rate that is faster than the characteristic frequencies of the flow. This rapidly
adapting linear system representation of the separated flow can then be used to estimate future states for control.

Beginning with the definition of the DMD transition matrix (4), and the property of the pseudoinverse, X+ =
XT [XXT ]−1 the formulation of online DMD begins with defining two new matrices, Q and P,

A = YX+ = YXT [XXT ]−1 = QP. (7)

The new matrices are defined as, Q := YXT and P := [XXT ]−1. If a new snapshot (xk+1, yk+1) is to be included in the
snapshot matrix, Q and P can be appended as

Qk+1 = [Y yk+1][X xk+1]
T = Q + yk+1x

T
k+1, and

Pk+1 = ([X xk+1][X xk+1]
T )−1 = [P−1 + xk+1x

T
k+1]

−1.

The expression for Pk+1 is in a form that can be computed by the Sherman-Morrison formula,

Pk+1 = [P
−1 + xk+1x

T
k+1]

−1 = P − γPxk+1x
T
k+1P. (8)

The scalar, γ is defined as γ := 1/(1 + xT
k+1Pxk+1). Therefore, given current estimates of Q and P, the DMD

transition matrix is updated for each new snapshot by Ak+1 = Qk+1Pk+1, after some substitution (see Zhang et al. [18]),
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Ak+1 = A + γ(yk+1 − Axk+1)x
T
k+1P. (9)

For the initial case in which there is no current estimate for A and P, A0 can be initialized randomly, and P0 = αI such
that the parameter α is very large so P−1

0 ≈ 0 .
In order to discard the contribution previous snapshots have on the current DMD estimate, a weighting factor

is defined to smoothly diminish old snapshots. Resulting in refreshed dynamical estimates from online DMD. The
weighting factor acts on an ensemble of snapshot vectors as so:

χ =


| | |

(
√
κ)n−1x1 (

√
κ)n−2x2 · · · xn−1

| | |

 , ψ =


| | |

(
√
κ)n−1x2 (

√
κ)n−2x3 · · · xn

| | |

 .
Setting the weighting factor low (κ → 0) aggressively attenuates old snapshots, while setting the weighting factor close
to one (κ → 1) allows the old snapshots to gradually decay. These weighted snapshot matrices are substituted into the
definition of DMD AW = ψχ

+, and online DMD is carried out as before [18] . The end result is that the weighting
factor penalizes the updated value of Pk+1 as so,

Pk+1 =
1
κ
(P − γPxk+1x

T
k+1P). (10)

This approach is useful for real-time DMD estimates as long as the computational effort required to update the
DMD estimates remains low. Online DMD requires O(m2) operations in updating the DMD estimates. [18] Thus, this
algorithm is well suited to the low-dimensional surface pressure measurements, in contrast to streaming DMD which
is beneficial for high-dimensional data [30]. More information regarding the relative time required for various DMD
algorithms is provided in Zhang et al. [18] It should be noted that this approach is formulated for cases in which there is
no external forcing. However online DMD can also be implemented for control cases by appending the DMD matrix as
shown in [17, 31].

IV. Closed Loop Separation Control Approach
Since online DMD provides a linear representation of the evolution of the surface pressure fluctuations, classical

linear control methods may be viable for autonomous feedback control. For example, if the objective is to suppress the
pressure fluctuations, the control input can be defined as a state feedback uk = −Kxk , and the linearization provided by
online DMD can be expressed as

xk+1 = (A − BK )xk, (11)
in which A is the current discrete linear state dynamics and B is the current actuation mapping matrix identified by
online DMD. At this point, the Linear Quadratic Regulator (LQR) method can be used to determine K for the current
system estimate with respect to a weighting term applied to the state space and the actuator effort. As the flow is forced,
the linear estimation will vary. Therefore, the K matrix will need to be updated periodically. In general, this feedback
term will not provide optimal control since the underlying dynamics are not linear and time invariant. However, this is
the set of optimal feedback gains for the current dynamical estimate provided by online DMD.

Using the discrete linear system representation provided by online DMD, LQR controller feedback gains are
computed and updated periodically. These feedback gains are then employed to attenuate the unsteady pressure
fluctuations within the separated flow region. The control signal is defined as a negative feedback uk = −Klqr xk , in
which Klqr is determined by minimizing the cost function

J =
∞∑
k=0

(
xTk Qlqr xk + uTk Rlqruk

)
. (12)

See Dorf & Bishop [32] for details. The appropriate choice of Qlqr and Rlqr balances the state space reference error
and the actuator input. The solution for Klqr is

Klqr = (Rlqr + BTPRB)
−1BTPRA, (13)
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in which, PR is determined from the discrete-time Riccati equation,

PR = ATPRA − (A
TPRB)(B

TPRB + Rlqr )
−1(ATPRB)

T + Qlqr . (14)

This process is implemented using the LabVIEW linear quadratic regulator VI from the control design and simulation
module. [33]

V. Analysis of the Baseline Separated Flow
This section provides baseline separated flow characteristics beginning with estimates of the spectral content of the

flow from surface pressure measurements. Then, attention is turned to full-field flow evaluation from PIV measurements.
The results of controlling the separated flow will be compared with these baseline characteristics.

A. Unsteady Pressure
The unsteady pressure fluctuations within the separated flow are recorded by microphones that lie within the mean

recirculation region. Premultiplied PSD estimates for these measurements are plotted with respect to Strouhal number
in Figure 2. The Strouhal number is defined as

StLsep = f Lsep/U∞. (15)

For the plots shown, a total of 30 seconds of data acquired at 10 kHz are used to estimate the PSD. The number of
samples used per ensemble is 10,000 resulting in ∆ f = 1 Hz. The ensembles are scaled by a Hann window and are
overlapped by 75%.

1
01

1
02

x/c=
0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94

00.5 0.25

1
00

1
01

Fig. 2 Premultiplied power spectral density plots of the corrected surface mounted microphone array mea-
surements after the contaminating signals have been removed. The microphone location for each plot is denoted
at the top of the plot.

The corrected, premultiplied power spectral density plots for the microphone array are provided with fixed axis
limits to show the streamwise development of the oscillatory content in Figure 2. This shows the spatial evolution of the
Kelvin-Helmholtz instability into an active frequency range between StLsep = 1.50 and 2.30. This content begins to
decay near the mean reattachment region as the flow transitions to turbulent flow, and spectral broadening occurs.

B. PIV
PIV snapshots provide spatially resolved mean and turbulent quantities of the baseline flow. Since a high speed PIV

system is utilized, the sample rate of the velocity snapshots is much higher than the characteristic frequencies of the
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flow. Thus, frequency spectrum estimates can be extracted from the flow field data by Fourier analysis or DMD. The
TR-PIV dataset for the uncontrolled, canonical separated flow (Rec = 105) studied here consists of at least m = 4800
snapshots, each with n = 10 032 vectors per snapshot. Figure 3 contains vorticity contours of the mean of the PIV
snapshots. The separation region is illustrated by the line of ū = 0, depicted as the black dashed line. The length of the
mean separation bubble is found to be Lsep = 0.24c, and the height is hsep = 0.0171c.

-100

0

100

x/c

y/c

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.06

0.08

0.1

Fig. 3 Average z-vorticity as computed from PIV snapshots. The line of ū = 0 is the black line.

Total least squares DMD is applied to the TR-PIV snapshots of the baseline separated flow in order to identify
global dynamical characteristics of the flow. Since power spectrum derived from surface pressure measurements and
previous studies indicate that at least 3 oscillatory phenomena exist simultaneously in the baseline flow [1, 19], the
DMD estimate can be rank-reduced. A rank-reduction level of r = 25 is used, which corresponds to retaining over 99%
of the fluctuating kinetic energy content based on an SVD of X. Figure 4 contains the DMD eigenvalues plotted on the
complex plane alongside the modal oscillatory amplitude plotted with respect to Strouhal number. This plot shows that
the dominant modes extracted via DMD are non-decaying and purely oscillatory (i.e., the eigenvalues lie very close to
the unit circle). This is expected due to the oscillatory, stable limit cycle characteristics of the separated flow.

Additionally, the highest modal amplitude occurs at StLsep = 2.01. The PSD estimates of the unsteady pressure data
provided in the previous section corroborates the existence of this frequency content. This DMD mode describes the
most energetic component of the limit cycle of the baseline separated flow. In Figure 5, the real part of the DMD modes
are visualized as vorticity contours. The spatial mode for StLsep = 2.01 is composed of patterned, coherent vorticity
structures. As shown in Deem et al. [17], this mode exhibits traveling wave characteristics.

12/3/2017 40

0.8 0.85 0.9 0.95 1 1.05 1.1
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.5 1 1.5 2 2.5
0

0.05

0.1

|Gp|2

Fig. 4 a) DMD eigenvalues plotted on the complex plain. b)2-norm of the DMD oscillatory amplitude plotted
with respect to StLsep .

VI. Separated Flow response to Periodic Forcing
The response of the separated flow subjected to periodic forcing is measured by PIV. Two momentum coefficients

are tested for a range of actuation frequencies. The momentum coefficient is determined by computing the RMS velocity
as measured by PIV at the midline of the actuator, at a height of approximately 0.4 mm above the actuator slot. A
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x/c

y/c

0.650.7 0.75 0.8 0.85 0.9 0.95 1
0.06
0.08
0.1 StLsep = 2.01 

x/c
0.650.7 0.75 0.8 0.85 0.9 0.95 1

StLsep = 0.47 

x/c
0.650.7 0.75 0.8 0.85 0.9 0.95 1

StLsep = 0.09 

Fig. 5 Real part of the vorticity of the DMD modes corresponding to the three highest amplitude modes
identified by TDMD.

burst modulated waveform is used for these cases, in which the carrier frequency ( fc) sine wave is cycled on and off
impulsively at the burst frequency fb. The nominal duty cycle of the modulation is set to 50%. However, in order to
prevent spectral leakage and unanticipated high-frequency content, the duty cycle can vary from this slightly to ensure
that an integer number of carrier cycles exists within the burst period. The forcing frequency is nondimensionalized
with respect to the separation bubble length and freestream velocity as

F+ =
fbLsep

U∞
. (16)

An illustration of the burst modulation waveform is provided in Figure 6.

0 1 𝑓𝑐  1 𝑓𝑏  
−𝐴 

0 

𝐴 

Time 

Fig. 6 Burst modulation waveform used for periodic actuation.

The forcing frequencies tested in this case span from F+ = 0.98 to 4.61 and the momentum coefficients tested
are Cµ = 3.8 × 10−4 and Cµ = 5.7 × 10−4. As a performance metric, the height of the mean reversed flow region is
determined from PIV measurements for each forcing frequency (i.e., an indication for the size of the separation bubble)
and plotted in Figure 7.

Although flow separation is reduced over a broad range (F+ ≈ 1 to 2.5), forcing at F+ ≈ 2 exhibits the best
performance for both actuation amplitudes. This frequency corresponds to the dominant modal amplitude identified by
DMD. This corroborates the results of prior literature which show that targeting the natural dynamics of separated flow
is an effective strategy for reducing separation [7, 11, 12, 19, 20].

THIS NEEDS TO BE 
FIXED.  SHIFTED PIV

F+

Cµ = 5.7(10-4)
Cµ = 3.8(10-4)

1.5 2 2.5 3 3.5 4 4.5 5
0

0.005

0.01

0.015

0.02

ℎ𝑠𝑒𝑝
𝑐

1.00.5

Fig. 7 Normalized mean separation height plotted against input frequency. The minimum mean separation
height measured corresponds to forcing at the dominant frequency identified by DMD, F+ ≈ 2. The baseline
separation height of hsep/c = 0.0171 is denoted by the dashed gray line.

VII. Adaptive Closed Loop Control of Separated Flow
The unsteady pressure within the separated flow region is provided by the surface mounted microphone array to a

real-time implementation of online DMD in order to estimate a linear model of the dynamical system responsible for the
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separated flow state evolution. This time varying, adaptive linear model is used in the control approaches described
below. Each element of the control loop is coded in either Simulink or LabView and compiled with NI Veristand 2017
[33]. The code is then deployed to an NI PXIe-8880 real-time controller for state measurement, online model estimation,
feedback gain calculation, and actuation signal generation.

Prior to being digitized, the microphone signals are filtered and ac-coupled by external variable frequency low pass
filters with a cut-off frequency of 500 Hz. The data acquisition rate is set to be 10 kHz for all control methods. For
ZNMF actuation, the input waveform is multiplied by the carrier sine wave, amplified by an external amplifier, then sent
to the actuator.

A. LQR Control
With the goal of reducing the surface pressure fluctuations, a negative feedback controller is implemented by

recursively computing LQR gains. As actuation is provided, and online DMD updates the linear estimation with each
new pressure snapshot and actuator input sample.

The nominal loop rate of the pressure snapshot acquisition, online DMD estimation, and input signal calculation is
10 kHz, which is more than 100 times faster than the dominant frequency of the separated flow. Due to the computational
expense of solving the Riccati equation, the LQR feedback gains are updated every 30 primary loop cycles. This results
in updating the feedback gains at a rate of 333.33 Hz. The LQR weights are set to be Qlqr = 20 × I and Rlqr = 0.3,
which allowed the actuator effort to be maximized at the saturation limit. The online DMD weighting factor is set to
0.99995, which results in previous snapshot attenuation of 50% after 2.77 seconds. If time is nondimensionalized
with respect to the dominant DMD mode frequency ( fSL ≈ 82 Hz), 50% snapshot attenuation occurs after τ = 227
characteristic periods.

PIV measurements are taken to quantify the response of the adaptive LQR control on the separated flow. The mean
of 4800 PIV snapshots is provided in Figure 8. The recirculation region is significantly reduced, with a mean separation
height of hsep/c = 0.0052. The momentum coefficient is estimated from the PIV measurements as Cµ = 5.4 × 10−4.
This results in slightly better performance (within the uncertainty) than the best open loop results, with a 5% reduction
in actuation effort. Furthermore, this is accomplished without any prior knowledge of the characteristics of the separated
flow.

-100

0

100

x/c

y/c

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.06

0.08

0.1

Fig. 8 Average z-vorticity for separated flow subjected to adaptive LQR control as computed from 4800 PIV
snapshots. The recirculation region is denoted by line of ū = 0 depicted by the solid black line. For reference, the
recirculation region of the baseline separated flow is shown as the dashed orange line. This shows that applying
the adaptive feedback control using LQR gains significantly reduces the size of the separation region.

Due to the unsteady nature of this adaptive control approach, the control input will vary as the separated flow
deforms under actuation and the model is updated. Variations in the input signal are visualized as a power spectrogram,
shown in Figure 9. Each input ensemble is scaled by a Hann window prior to computing the spectral estimates. The
frequency resolution of the power spectrum is ∆ f = 1 Hz, the total length for each power spectral density estimate is
10000 samples, and a new PSD is evaluated every 0.1 seconds (1000 samples). The time is nondimensionalized with
respect to the shear layer frequency identified by DMD of the baseline flow ( fSL ≈ 82 Hz). From the spectrogram,
as soon as the control is turned on, the input spectra contains primarily low frequency content, with some broadband
fluctuations. The actuation signal then settles to StLsep ≈ 1.8 after 100 shear layer periods, after which it seems to
prefer lower frequencies while varying between StLsep = 1 and 2.

To visualize the transient response of the flow to LQR control, PIV acquisition was triggered by the initialization
of the controller, and the mean of 300 PIV snapshots is computed for every 10 samples. The separation height is
determined from each mean field, and is plotted in Figure 10. A distinct dip in separation height is observed at τ = 5,
indicating that the control effectively reduces the separation region after only 5 shear layer periods.
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Fig. 9 The frequency content of the actuation signal plotted with respect to shear layer periods as a spectro-
gram. This shows that the input signal exhibits unsteady frequency content and takes on multiple frequencies
simultaneously.

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

ℎ𝑠𝑒𝑝
𝑐

Fig. 10 A running calculation of the mean separation height to illustrate the transient response of the flow
to adaptive LQR-gain feedback control. This is computed by taking the mean separation height of 300 PIV
snapshots, every τ = 0.082.

VIII. Conclusions
Real-time, adaptive control is implemented to reattach separated flow in an autonomous manner. Measurements of

unsteady surface pressure are used to determine a linear model of the flow that is allowed to update with each new
measurement. This allows the estimate of the dynamical system to update in real-time as forcing is applied and new flow
modes are excited or nonlinear deviations occur. This adaptive dynamical estimate enables the use of linear closed-loop
control techniques to efficiently reattach the separated flow.

To provide a repeatable separated flow that is not dependent upon specific airfoil curvature, an adverse pressure
gradient is induced over a flat plate model, which in turn separates a laminar boundary layer from the surface of the
model. The flow is forced by a 2-D ZNMF jet in which the output is monitored by PIV both near the jet exit, and within
the separated flow region. By measuring the response of the flow to periodic forcing, it is found that the flow exhibits
the most reattachment when the modulation frequency is near that of the frequency of the shear layer DMD mode.

Negative feedback control is then implemented in which LQR gains are recursively computed as the model estimates
change. Since this is not a linear time invariant system, this is not optimal control per se, though it does provide
the optimal control gains for the current linear time invariant system estimate. PIV measurements taken during this
experiment show that the mean separation region for this control case is significantly reduced. The resulting mean
separation height for this control approach is slightly less than the best open-loop control case, with an observed
reduction in actuator momentum coefficient by 5%. Due to the quickly adapting model and feedback gain calculation,
this control approach allows for rapid flow reattachment. Only five characteristic time units are required for the flow to
exhibit reattachment.

Since this approach does not require any prior information regarding the dynamical characteristics of the flow, this
approach should be robust to varying flow conditions. Future work will entail testing the robustness of this control
approach by altering the Reynolds number and the separation bubble height, inducing time dependent variations in the
imposed adverse pressure gradient, and enforcing turbulent separation. These variations along with variations in the
penalty terms in determining the feedback gains will be tested.
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