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Abstract

The interaction of a shock wave with a turbulent boundary layer is a central
problem in supersonic flow over wings, fins, control surfaces and inlets. This work
uses direct numerical simulation and linear analysis to study the interaction of a
shock wave with an idealized turbulent shear flow. Our objective is to identify and

explain factors likely to be important in shock wave / boundary layer interaction.

Rapid Distortion Theory (RDT) shows the strong dependence of shock / tur-
bulence interaction on the anisotropy of the upstream turbulence. Kinetic energy
amplification of a shear flow across a shock wave is considerably higher than that
of isotropic turbulence. The kinetic energy amplification across a shock is shown to
be determined by the upstream values of Eq1(k;) and '1;-’_2—/ ¢ (z denotes the shock-
normal direction). The movement of Eq;(k;1) to lower wavenumbers and increase in
the upstream value of uT/ g increase kinetic energy amplification. The Reynolds
shear stress u'v’ decreases in magnitude across a normal shock. RDT shows that
amplification of the pressure-strain correlation is responsible. An argument based
on the inclination angle of vortical structures is proposed to explain this decrease

in magnitude of shear stress.

Reynolds stress modeling in the RDT limit shows that popular models ( e.g.
Launder, Reece, Rodi, 1975; Speziale, Sarkar, Gatski, 1991) for the pressure-strain
correlation are unable to reproduce these trends. For example, the Launder, Reece,
Rodi model considerably underpredicts the amplification of kinetic energy while
predicting increase instead of decrease in the magnitude of shear stress. The lack of

dependence on upstream spectral information is likely responsible for this deficiency.

Upstream entropy fluctuations significantly influence the evolution of turbu-
lence fluctuations across the shock wave. Both, the magnitude of (entropic) temper-
ature fluctuations and their correlation with the velocity field affect shock / turbu-
lence interaction. Temperature fluctuations that are negatively correlated with the
shock-normal velocity component significantly increase turbulence intensity, vor-
ticity and sound levels behind the shock wave. Positively correlated fluctuations
have a suppressing effect. An argument based on the effects of bulk compression
and baroclinic torque explains these trends. This explanation is further extended
to derive a simple formula that predicts the amount of vorticity produced in the

interaction of a shock wave with entropic temperature fluctuations.
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Abstract

The applicability of Morkovin’s hypothesis across a shock wave is tested and
found questionable. The part of the hypothesis that equates the intensity of density
and temperature fluctuations seems a reasonable approximation across shocks of
moderate strength (M; < 2.5). The relation between the thermodynamic and
velocity field as predicted by Morkovin’s hypothesis does not hold across the shock.

Oscillation of the shock front is shown to be responsible.

Linear analysis is used to study the influence of acoustic waves on shock / tur-
bulence interaction. The evolution of acoustic waves across the shock is shown
to be significantly different from that of vortical fluctuations. The kinetic en-
ergy of acoustic fluctuations decreases across shock waves of moderate strength
(1.25 < M; < 1.8). For M; > 3, the kinetic energy amplification of acoustic fluc-
tuations significantly exceeds that of vortical fluctuations. Sound level is seen to
increase across the shock. Also, acoustic fluctuations generate ‘turbulence’ whose

contribution to the far-field kinetic energy increases with increasing shock strength.

The shear flow simulations support the predictions made by linear analysis.
The evolution of turbulence kinetic energy across the shock wave is seen to depend
on the upstream anisotropy and velocity-temperature correlation. Large levels of
amplification (2 to 2.5) is seen when u'T" is negative upstream of the shock. Neg-
ligible amplification is observed when the upstream correlation is positive. The
shear stress (u’v') decreases in magnitude across the shock. The Taylor microscales
noticeably decrease across the shock wave. The fluctuations in pressure, density
and temperature amplify across the shock wave, with the amplification of pressure
fluctuations far exceeding those of density and temperature. The intensity of pres-
sure fluctuations immediately behind the shock wave is non-negligible. However,
due to their decay behind the shock wave, the intensity of pressure fluctuations in
the far-field is significantly smaller than density and temperature; i.e., the far-field

thermodynamic field is dominated by entropy fluctuations.
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Chapter One

Introduction

1.1 Motivation and background

Recent interest in high-speed civil transport aircraft and hypersonic propulsion
systems has resulted in renewed research into compressible turbulent flows. At high
speeds, compressibility effects become very important to the design of external
and internal surfaces such as wings, fins, control surfaces and nozzle intakes. The
compressibility of the medium results in large gradients in the mean thermodynamic
properties, large fluctuations in the thermodynamic variables, and high levels of
mean dilatation. Simple extensions of incompressible turbulence models appear
unable to predict these flows, particularly phenomena associated with mean and
fluctuating dilatation. Incorporating these effects of compressibility into turbulence

models has motivated fundamental research into the physics of these flows.

The presence of shock waves is an important feature that distinguishes high
speed flows from low speed ones. Interaction with shock waves is known to sig-
nificantly alter the aerodynamics and acoustics of high speed shear layers. Shock
wave/boundary layer interaction, a common flow configuration, can induce flow
separation and strong fluctuating pressure loads on external surfaces. Similarly,
the presence of shock waves in high speed unadapted jets is known to significantly
increase the emitted noise. On the constructive side, shock waves offer the potential
to increase the mixing in high speed flows. Current understanding of the physics of

the interaction between shock waves and turbulent flows is limited.

This work is a fundamental study of the interaction of a shock wave with a
turbulent shear flow. We use linear analysis and direct numerical simulation (DNS)
to study the interaction of a normal shock wave with a turbulent shear flow. A
schematic of the computed flow is provided in figure 1.1. Note that the mean
velocity upstream of the shock wave has uniform velocity gradient across the mean
streamlines. This mean velocity profile is motivated by studies of homogeneous
turbulent flow (e.g. Rogers, Moin and Reynolds; 1986, Lee, Kim and Moin; 1991)
which clearly bring out the importance of mean shear in a turbulent boundary

layer. The mean pressure is uniform across mean streamlines; however the mean
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FIGURE 1.1: A schematic of the computed flow.

temperature and density vary such that the mean Mach number is uniform across

the mean streamlines.
1.2 Review of past work

This review deals with the hydrodynamics of the interaction of shock waves,
with non-reacting turbulent flows in the non-hypersonic regime. Phenomena such
as detonation waves, the Richtmeyer-Meshkov instability, the regimes of shock-
reflection and shock-related noise (e.g. ‘screech’) are not discussed. Experimental
work, linear analysis and numerical computation are reviewed here. Experimental
work and analysis of shock turbulence/interaction span about five decades. Com-

putational work on the other hand, is very recent.
1.2.1 Experiments

A large body of experimental work exists on the interaction of shock waves
with a turbulent boundary layer. Most experiments have examined the flow in a
compression corner, with some experiments studying normal shock/boundary layer

interaction and supersonic shear layers at reattachment.

Green (1970), Korkegi (1971) and Hankey and Holden (1975) provide reviews of
earlier experimental work on shock wave/boundary layer interaction. The AGAR-
Dograph by Fernholz and Finley (1981) provides a comprehensive summary of ex-

periments prior to 1981. A more recent review is written by Settles and Dodson
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(1994). A lot of experimental data has been gathered in the last decade. Current
experiments provide data on mean velocity and wall pressure, streamwise Reynolds
stress, shear stress and wall pressure fluctuations. Some information on two point

correlations, spectra and PDF's is also available (e.g. Smits and Muck, 1987).

The flow regime covered by experiments on compression-corner flows extends
from attached to separated. Amplification of the streamwise Reynolds stress (F),
structure parameter (u'v’/ uT), and temperature fluctuations across the shock wave
was observed by Debieve, Gouin and Gaviglio (1982a, 1982b), Dussauge, Muck and
Andreopoulous (1986), Smits and Muck (1987), and Selig, Andreopoulous, Muck,
Dussauge and Smits (1989). Kuntz, Amaducci and Addy (1987) observed that after
the interaction, the mean flow in the boundary layer accelerated near the wall as it
recovered to equilibrium, and that the mean streamwise velocity profile downstream

of the corner was wavy.

The unsteadiness of the shock wave in the separated regime was studied by
Andreopoulous and Muck (1987). These workers analyzed wall pressure signals, and
concluded that the frequency of the shock motion was controlled by the bursting
frequency of the incident boundary layer. Subsequent experiments by Erengil and
Dolling (1991) also show a direct correlation between the motion of the shock wave
and pressure fluctuations in the upstream boundary layer. Further work aimed at
correlating the motion of the shock wave to pressure fluctuations in the boundary
layer was conducted by Erengil and Dolling (1990), McClure (1992) and Gramann
and Dolling (1992).

One of the results of shock-induced separation is fluctuating pressure loads on
the wall. Dolling and co-workers have conducted several investigations into the wall
pressure fluctuations produced by shock/wave boundary layer interaction. Both
two-dimensional and three dimensional flows are considered. An extensive review

of experimental data is provided by Dolling (1993).

Supersonic flows at reattachment constitute another example of shock wave
/ boundary layer interaction. An experiment by Hayakawa et al. (1984) exam-
ined a reattaching supersonic flow. Strong longitudinal compression was found at
reattachment, resulting in a three-fold rise in the peak level of mass flux (p'u').
A comparable subsonic reattachment experiment by Bradshaw and Wong (1972)

showed a two-fold drop in the level of upmys.
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The above experiments allude to the complex nature of shock wave/boundary
layer interaction. The simultaneous presence of features such as mean compres-
sion, streamline curvature, wall-induced inhomogeneity, and separation-induced un-
steadiness in shock wave/boundary layer interaction has led to recent experimental
work on some ‘cleaner’ problems. A brief review of this work is provided below.
Debieve and Lacharme (1986) examined the interaction of a shock wave with the
separated shear layer over a compression ramp. They concluded that turbulence
levels were amplified, and Taylor microscales increase through the interaction. The
effect of intermittency on turbulence statistics in the region occupied by the shock

wave was also described.

The interaction of grid-generated turbulence with a shock wave was studied by
Keller and Merzkirch (1990). Amplification of kinetic energy was observed along
with an apparent increase in the Taylor microscale of density across the shock
wave. Honkan and Andreopoulous (1990) examined the response of grid-generated
turbulence to a normal shock. Considerable amplification of turbulence levels was
noted. The amplification was seen to depend on the length scale and intensity of
the incident flow. Another experimental investigation of the interaction of a shock
wave with grid generated turbulence was conducted by Jacquin, Blin and Geffroy

(1991), who noticed negligible amplification of kinetic energy across the shock wave.

A recent experiment by Barre, Alem and Bonnet (1994) has used a novel
method to study the interaction of decaying turbulence with a Mach 3 normal
shock wave. As opposed to placing a grid in a supersonic stream, these authors use
an array of jets to produce nearly isotropic turbulence. Comparison of the results
to linear analysis shows good agreement. Amplification of kinetic energy along with

a clear decrease in turbulence lengthscale is observed.

Detailed experiments on the interaction of a weak shock wave with random
fluctuations in density were conducted by Hesselink and Sturtevant (1988). Con-
siderable distortion of the shock front was observed by them. They explained this
distortion in terms of focusing and de-focusing of the shock front in response to

density gradients in the medium.

As noted by Jacquin, Cambon and Blin (1993), experiments on grid-turbulence
/ shock wave interaction are not easy to conduct and certain points of contention
exist. The increase in length scale that some experiments report is both counter-

intuitive, and in contradiction to computation and linear analysis. Lele (1994)
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observes that the inconsistency is currently unresolved. Another feature is the lower
amplification of kinetic energy reported by wind-tunnel experiments as compared
to shock tube experiments. Mahesh et al. (1995) suggest that the presence of
acoustic waves in the wind-tunnel experiments is responsible; however, further data

1s needed to resolve this issue.

1.2.2 Linear analysis

The analysis of shock/turbulence interaction is based upon the decomposition
of a compressible flow field into vorticity, acoustic and entropy modes as suggested
by Kovasznay (1953). The independence of these modes for inviscid, uniform mean
flow is used to study the interaction of each of these modes with a shock wave.
Both free shock waves, and wedge-attached shocks have been considered in the
literature. The analyses by different workers differ in detail, but are conceptually
similar. The shock wave is modelled as an unsteady discontinuity. The linearized
Euler equations are then used to describe the flow on both sides of the shock.
The linearized Rankine-Hugoniot equations yield boundary conditions at the shock
front. This yields a boundary value problem for the flow downstream of the shock
wave. This problem is then solved for the displacement of the shock front, and the
flow behind the shock wave.

The earliest studies seem to be those by Blokhintzev (Landau and Lifshitz,
1982), Burgers (1946) and Kantrowitz (1947), who examined the one-dimensional
interaction of an acoustic wave with a normal shock wave. Carrier (1949) used
linear analysis to study the stability of supersonic flow past a wedge. Interest
in the configuration of shock waves in supersonic channel flow prompted Adams
(1949) to study the steady interaction between a shock wave and an acoustic wave
incident from upstream. Linear analysis was used by Chu (1952) to examine the
interaction between a wedge-generated shock wave and an acoustic wave incident
from downstream. The interaction between sound and a shock wave was also studied
by Lighthill (1949).

Prompted by the problem of ‘shock-noise’, Ribner (1953) studied in detail the
interaction between a vorticity wave and a shock wave. He (1954) subsequently
extended his analysis to consider a spectrum of incident vorticity waves (in three
dimensions) and computed for an isotropic incident spectrum, detailed statistics of

the downstream flow field. Ribner appears to have been the first to predict the

5



Chapter 1: Introduction Section 1.2.2: Review of linear analysis

interaction of isotropic turbulence with a shock wave. He noted (1953,1969) that
weak levels of incident turbulence produce high levels of noise downstream of the
shock. Later (1987), he extended his analysis to predict one-dimensional power

spectra of the fluctuations behind the shock wave.

Around the same time as Ribner’s pioneering study, Moore (1954) performed
detailed analysis of the unsteady interaction of an obliquely incident acoustic wave
with a shock wave of infinite extent. He studied acoustic waves that were incident
from downstream as well as upstream and also outlined extension of his analysis
to study the interaction of a vorticity wave with a shock wave. Other workers that
have studied the interaction of unsteady disturbances with a shock wave include
Kerrebrock (1956), Johnson and Laporte (1958), Lowson (1968) and McKenzie and
Westphal (1968).

Most of these workers considered the interaction of vorticity and acoustic waves
with a shock wave. Chang (1957) used linear analysis to examine the interaction of
a plane entropy wave with an oblique shock. In addition to considering the general
case of an infinite oblique shock, Chang also considered the case where the oblique
shock was produced by a wedge, and accounted for reflections from the wedge.
Chang’s theoretical results were subsequently used by Cuadra (1968) to perform a

numerical parametric study of the infinite oblique shock problem.

These earlier studies were largely motivated by issues of shock-stability and
the ‘shock-noise’ phenomenon. Recent interest in the interaction of shock waves
with turbulent flows has led to renewed interest in linear analysis. Lee, Lele and
Moin (1992, 1993, 1994) repeated Ribner’s (1953,1954) analysis and extended it to
examine some turbulent statistics that Ribner had not considered. Mahesh, Lee,
Lele and Moin (1995) extended Moore’s analysis to examine the interaction of an
isotropic field of acoustic waves with a shock wave. They also outlined description
of the simultaneous interaction of a field of acoustic and vortical disturbances with
a shock wave. Mahesh, Lele and Moin (1996) have examined the interaction of
a turbulent field of vorticity and entropy fluctuations with a shock. Interest in
receptivity led Duck, Lasseigne and Hussaini (1994) to study the processing of free
stream disturbances by a wedge-generated shock wave. The different regimes of the

pressure field behind the shock wave were discussed.

Recently, Lee, Lele and Moin (1992) have suggested that idealizing a shock

wave as a homogeneous one-dimensional compression and examining the temporal
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response of turbulence to this compression might approximate the spatial evolution
of turbulence through a shock wave. Linear, inviscid equations, or Rapid Distor-
tion Theory (RDT) were used to study this problem. The results (for solenoidal
upstream turbulence) showed reasonable agreement with Ribner’s analysis for shock
waves whose mean Mach number was less than 2. Significant disagreement was seen
for stronger shock waves. This conclusion is reiterated by Jacquin, Cambon and
Blin (1993), who also compare the homogeneous compression of compressible tur-
bulence to Ribner’s results. They note that the difference between the two analyses

is larger than that observed by Lee et al.

It is difficult to systematically outline the differences between the two analy-
ses; however certain general comments can be made. Idealizing a shock wave as a
one-dimensional compression prevents it from distorting in response to the incident
fluctuations; as a result, RDT cannot represent the effect that shock front distortion
has on the evolution of the turbulence. Also, homogeneous RDT does not incor-
porate the Rankine Hugoniot equations; as a result, solenoidal fluctuations do not
produce all three kinds of modes upon compression. Another important difference
between the two analyses is the behavior of acoustic fluctuations. The acoustic fluc-
tuations in the spatial problem can either propagate without attenuation or decay
exponentially behind the shock wave depending upon the angle of incidence of the
disturbance. RDT cannot reproduce this behavior. Mahesh et al. (1995) compare
their analysis of a shock wave interacting with acoustic fluctuations to Jacquin et
al.’s (1993) compression of compressible turbulence, and note that the results are
different over the entire range of Mach numbers. It appears that the homogeneous
problem can approximate the evolution of solenoidal fluctuations across shock waves
of moderate strength; however it is quite inappropriate to describe the spatial evo-
lution as the incident turbulence becomes increasingly compressible. Similarly, the
absence of mean gradients in density and temperature preclude linear baroclinic
effects in the homogeneous problem. As a result, the interaction of entropy fluc-
tuations with a shock wave cannot be predicted by the homogeneous compression

problem.

There has been some recent work on the evolution of shock waves in an unsteady
field of disturbances. Lele (1992a) has used Rapid Distortion Theory to calculate
changes in the shock-speed caused by the interaction of isotropic turbulence with
a shock wave. Kevlahan, Mahesh and Lee (1992) modelled the shock front as a
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propagating surface and compared the resulting evolution to numerical simulation.
Good agreement was obtained for the cases considered. A recent paper by Giddings,
Rusak and Cole (1993) has developed a transonic small disturbance model to analyze
the interaction of a weak shock wave with random perturbations. The model allows
effects such as nonlinear steepening, focusing and the formation of caustics to be

represented.

1.2.3 Numerical computation

Numerical computation of shock/turbulence interaction is a fairly recent un-
dertaking. The first such computation appears to be a detailed study of isotropic
turbulence interacting with a weak normal shock (M; < 1.2) by Lee, Lele and
Moin (1992, 1993). Lee et al. solved the three dimensional compressible Navier
Stokes equations, using a non-uniform mesh to resolve the thickness of the shock
wave. Subsequently, they (1994) used a high order shock-capturing scheme to study
stronger shock waves (M; = 2,3). Their results corroborated Ribner’s (1954) linear
analysis. Amplification of vorticity, kinetic energy and thermodynamic fluctuations

was observed along with decrease in Taylor microscale.

Subsequently, Hannappel and Friedrich (1994b) have used shock capturing to
compute compressible isotropic turbulence interacting with a Mach 2 shock wave.
The interaction of compressible fluctuations (kinetic energy equally distributed be-
tween solenoidal and dilatational modes) was contrasted with that of solenoidal
fluctuations. The amplification of kinetic energy was seen to be lower when the

incident fluctuations were compressible.

Prior to Lee et al.’s (1992) study, computations were largely restricted to the
interaction of a shock wave with single waves of vorticity, sound and entropy or
deterministic flow inhomogeneities such as hot spots and vortices. There appear to
be only two detailed studies (in two dimensions) of the interaction of a shock wave

with a random field of disturbances.

Zang et al. (1984) evaluated the linear analysis of McKenzie and Westphal
(1968) by comparing it to their numerical solution of the two-dimensional Euler
equations. They examined the effect of incident angle, shock-strength and the am-
plitude of the incident disturbance in the interaction of acoustic and vorticity waves
with a shock wave. Results were presented only in the freely propagating regime.

The dependence on incident angle was examined in the interaction of disturbances
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of amplitude 0.1% and 10% with a Mach 8 shock wave. Good agreement was seen
away from the critical angle; divergence from the linear analysis prediction was seen
within about 20° of the critical angle. The linear analysis predictions were quite
robust in terms of dependence on shock strength and disturbance amplitude. For an
incident angle of 30°, the linear predictions were valid for disturbance amplitudes
as high as 25% for acoustic waves and 100% for vorticity waves and shock waves

whose Mach number was close to unity.

More recently, Mahesh, Lee, Lele and Moin (1995) have computed the interac-
tion of a Mach 1.5 shock wave with an upstream acoustic wave. The dependence
upon the incidence angle and incident amplitude was examined, and the results
were compared to linear analysis. Good agreement was seen, except around the
critical angles. This disagreement was explained by noting that the region around
the critical angle corresponded to transonic flow in transformed coordinates and
hence linear approximation would be inconsistent in that regime. Hannappel and
Friedrich (1994a) have computed the interaction of a Mach 8 shock wave with
vorticity and acoustic waves incident at 45° from upstream. They contrasted the
evolution of these two waves. The terms in the averaged equations for the kinetic

energy were also examined in their study.

Numerical calculations of the interaction of coherent flow disturbances with a
shock wave have also been performed. Hussaini et al. (1986) studied the effect of
upstream eddy motion and temperature inhomogeneity on the enhancement and
production of turbulence. Meadows et al. (1991) examined the effect of vortex
strength in a study of two-dimensional shock/vortex interaction. Several workers
have computed the interaction of a shock wave with a density inhomogeneity to
examine the nature of the vorticity field that is produced. A list of references may

be found in a recent paper by Yang, Kubota and Zukoski (1994).

Rotman (1991) numerically solved the two-dimensional Euler equations to .
study the response of an isotropic random field of disturbances to a moving shock
wave. Amplification of kinetic energy and decrease of length scale were observed
in his study. Comparison of Rotman’s results to linear analysis by Lee (Private

communication) showed good agreement.

Prior to their three dimensional computation, Lee, Lele and Moin (1991) solved
the two-dimensional compressible Navier Stokes equations to study the interaction

of two-dimensional isotropic turbulence with a shock wave. A non-uniform mesh
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was used to resolve the thickness of the shock wave. Amplification of vorticity and

kinetic energy accompanied by a drop in Taylor microscale was observed.

1.3 Overview

Our primary objective is to study the interaction of a shock wave with a tur-
bulent shear flow. Both linear analysis and direct numerical simulation are used for
this purpose. The DNS provides a database that can be used to elucidate the flow
physics as well as to test turbulence models. The linear analyses supplement the

simulations in predicting the interaction.
The principal contributions and findings of this work are listed below.

o Rapid Distortion Theory was used to study the response of turbulent shear
flows to rapid one-dimensional compression. Both normal and oblique com-

pressions were considered.

o The anisotropy of shear flows (as determined by E;1(%1) and ;’—2/ ¢?) and the
obliquity of compression were shown to strongly affect the evolution of the
Reynolds stresses upon compression. The Reynolds shear stress u'v' was ob-

served to decrease in magnitude across a normal shock wave.

o Reynolds stress modelling of the normal compression problem was considered
in the RDT limit. The inability of popular pressure strain models to predict
the evolution of kinetic energy and the decrease in the magnitude of shear
stress was demonstrated. The absence of spectral information is shown to be

responsible.

o Linear analysis and direct numerical simulation of the combined interaction
of vorticity and entropy fluctuations with a shock wave was carried out. The

interaction of single waves as well as an isotropic turbulent field was studied.

o Significant dependence of the downstream solution on the amplitude ratio and
phase difference between the incident vorticity and entropy waves was demon-
strated.

o The presence of negatively correlated velocity and temperature fluctuations was
shown to increase the amplification of kinetic energy and pressure fluctuations
across the shock wave. Likewise, positively correlated temperature and velocity

fluctuations resulted in suppression of amplification.
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e A simple explanation was provided to explain these trends. Also, a scaling law

to describe the production of vorticity was derived.

o The inapplicability of the Strong Reynolds Analogy (SRA) across a shock wave

was demonstrated and explained.

e The interaction of a Mach 1.5 shock wave with a single acoustic wave was
numerically computed and the dependence upon the incident angle examined.
The results were compared to linear analysis. The requirement of transonic
small disturbance equations to model the interaction around the critical angle

was 1dentified.

e Linear analysis was used to study the interaction of an isotropic field of acoustic
waves with a shock wave. The evolution of kinetic energy, sound level and

thermodynamic fluctuations were examined in detail.

o The spatial evolution of kinetic energy behind the shock wave was examined
and the rapid non-monotonic variation immediately downstream of the shock

wave explained.

e The kinetic energy of acoustic fluctuations was shown to decrease across the
shock for Mach numbers varying from 1.25 to 1.8. For Mach numbers exceeding
3, the kinetic energy was seen to amplify by levels that far exceeded those found
in the interaction of vortical fluctuations with a shock wave. These trends were

explained.

o The linear analysis was used to suggest acoustic fluctuations in the upstream
turbulence as a possible explanation for wind-tunnel experiments on grid tur-
bulence/shock wave interaction reporting lower levels of kinetic energy ampli-

fication.

e Comparison of the linear analysis to Jacquin et al.’s analysis of the homoge-
neous compression of compressible turbulence revealed that the homogeneous
problem was quite inappropriate to describe the spatial problem as the incident

turbulence became increasingly compressible.

o Direct numerical simulation of the interaction of a shock wave with a turbulent
shear flow was performed. The method of specifying inflow turbulence devel-
oped by Lee, Lele and Moin (1992) was modified to reduce the evolution length
of the inflow disturbances by a factor of 4-5.

11



Chapter 1: Introduction Section 1.3: Overview

o The shear flow simulations were found to support the predictions made by linear
analysis. The evolution of turbulence kinetic energy in the shear flow was found
to depend on the upstream anisotropy and velocity-temperature correlation as
predicted. The shear stress (u'v’) decreased in magnitude across the shock.
So did the ‘a;’ parameter, u'v’/q?. The Taylor microscales clearly decreased
across the shock wave. The intensities of thermodynamic fluctuations changed
across the shock. Acoustic fluctuations were significant immediately behind
the shock. They rapidly decayed behind the shock wave leading to entropy

fluctuations dominating the far-field.

This report is organized as follows. Rapid Distortion Theory is used to study
the response of a homogeneous turbulent shear flow to rapid compression in Chapter
2. Chapter 3 discusses the combined interaction of vorticity and entropy fluctuations
with a shock wave. Details and validation of the numerical method are presented in
Chapter 4. Chapter 5 outlines the salient observations made from the simulations.
Finally, Chapter 6 summarizes the important conclusions drawn. Of the four ap-
pendices, Appendix A describes details of the analysis of interaction of vorticity and
entropy waves with a shock wave. Analysis of the interaction of a shock wave with
an isotropic field of acoustic waves is presented in Appendix B. Next, Appendix
C outlines the modified method for specification of inflow turbulence in numerical
simulations. Finally, Appendix D discusses the direct numerical simulation of the
interaction of a shock wave with an isotropic turbulent field of vorticity and entropy

fluctuations.
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Chapter Two

The Rapid Compression of a Turbulent Shear Flow

2.1 Background

This chapter uses rapid distortion theory (RDT) to examine the response of
turbulent shear flows to rapid one-dimensional compression. Answers are sought
to the following questions: How does the response of a turbulent shear flow to
compression differ from that of isotropic turbulence ? How does a shear flow respond

to oblique compression as compared to normal compression ?

One-dimensional compression is used to model the shock wave in this chapter.
Also, the turbulence is constrained to be homogeneous and solenoidal. The time
scale of compression is assumed small as compared to the time scale of the turbulence
(a reasonable assumption in shock/turbulence interaction). RDT is then used to
predict the response of the turbulence to compression. As discussed in Chapter
1, this approach is expected to yield reasonable prediction of the interaction of

solenoidal turbulence with shock waves of moderate strength.

The roots of RDT applied to flows under mean compression lie in the work
of Prandtl (1933), Taylor (1935), Ribner and Tucker (1953) and Batchelor and
Proudman (1954). Motivated by the passage of turbulence through a wind-tunnel
contraction, these workers developed RDT for turbulent flows subjected to rapid
irrotational distortions. More recently, Lee (1989) has performed a detailed analysis
of the response of the turbulence to axisymmetric strain and dilatation. The above
studies assumed the turbulence to be incompressible; recent studies by Durbin and
Zeman (1992) and Cambon, Coleman and Mansour (1992) have applied RDT to
the compression of compressible turbulence. While Durbin and Zeman have exam-
ined the pressure fluctuations and the pressure-dilatation correlation in the limit
of vanishing turbulent Mach Number (nearly solenoidal turbulence), Cambon et al.
have considered finite turbulent Mach numbers and shown the negligible effect of

pressure fluctuations at high turbulent Mach numbers.

All the above mentioned studies considered the compression of isotropic turbu-
lence. To the best of our knowledge, the response of shear flows to rapid compression

has not been studied before. Precedence in the use of RDT to examine the rapid

13



Chapter 2: 1D compression of shear flow Section 2.2: Theory of RDT

straining of anisotropic turbulence may be found in the work of Townsend (1980),
Sreenivasan and Narasimha (1978), Maxey (1982) and Cambon (Private communi-

cation).

This chapter is organized as follows. A brief outline of RDT in Section 2.2
is followed in Section 2.3 by the response of turbulent shear flows to normal com-
pression. Section 2.4 deals with the oblique compression of a turbulent shear flow.
Application of the analysis to predict shock/turbulence interaction is described in
Section 2.5 and Reynolds stress modeling of the normal compression problem is
examined in Section 2.6. Finally, the salient results are summarized in Section 2.7.
Most of the work in this chapter is described by Mahesh, Lele and Moin (1993,
1994).

2.2 Theoretical Procedure

Rapid Distortion Theory combines linearization of the governing equations with
statistical averaging to describe the statistical evolution of turbulence under rapid
mean distortion. The formal development of the RDT approximation is outlined
in reviews such as those by Savill (1987) and Hunt and Carruthers (1990). When
the time-scale of the mean distortion is much smaller than that of the turbulence,
then the turbulence has no time to interact with itself. This allows the neglect
of all terms in the governing equations that involve viscosity or the product of
fluctuations yielding a set of evolution equations that are linear in the fluctuations.
An alternative formulation (Pearson, 1959; Deissler, 1961) corresponding to low
Reynolds number or ‘weak’ turbulence requires retention of the viscous terms. We

neglect the viscous terms in our analysis.

Linearization of the continuity and momentum equations yields the following

set of equations.

Ou!
92; 0 (2.1a)
Ou;, Ou; ,0U;  10p

The variables U; and p denote the mean velocity and density respectively; u! and
p' represent the fluctuating velocity field and pressure respectively. For irrotational
mean distortions, it is convenient to solve the linearized vorticity equation which

reduces to Cauchy’s equation.
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Note that the fluctuations are assumed to be solenoidal. If the mean distortion
is solenoidal, then the above equations correspond to linearization of the incom-
pressible Navier Stokes equations. However, if the mean field is dilatational (as for
a one-dimensional compression), then the governing equations are the compressible
Navier Stokes equations and the above set of equations therefore describe evolution
of the solenoidal component of the compressible flow field under the assumption that
its evolution is independent of the dilatational component. (Alternatively, equations
(2.1a) and (2.1b) describe the evolution of a compressible flow field with spatially
uniform but time-dependent density.) The solenoidal and dilatational components
are coupled even in the linear limit for rotational mean flows (Blaisdell, Mansour
and Reynolds, 1991). However for irrotational mean distortions, the solenoidal
component may be assumed to evolve independently in the limit Am =Tyl/e < 1
where, I'y is the mean strain rate, [ is a turbulence lengthscale and € is the mean
speed of sound ; i.e., the turbulence is nearly incompressible (Cambon, Coleman
and Mansour, 1992).

The assumption of homogeneity constrains the mean velocity gradient to be
uniform; i.e., the mean velocity is of the form U; = A;x(t)zx. For incompressible
turbulence, this is the only requirement for homogeneity; since as discussed above,
we consider evolution of the solenoidal component of of a compressible flow field, we
constrain the mean field to satisfy homogeneity for compressible turbulent fluctua-
tions. As a result, in addition to a uniform velocity gradient, the mean field satisfies
the compressible Euler equations and has uniform pressure and density (Blaisdell,
Mansour and Reynolds, 1991).

The procedure for solving equations (2.1a) and (2.1d) is fairly well established.
One method of solution (Batchelor and Proudman, 1954) involves using a Fourier

representation where the wavenumber changes with time as:

u'(x,t) = z{[’(k,t)e""'(t)”",
k

P(x,1) = ¥ Pk, et O
k

where:

dko
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t=0 t< to t> tO
- -
Isotropic Shear Shear + Compression

FIGURE 2.1: Schematic of the mean velocity field in the normal compression of a turbulent

shear flow.

An alternative equivalent method of solution (Rogallo, 1981) is to transform coor-

dinates to a system that deforms with the mean field; z.e.,
€ = Bix(t)zk T=1

where,

d

‘a‘iBnk + Ajanj = 0. (23)
The transformed equations are then solved using conventional Fourier represen-
tation. Knowledge of the Fourier coefficients enables computation of the energy
spectrum tensor which is then integrated over all wavenumbers to determine the

Reynolds stresses.

Homogeneous RDT being an initial-value problem, requires specification of the
initial energy spectrum. As mentioned previously, earlier studies assume isotropic
initial spectrum. Our analysis is different in that the compression of anisotropic
turbulence is considered. Details of the analysis are presented in the following

sections.
2.3. Normal Compression of Sheared Turbulence

The response of a turbulent shear flow to normal compression is discussed in
this section. Description of the problem and the solution procedure is outlined in
Section 2.3.1. Results of the analysis are presented and discussed in Sections 2.3.2

and 2.3.3 respectively.
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2.3.1 Problem Formulation

Figure 2.1 shows a schematic of the normal compression of a turbulent shear

flow. One-dimensional compression is characterized by the following mean field.

U1 = 1+F0t$1, Uz —U3 —0, (2.4a)
Po

= , 2.4b
= Po

p 3 Lol (2.4c)

where U;,U,;,Us are the mean velocity components in the z,, 5, z3 directions re-
spectively; p and p are the mean density and pressure respectively, and are uniform

in space. I'y is negative for compression and positive for expansion.

Consider isotropic turbulence that is subjected to rapid homogeneous shear

i.e.,
Ur = Sez2, p=po, P=Dp (2.5)
At a non-dimensional time 3y = Spty during application of shear, we introduce the

one-dimensional compression, i.e. for £ > g,

Iy So
Ul_—1+F0(t—to)$l+_———~1+Po(t'—to)w2’ (2.6a)
Po
N 4 B 2.6b
P 1+ To(t —to) (2:65)
p= Po (2.6¢)

[14To(t—to)]"
The shear rate changes with time during the application of compression to satisfy
the compressible Euler equations. Note that the shear creates Uy(z3) while the

compression creates U;j(z;); hence the terminology ‘normal compression’.

Under RDT, the Reynolds stresses before compression depend only upon the
total shear fp; their subsequent evolution depends upon By, the ratio of shear
rate to the rate of compression (So/T's) and the total volumetric strain (p/po).
Since our interest is in the compression of shear flows, we consider the regime
where the shear sets up the initial anisotropic field and is negligible as compared
to the subsequently applied compression; i.e., So/I'y < 1. In this report S/
is 0.1 for all cases presented. Lower values of Sp/T'g ( e.g. So/T'v = 0.01) yielded
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results identical to those shown here. Thus, we effectively consider the rapid one-

dimensional compression of sheared turbulence.

The RDT equations are solved by transforming coordinates to a system that
deforms with the mean field. Fourier representation in the transformed coordi-
nates i1s used to derive ordinary differential equations that describe the evolution
of the energy spectrum tensor. The equations are numerically advanced in time
and at each time step, the energy spectrum tensor is numerically integrated over

all wavenumbers to compute the Reynolds stresses.

As indicated above, the mean field is pure shear for ¢t < ¢g. The RDT equations
for pure shear have been solved analytically (Moffatt, 1965; Townsend, 1970) and
hence we do not give the evolution equations for the energy spectrum tensor. We

only note that the coordinate transform used is as follows,
by =x1 — Sot 22, Ex =129, E3=x3, T=L. (2.7)

At time to = fo/So, the coordinate transformation changes to accommodate the

compression. The new transformation is given by,

Iy

G = 1+ To(t—to)

— [Bo + So(t —to)]z2, E2=1x2, & ==x3, T=t (2.8)

For t > tg, the RDT equations are transformed to the above coordinate system.

Using the Fourier representation,

W(€,7) = SR, )G, (2.90)
R

P(67) =Y P (E r)e™s, (2.96)

the RDT equations take the following erm for t > to:
dil - - +11“or' [_ Tou'y — Sou'z + m% ] (2.10a)
ii% = [fcz - % nl} % (2.100)
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ﬁ _ K]Fg 1:’1 + [K',lSo + (nng e Kzro) (1 + FoTI) ] 'L?z -_ IC3P0 (1 + P()T’) ’1:’3

p k2 1+ (S()T')z] —2 k1k2 So! (1 +Tor') + (%2 + £2) (1 + I"ov")2
(2.10d)

where the variable 7' = 7 — 75. Note that the expression for pressure is obtained

through elimination of the continuity equation. Also, I'¢ = 0 in the above equations

would describe the evolution for t < to (Pure shear).

The RDT equations for a pure compression allow analytical solution as do
the equations for pure shear. However, as seen above, the combination of shear and
compression yields a formidable set of equations which we have not been able to solve
analytically. Instead equations (2.10a) through (2.10d) were used to derive evolution

equations for the energy spectrum tensor E;;(%, ), defined as E;; = wliu! *. where

3
the superscript ‘*’ refers to the complex conjugate. For reasons of brevity, the

equation for F;; is not reproduced here; it has the following form:

dE,' I
dr

= CukEi; + Cj[Eu. (2.11)

The above system of equations is integrated numerically to compute E;;(K, 7). E;jis

then integrated over all wavenumbers to compute the Reynolds stress tensor R;;(7)

defined as R;j = ujuj;

ie.,
Rij(r) = / Ei(R,7) &F. (2.12)
The integration is carried out in the polar coordinates,

K1 = Kkcos¢, kg =ksindcosf, k3=rsingsing, &K =~r’singdgpdddx

where, k varies from 0 to oo, ¢, from 0 to 7 and 6, from 0 to 27. Note that since

at 7 = 0, the energy spectrum tensor is assumed to be isotropic; i.e.,

B,(7,0) = B (5,-,- ~ m,-),

4rk? K2

it can be shown that R;;(7) is independent of the initial three-dimensional energy
spectrum tensor, E(x) and the magnitude of the wavenumber vector.

2.3.2 Results

The analysis described above essentially applies RDT to the compression of a

shear flow where the energy spectrum tensor of the shear flow is itself the RDT
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FIGURE 2.2: The evolution of R;;/q? as predicted by RDT applied to the homogeneous
(R11/¢%), -=-~ (Rza/q?), - (R3s/q?),

shear of initially isotropic turbulence.

—-— (R12/¢%).

solution to initially isotropic turbulence subjected to homogeneous shear. The use
of RDT to obtain the energy spectrum tensor that characterizes a shear flow is
motivated by Townsend (1970) where the RDT predictions of Reynolds stress cor-
relations, spectra and non-dimensional Reynolds stresses in turbulent shear flows

were compared to experiment and good agreement was observed.

This is illustrated in figure 2.2 where R;;/q? as predicted by RDT applied to the
rapid shear of initially isotropic turbulence is shown. The quantity plotted on the
abscissa is the total shear 3 defined as 3 = Sypt. Note that after a moderate amount
of total shear (8 between 2 and 3), the nondimensional Reynolds stresses are quite
close to values obtained in shear flows such as homogeneous shear flow, turbulent
channel flow (Moin, 1988) and boundary layers (Townsend, 1970). For example, in
homogeneous shear flow (Moin, 1988), R11/¢%, R22/q%, R33/q? and Ry3/q? are 0.54,
0.16, 0.31 and 0.14 respectively. For a total shear of 2.5, RDT yields values of 0.51,
0.12, 0.36 and 0.16 respectively. Townsend (1970) notes, ‘The good agreement of
the non-dimensional Reynolds stresses suggests that the large eddies in turbulent
shear flows have very nearly the shape suggested by RDT’. This conclusion is further

supported by direct numerical simulation (Lee, Kim and Moin, 1990) of turbulence
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FIGURE 2.3: Evolution of ¢ upon the normal compression of sheared turbulence. The
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different curves correspond to different values of initial total shear.

—=== (o = 1), (Bo =2), —— (B = 3).

subjected to very high shear rates, where structures similar to near wall ‘streaks’

were observed.

The evolution of sheared turbulence upon compression is next examined. The
abscissa in all plots shown is the total volumetric strain, p/po. ¢* normalized with
its value at the start of compression is plotted against the total volumetric strain
in figure 2.3. The different curves correspond to different values of total initial
shear (fg). fo = 0 corresponds to the compression of initially isotropic turbulence.
¢
the initial total shear increases. The amplification of turbulent kinetic energy upon

is seen to amplify upon compression with the amplification ratio increasing as

normal compression is thus higher for a shear flow than it is for isotropic turbulence.

The evolution of the components of turbulent kinetic energy is plotted in figure
2.4. By was set to 3 for this case. All three components are seen to amplify with
the z; (direction of compression) component being amplified the most. The reason
for the preferential amplification of the z; component is due to the fact that it is
directly ‘produced’ by the compression while the other components amplify through

the redistributive nature of the pressure-strain correlation in the Reynolds stress
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FIGURE 2.4: Evolution of the components of turbulent kinetic energy when sheared turbu-
(R11), ———— (Raz), - (Rss3)

equations. The importance of the initial anisotropy on the amplification of u’12

lence (B = 3), is subjected to normal compression.

is gauged by comparing the amplification of u’12 of initially sheared turbulence
to that of initially isotropic turbulence (figure 2.5). Note that the amplification
of ;'1—2 in the shear flow is much higher than that of isotropic turbulence. For
example, at a density ratio of 3, the amplification ratio is 3.4 for initially isotropic
turbulence and 4.85 for initially sheared turbulence - an increase of about 43 %.
Shear flows in equilibrium are characterized by typical values of R;j/q% It is of
interest to see how these values change upon normal compression. Figure 2.6 shows
the the diagonal terms of the tensor. Compression increases the contribution of
u! to the turbulent kinetic energy while decreasing that of uj and u3. Also note

(over the range of total volumetric strain shown) that the ordering of kinetic energy

components (u}’ > ul?® > u'zz) is retained upon normal compression.

The evolution of Rj3/¢* upon compression is plotted in figure 2.7. The three
curves correspond to different values of total initial shear. Upon normal com-
pression, Rj2/q* decreases in magnitude and for sufficiently large total volumetric
strains, it changes sign. This trend was first observed by Cambon (Private commu-
nication), and is hastened upon increasing the initial total shear. The terms in the

Reynolds shear stress evolution equation provide an explanation for this behavior.
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FIGURE 2.7: Evolution of R12 / q2 when sheared turbulence is subjected to normal compres-

sion. The different curves correspond to different values of initial total shear. (Bo = 1),
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The evolution equation for Ry, is,
d Ty So
—Ryy = — - R T 2.13
ETRicL 14 Tyt 12 1+ Tt 22 +Ti12 ( )
Compres;;on prod. Shea;rprod.

where 7;; is the pressure-strain correlation defined as =;; = m/ p. Note
that both the strain and shear production terms tend to increase the magnitude of
Ry, (make it more negative). The tendency of |Ry2| to decrease must therefore be
due to the pressure strain correlation. Figure 2.8 illustrates the evolution of terms
in the budget of R;; for the case with fy = 3. We see that the tendency of R;,
to decrease upon normal compression is due to amplification of the pressure-strain
correlation and the consequent upsetting of the initial balance between ‘production’

and the pressure-strain correlation in the shear flow.

2.3.3 Interpretation of the results

We have seen that the response of a shear flow to normal compression is quite

different from that of isotropic turbulence. A noticeable feature is the higher am-
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FIGURE 2.8: Budget of terms in the Rj3 evolution equation during the normal compression
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production), —~— (Pressure-strain correlation).

(LHS), -—-- (Compression production), -------- (Shear

plification of u’l2 and ¢? in the shear flow. In this section, we attempt to ex-
plain this observation by posing the following question, ‘What aspect of the initial
anisotropic field is important in determining the evolution of kinetic energy during

a one-dimensional compression ?’

The evolution equations for “’12 and ¢? during rapid compression are given by

dut? Ty —7
dvl' = —Zﬁuaz + 711, (2.14a)

d¢ _ 5, To =3

= —-2——ul”. 2.14b
dT 1 + I‘()’I'u1 ( )

When negative, the pressure-strain correlation 7;; ‘takes’ energy from u'12 and
redistributes it among the other components. The amplification of ﬁ and hence,
g* through equation (2.14b), would increase if the pressure-strain correlation were
to decrease. Also, since in the RDT limit, the pressure-strain correlation is the only
term in the budget apart from the production term, a higher amplification rate

automatically implies a lower pressure-strain correlation.
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FIGURE 2.9: Evolution of the ratio of 77 to the production term in the Rj; equation
upon normal compression. The compression of sheared turbulence (8p = 3) is compared to

(Isotropic), =—=~- (Sheared).

that of isotropic turbulence.

The relative magnitude of the pressure-strain term in the energy budget may be
gauged from its short-time behavior. It is easily shown that in turbulence subjected

to rapid one-dimensional compression, 711 is given by:

my = —2POC/ Czl‘C% Ell(f-‘&‘)daﬂ (215)
c2k? + k2 + K3

where, ¢ = p/po. 711 thus strongly depends upon the spectral distribution of the
u! component of velocity. Note that as the energy distribution in u; moves to
smaller 1, the magnitude of 71; decreases. The small time evolution of 7;; may be
estimated by replacing F1; in equation (2.15) with its initial value, EY;. This small
time evolution shows how the spectral distribution of u} in the initial field affects

the rate of change of u'l2 when anisotropic turbulence is compressed.

Since mean shear tends to stretch the turbulence in the streamwise direction,
w'y in a shear flow has energy at smaller k; as compared to isotropic turbulence
and hence according to equation (2.15), a lower initial value of my;. This is shown
in figure 2.9, where the ratio of 711 to the production term in the Rj; equation
is plotted. The pressure-strain correlation is indeed seen to be smaller when shear

flow is compressed.
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As one continues the compression, the energy in u} is moved to larger x; and
hence, the pressure-strain correlation would progressively become more important.
Analysis shows that, in the limit of infinite p/pg, the ratio of my; to the production
term is independent of the initial energy spectrum; it is equal to 1. This is shown
as follows. For turbulence subjected to one-dimensional compression, under RDT,
2 Eq)(R)

En(R) = c2(k1/6)? + (k2 /k)? + (k3 /K)?

(2.16)

where, ¢ = p/po.
Denoting the denominator in the above expression by D, the rate of change of
E,; is given by,

dEy; EY (.d¢* ,dD
=—{D——-c“—). .
dr D? & ¢ dr (2.17)
Noting that dc/dt = —I'¢c? and considering very large compressions, it can be
shown that,
. dEy; _
Jm, dr =0. (2.18)

Since E;; when integrated over all wavenumbers yields R;;, the above equation
implies that in the limit of very large c, d$/ dr = 0. Substitution into equation
(2.14a) shows that asymptotically, m1; = —Production. Note that this relation is
independent of the initial energy spectrum. The asymptotic behavior shows the
diminishing effect of initial anisotropy upon the pressure-strain correlation as time
progresses. This is supported by figure 2.9 where the two curves tend towards each
other as c increases. Integration to larger time shows that the two curves do indeed

asymptote to 1.

We see that when anisotropic turbulence is compressed (in the z; direction),
the feature of the initial field that determines kinetic energy evolution is Ef;(k1).
As the energy in u'lo moves to smaller k;, the relative importance of m;; decreases,
resulting in larger amplification of ;? The amplification of ¢2, in addition to being
influenced by EY,, is also influenced by the initial value of ?/ ¢%. This is shown as
follows. The kinetic energy equation for a one-dimensional compression (Equation

2.14b) may be rewritten as,

quz _ P() R11 R(l)l
2¢2 dr 14Tt RY ¢

(2.19)

Note that as R?, /¢Z increases, the rate of amplification of g2 increases. This explains

the trend seen in figure 2.3. In addition to having energy at lower &1, a shear flow
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that is subjected to normal compression also has a larger fraction of its energy along
the direction of compression, resulting in a higher amplification of ¢? as compared

to isotropic turbulence.
2.4. Oblique Compression of Sheared Turbulence

Thus far, we have examined the effect of compression on sheared turbulence
normal to the direction of shear. Since shear flows are anisotropic, one would expect
the direction of compression relative to the shear to be an important parameter; i.e.,
the oblique compression of a shear flow would yield results different from normal
compression. In the section that follows, we discuss the procedure (Section 2.4.1)

and results (Section 2.4.2) of RDT applied to the problem of oblique compression.
2.4.1. Problem Formulation

Under RDT, the obliquity of compression may be characterized by the angle 6
between the direction of compression and the direction of the upstream shear flow.
Note that 8 = 0 corresponds to the normal compression discussed in the previous
section. Recall that the normal compression problem was formulated by considering
sheared turbulence subjected to simultaneous shear and compression in the regime
where the compression rate was much higher than the rate of shear. The sole
reason for retention of the shear during compression was to avoid the destruction
of vorticity. However, one might adopt the point of view that if the mean shear
is not important during the process of compression, then it may be ignored except
for its effect on the initial spectrum. This is the approach adopted in this section
in applying RDT to the oblique compression of sheared turbulence. We essentially
repeat RDT for turbulence subjected to a one-dimensional compression. However
the initial energy spectrum instead of being isotropic is the RDT solution to isotropic
turbulence subjected to homogeneous shear. Also as mentioned, the initial mean
shear is assumed to be at angle 6 to the subsequently applied compression. The
validity of this approach was verified by comparison of the results for § = 0 to the

more completely formulated normal compression problem.

Figure 2.10 shows a schematic of the the oblique compression problem. Note
that the shear is assumed to be in the z; direction. For reasons of convenience, the
time-dependent wavenumber approach (Batchelor and Proudman, 1954) was used
to solve the RDT equations. The RDT solution to the oblique compression problem

requires knowledge of the evolution of the energy spectrum tensor when isotropic
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(=0 t<t, t>t,

Isotropic Shear Shear + Compression

FIGURE 2.10: Coordinate system used in the analysis of oblique compression of sheared

turbulence.

turbulence is subjected to homogeneous shear and the transfer function of the vor-

ticity spectrum tensor when turbulence (not necessarily isotropic) is subjected to

a one-dimensional compression. As indicated earlier, these problems have been

solved analytically. Assuming knowledge of these transfer functions, the procedure

for RDT applied to the oblique compression problem is as follows:

1.

Consider isotropic turbulence that is subjected to homogeneous shear in the
z direction. Denote the wavenumber vector at t = 0 by Eo. For a given total
shear (defined in the previous section), compute the energy spectrum tensor at
the end of shear.

. With reference to figure 2.10, rotate the energy spectrum tensor and wavenum-

ber vector by the angle . This aligns the field with the compression.

From the rotated energy spectrum tensor and the wavenumber vector, obtain

the vorticity spectrum tensor in the rotated coordinates.

Using the transfer functions for the compression problem, obtain the vorticity

spectrum tensor and wavenumber vector after compression.

Using the inverse of the relation in 3, obtain the energy spectrum tensor after
compression in the rotated coordinates. Integrate the energy spectrum tensor

over ko to obtain the Reynolds stress tensor in rotated coordinates.

. Rotate the Reynolds stress tensor back by the angle . This yields the Reynolds

stress tensor after compression in the original coordinate system.
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FIGURE 2.11: Evolution of Ri1 upon the oblique compression of sheared turbulence (8 =
(6 = 0°),

3). The different curves correspond to different values of oblique angle.

———— (6 = 30°), - (6 = —30°), —-— (8 = 60°), —--— (6 = —60°).

2.4.2. Results

We describe in this section some of the results of RDT applied to the oblique
compression of sheared turbulence. The effect of the oblique angle 8, is gauged by
comparison to the previously discussed normal compression problem. The amplifi-
cation of the streamwise component of turbulent kinetic energy upon compression

is shown in figure 2.11 for different angles of obliquity.

The initial condition corresponds to sheared turbulence with fy = 3. Recall
that € = 0 corresponds to normal compression. Note the decrease in amplification
ratio with increasing magnitude of oblique angle. The effect of oblique compression
on ¢ is shown in figure 2.12. Once again, the amplification of ¢?> decreases as the
oblique angle increases. In the previous section, we emphasized the importance of
the E11(x1) and ?/ q? on the amplification of kinetic energy. If oblique compression
is viewed in a coordinate system aligned with the compression, we see that the effect

of oblique compression may be explained by the initial value of Egg(kg) and u:92 /4%,

where 0 refers to the direction of compression.

In the previous section, we noted how normal compression could significantly
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FIGURE 2.12: Evolution of g upon the oblique compression of sheared turbulence (B =
(0 = 0°),

3). The different curves correspond to different values of oblique angle.
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change the nondimensional Reynolds stresses of a shear flow. The effect of oblique
compression on the diagonal elements of R;;/q? is shown in figures 2.13,2.14 and
2.15. It is clear that obliquity of compression has a significant effect on the evolution
of the Reynolds stresses. The qualitative difference in the curves for different oblique

angles is striking to note.

Figure 2.16 shows the evolution of the nondimensional Reynolds shear stress
upon oblique compression. Recall the effect of normal compression to decrease
Ri3/q? and even change its sign. In comparison, we see that this trend decreases as
the compression becomes more oblique and for large oblique angles, R;5/¢? slightly

amplifies.
2.5 Application to shock/turbulence interaction

We illustrate application of the analysis to shock/turbulence interaction. Recall

that the Reynolds stress tensor during compression of a shear flow is of the form:

Rij = Rij (p/po; o, ). (2.20)
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FIGURE 2.14: Evolution of Rp;/ g? upon the oblique compression of sheared turbulence
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(Bo = 3). The different curves correspond to different values of oblique angle.
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FIGURE 2.17: Examples of the oblique compression of a shear flow.

Note that So/I'g is assumed negligible in writing the above expression. The
parameter @ in the above expression is determined by the oblique angle of the
shock wave. Figure 2.17 illustrates a couple of examples that correspond to positive
and negative . The choice of fp depends upon the extent of shear (quantified
by Sg¢%/e€) in the flow upstream of the shock wave. As discussed before, By = 2.5
seems appropriate for shear flows in equilibrium. Higher values of §; may be chosen
for strongly sheared flows. The variable p/pg in the above expression is the total
amount of compression the shear flow experiences. It is equated to the density
ratio across the shock wave which the Rankine-Hugoniot equations relate to the
shock-normal Mach number, M. i.e.,

p __(y+DHM
po 2+ (y-1)MZ

Thus, once the strength and inclination angle of the shock wave is known, its effect

(2.21)

on the shear flow can be predicted.

Consider the following two examples: the interaction of a shear flow with a
Mach 1.5 normal shock and shock/turbulence interaction in a compression corner
with free-stream Mach number 2.9 and wedge angle 8°. The compression corner
corresponds to an experiment by Smits and Muck (1987).

The evolution of R;; and R;;/q* is predicted for both cases. The incident

turbulence is assumed to be in equilibrium and hence §y was taken as 2.5. For the

34



Chapter 2: 1D compression of shear flow Section 2.6: Reynolds stress modeling

normal shock problem, it is clear that M, and 8 are 1.5 and 0° respectively. In
the case of the compression corner, these parameters are obtained by assuming that
the flow is turned across a single shock wave. Solution of the corresponding oblique
shock equations yields M, = 1.29 and 6 = 63.65°. Another point to be noted is
that the coordinate system in our analysis was aligned with the direction of mean
shear. However experimental coordinate systems are aligned with the local wall
direction. As a result, the compression corner problem requires that the Reynolds
stresses predicted by our analysis be rotated by the wedge angle to be consistent

with experiments. The results are tabulated below.

R Ry R33 Ry1/q? Ra2/¢* Ris/q? Ri2/¢?

Normal 2.60 1.30 1.60 0.64 0.08 0.28 -0.07
Oblique 1.05 2.22 1.40 0.40 0.22 0.38 -0.21

TABLE 2.1: The Reynolds stresses as predicted by RDT for two representative cases of

shock/turbulence interaction.

The complexity of the flow in a compression-corner f)revents quantitative com-
parison between the analysis and the experimental flow. Comparison (Mahesh, Lele
and Moin, 1993) shows qualitative agreement, thereby underscoring the importance

of upstream anisotropy and shock wave obliquity in compression-corner flow.

2.6 Application to Reynolds Stress modeling

The analysis described in the preceding sections reveals significant effects of
anisotropy on the response of shear flows to compression. The spectral distribution
of energy prior to compression is seen to strongly influence the Reynolds stresses
through the pressure-strain correlation. In this section, we consider Reynolds stress
modeling of the normal compression problem to see if the model equations reproduce
the evolution as predicted by RDT. Since the pressure-strain correlation is the only
term that needs to be modelled, the RDT limit is a natural choice to evaluate

models for the rapid pressure-strain correlation.
We evaluate models of the form, m;; = mi;(bij, Stis
; denotes the deviatoric part of the mean strain

rate tensor and {2;; denotes the mean rotation rate tensor. Linear, quadratic and

ij) Where b;; denotes the

Reynolds stress anisotropy tensor, S}’

cubic forms of these models exist. We only consider two representative versions of

these models.

35




Chapter 2: 1D compression of shear flow Section 2.6: Reynolds stress modeling

2.6.1 Launder, Reece, Rodi (LRR) model
Consider the model,

2 2
Tij = q2 [B-S:‘j + Cg( :‘,blj + S;zbli — §Sfmbm15,'j) +Cs <Qub1j + lebu)] . (2.22)

The models of several workers; e.g. Launder, Reece and Rodi (1975) and Naot,
Shavit and Wolfshtein (1970) are of the above form, differing only in the constants
C; and Cj.

During simultaneous shear and compression (Section 2.3.1), S7; and ;; are

given by,
2 15 158
. Ty 1 5 5# 0) Q o ( 105 it ) (2.23)
g —_—-9 | 15% _1 ii=——— | =15 o ¢ 2.23
ij ! 2T, 3 ’ J ! 2T
14 Tot 0 0 _1 14Tt 5 0 0

3

where t' =t — to. In the limit S5 /Ty <« 1,

* FO
5= 14T (

We consider the evolution of R;; and R;2. Substitution of S;‘j and Q;; into equation
(2.22) yields,

o OoOwin
|
[

0 0
0], =0 (2.24)

0 -}

=39 71,7

Note that the trace-free property of b;; is used to obtain the above expression. Also,

[§+Cﬁn} (2.25)

o lp T
=39 7T

Cabia. (2.26)

The modeled equations may be solved analytically in the RDT limit to obtain the

Reynolds stresses. Consider,

dR;; 9 | I

¥ I 13 Tor Ry + 711, (2.27a)
dq2 F()
7 = -2 TITT Ri1. (2.27b)
Defining a variable f = R11/¢* = b11+1/3, the above equations may be manipulated
to obtain,
df _ Ty 2 11
i 2 13 Tot (fF =N+ 2 (2.28)
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Substituting for 11 /¢%,

1,2 C;

df o _To (--7;) : (2.29)

—_— 2 — —
dt! 1+Fot' f +f( 1)+

Denoting f at t' = 0 by fo, the above equation may be integrated to yield

ry —ary

f== (2.30)

where, « is defined as

fo—

0— T2

o =

"L (14 Tot')2 ), (2.31)

r, and ro are the roots of f2 + f(%‘ — 1) + %(% — 931) = 0 and are given by,

namd[ (2 (2 -3C-2) | em

Once f is known, ¢> may be calculated as follows. We rewrite equation (2.27b)

as,
.dq_z -9 T'o
dt' 1+ Lot

Substituting for f and integrating, we get,

q? l—a fap e
= (—) (2.34)

qul—ao a

fé. (2.33)

where, the subscript ‘0’ corresponds to time t' = 0. Note that o may be expressed

in terms of the total volumetric strain ; s.e.,

-2(r1~rz2)
_fo—ri(p :
=+ . (2.35)

We next compare the predicted values of R;; and ¢? with the RDT evolution.
Our choice of C, in the above equations is dictated by the asymptotic behavior of
the model solution. Equations (2.32) and (2.35) show that in the limit of infinite
volumetric strain, o« — oo and hence f — ry. Since r; depends only upon Cs,
this suggests that the asymptotic value of Rj;/q? as predicted by the model is

independent of the initial anisotropy. This behavior is in agreement with RDT.
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FIGURE 2.18: Comparison of model solution to RDT prediction of R;. (Isotropic;
RDT), ---~ (Isotropic; model), -------- (Sheared; RDT), —-— (Sheared; model).

This independence of Rj1/q? of the initial condition allows the asymptotic values
to be determined from the compression of isotropic turbulence. It can be shown
(Lee, 1989) that R;;/q® asymptotes to 1/2. Equating r; to 1/2 and solving the

resulting equation for C,, we get

21

02215'

(2.36)

Figure 2.18 compares the predicted evolution of Ry; to the RDT solution. The
compression of isotropic turbulence (8y = 0) and sheared turbulence (8y = 2.5) are
both plotted. Note that the model predicts R;; quite well when the initial state
is isotropic. However, the amplification of R;; in the shear flow is considerably
underpredicted. Similar behavior is observed in figure 2.19, where the evolution
of ¢2 is plotted. The evolution of isotropic turbulence is predicted well while the
amplification of kinetic energy in the shear flow is underpredicted. Thié behavior of
the model solution is attributed to the lack of spectral information which prevents

it from reproducing the suppression of 713 in the shear flow.

Similarly, the model is unable to reproduce the drop and change in sign of

Reynolds shear stress. This is shown as follows. The evolution of R;, is given by
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FIGURE 2.19: Comparison of model solution to RDT prediction of g2. (Isotropic;
RDT), ---- (Isotropic; model}), -~ (Sheared; RDT), —-— (Sheared; model).
equation (2.13) as
d Ty So
—Rj2=———|—-Ri2— =—R . 2.37
@ = [T,y [ 12~ R + T2 (2.37)
Using the model expression for 72 as given in equation (2.26) we get,
d Ty So Cs
—Rys=+———| -Ri2— =—R —Ry2|. 2.38
@ =10 [ 12~ p Bz + 3 R (2.38)
In the limit Sy/Ty < 1, this becomes,
d Ty C,
—R;3=———| —=— —1)Ry;. 2.39
a1 +I‘0t’( 3 12 (2:39)
Integration of the above equation yields’
Riz = R%, (1 + Tpt") /%71, (2.40)

Since Ty is negative, the above equation predicts an increase in the Reynolds
shear stress upon normal compression. Thus, presence of spectral information seems

to be particularly important in predicting the evolution of R;;.
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FIGURE 2.20: Comparison of model prediction of 717 to RDT prediction in the normal
(RDT), -=—-- (LRR), -------- (SSG).

compression of a shear flow (8y = 3).

2.6.2 Speziale, Sarkar, Gatski (SSG) model

The more recent model developed by Speziale, Sarkar and Gatski (1991) is
evaluated in this section. Unlike the LRR model, where the solution to the Reynolds
stress equations was analytically obtained, we only conduct an a prior: evaluation of
the SSG model; i.e., we test the ability of the model to predict the pressure strain
correlation, given the RDT values for the Reynolds stresses. The rapid pressure

strain correlation according to the SSG model is given by the expression,

2 2 2
mij = — CFPbij + (C3 — c;u,}/z)%s:j + 04% (b,-kS;-*k + bjx S% — 5b,c,s;;,(si,-)

2
+Cs %(bikgjk + bjrQik) (2.41)
where P = —u:-u’jan /0z; is the turbulence production, Il = b;;b;; and the con-
stants,
Cf=18, C3=08, C;13, C,=125 C(C5=04. (2.42)
In the limit Sy/T'y < 1, the production
T
P=————Ry. .
T To7 Ri1 (2.43)
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FIGURE 2.21: Comparison of the SSG model prediction of m1; to RDT in the normal

compression of isotropic turbulence and shear flow (6 = 3). (RDT:Isotropic),
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FIGURE 2.22: Comparison of SSG model prediction of ;2 to RDT prediction in the normal
(RDT), ---- (SSG).

compression of a shear flow (fy = 3).
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Using equation 2.24 to obtain S};, this yields the following expression for my
according to the SSG model.

Ty

=TT

C}Ry1byy + (Cs — 0*111/2)— + 043611 (2.44)
Figure 2.20 compares the prediction of m;; of the SSG and LRR models with the
RDT solution for the case where the shear flow (8 = 3) is subjected to normal
compression. The SSG model is seen to be closer to the RDT solution. The ability
of the model to predict the suppressed level of 717 in the shear flow is evaluated
in figure 2.21. Interestingly, the SSG model does predict an initial suppression of
711 in compression of the shear flow. However, the extent of suppression is smaller
than the RDT solution. By contrast, the LRR model predicts a higher value of 7y
in the shear flow (equation 2.25).

The ability of the model to predict the shear stress evolution is next evaluated.
712 according to the SSG model is given by,

Ty . e
Ty = 1 n F m [Cl R11 + C4 —-] b12 (245)

The model prediction of 7y is compared to the RDT value in figure 2.22. Significant
deviation is observed beyond a total volumetric strain of about 2. Thus, it appears
that while the SSG model is an improvement over the LRR model, the absence of
spectral information still hinders its ability to predict the response of the shear flow

to normal compression.
2.7. Summary

Homogeneous rapid distortion theory was used to examine the response of
sheared turbulence to rapid one-dimensional compression. Both normal and oblique
compressions (with respect to the shear) were considered. The response of shear
flows to compression was found to be quite different from the previously studied,
compression of isotropic turbulence. The differences were interpreted in a more gen-
eral framework and the relevant parameters influencing kinetic energy amplification

were identified.

Ej1(k1) of the initial field was found to determine the evolution of the stream-

wise (the direction of compression) component of kinetic energy. Flows with ] at
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lower k; have a reduced effect of pressure during compression and hence a higher
amplification of u}. The evolution of ¢* upon compression is influenced by the ini-
tial fraction of kinetic energy in the direction of compression (W/ ¢?), in addition
to the initial Ej1(k;1). Flows with a larger value of initial ?/ g% and u} at lower

k1 have a larger amplification of ¢Z.

Upon normal compression, all components of turbulent kinetic energy of shear
flow are amplified with the streamwise component being amplified the most. The
amplification of W and ¢? is higher than that in isotropic turbulence. Normal
compression decreases the turbulent shear stress and for large enough compressions
changes its sign. Examination of the terms in the shear stress evolution equation
showed that amplification of the pressure-strain correlation upon compression is

responsible for this behavior.

The oblique angle between the directions of shear and compression was seen to
affect the response of sheared turbulence to compression significantly. The effect of
angle of obliquity on the evolution of kinetic energy may be explained by the initial
distribution of Egge(xe) and uT,z/ q?, where 6 is the direction of compression. Over
a range of obliquity angles varying from —60° to 60°, the amplification of u'—12 and
q° was seen to decrease with increasing magnitude of oblique angle. Also oblique
compression reduces the tendency of the shear stress to decrease in magnitude; for

large oblique angles, the shear stress is amplified.

With respect to shock/turbulence interaction, our results suggest that, besides
shock strength (defined in terms of the normal Mach number), the anisotropy of the
turbulence and the shock inclination angle are important parameters in determining
the evolution of turbulence across the shock. It is striking that the evolution of the
Reynolds stresses upon oblique compression is qualitatively different for different
oblique angles. These important effects of initial anisotropy and the shock inclina-

tion angle should be accounted for in the modeling of shock/turbulence interaction.
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Chapter Three

The Influence of Entropy Fluctuations on
Shock / Turbulence Interaction

3.1 Introduction

The preceding chapter identified the anisotropy of the incident turbulence to
be an important element in shock/turbulence interaction. Recall that the analysis
that was performed constrained the turbulence to be homogeneous and solenoidal.
As mentioned in Chapter 1, turbulent fluctuations in a compressible medium have
acoustic and entropy fluctuations in addition to vortical fluctuations. The influence
that these modes exert on the interaction of the turbulence with a shock wave is

therefore of interest.

Morkovin (1961) hypothesized that the turbulent fluctuations in compressible
boundary layers are essentially composed of vorticity and entropy modes; i.e. the
acoustic mode is negligible. This hypothesis along with the assumption of negligible
fluctuations in stagnation temperature leads to the following relation between the

thermodynamic and velocity field,

T o U

] !

|

A considerable body of experimental evidence supports the above hypothesis. In
fact, Bradshaw (1977) states ‘There is little point in taking turbulence measure-
ments in constant pressure boundary layers at M, < 5 to check Morkovin’s hy-

pothesis, except possibly for intermittency measurements’.

Morkovin’s hypothesis suggests that in addition to being correlated, the inten-
sity of vorticity and entropy fluctuations in a turbulent boundary layer are of com-
parable magnitude. In this chapter, we seek to identify the quantitative influence
that entropy fluctuations exert on the evolution of a turbulent flow across a shock
wave. We use inviscid linear analysis to study the combined interaction of vorticity
and entropy fluctuations with a shock wave. We have in addition, conducted direct
numerical simulation of the interaction of a shock wave with an isotropic turbulent

field of vorticity and entropy fluctuations: details of the simulations are discussed
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in Appendix D. Also, the influence of upstream acoustic waves on shock/turbulence

interaction is studied separately in Appendix B.

As discussed in Chapter 1, Ribner (1953, 1954, 1969, 1987) has examined
in detail the interaction of a field of vortical fluctuations with a shock wave. The
study of the influence of entropy fluctuations on shock/turbulence interaction seems
to have been restricted to the analysis of plane entropy waves interacting with a
shock (Morkovin; 1960, Chang; 1957, Cuadra; 1968). Apparently, the interaction
of a field of entropy fluctuations with a shock wave has not been considered before.
Nor has the effect of the correlation between vorticity and entropy fluctuations been

emphasized.

This chapter is organized as follows. The simultaneous interaction of a shock
wave with a vorticity and entropy wave (henceforth referred to as vorticity-entropy
wave) is formulated in Section 3.2. Results of the interaction are presented in Section
3.3. The analysis is compared to numerical simulation in Section 3.4. Sections 3.5
and 3.6 provide an explanation for the influence of entropy fluctuations and suggest
a scaling for the evolution of vorticity across the shock. The analysis is extended in
Section 3.7 to consider the evolution of an isotropic field of vorticity-entropy waves
across a shock wave. Section 3.8 discusses the results. The chapter is concluded
with a summary of the important conclusions in Section 3.9. Some of the work in

this chapter is discussed by Mahesh, Lele and Moin (1996).

3.2 The interaction of a vorticity-entropy wave with a shock
wave

3.2.1 The three modes in a compressible medium

Kovasznay (1953) showed that fluctuations of small amplitude in a compress-
ible medium could be decomposed into vorticity, acoustic and entropy modes. These
modes were shown to evolve independently in the inviscid limit for uniform mean
flow. The vorticity mode as defined by Kovasznay has no pressure or density fluc-
tuations. It has a solenoidal velocity field that is convected by the mean flow. The
acoustic mode travels at the speed of sound relative to the mean flow, has isen-
tropic pressure and density fluctuations and a corresponding irrotational velocity
field that satisfies the acoustic wave equation. The entropy mode is convected by
the mean flow and has no velocity or pressure fluctuations; it has only density and

temperature fluctuations.
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x=E(yt)

Shock wave

FIGURE 3.1: Schematic of the interaction of a vorticity-entropy wave with a shock wave.

The independent evolution of these modes in the inviscid limit implies that the
fluctuating velocity field is a linear superposition of acoustic and vortical modes.
Similarly, the density and temperature fields are superpositions of acoustic and

entropic components. The pressure field is associated solely with the acoustic mode.
3.2.2 Formulation of the problem

The two-dimensional interaction of a shock wave with a plane vorticity-entropy
wave is schematically illustrated in figure 3.1. The two-dimensional problem will be
extended to describe the interaction of the shock with a three-dimensional field of
turbulence in Section 3.7. Note that the shock wave is stationary in the mean. The
variables U, P, p,T and M denote the mean velocity, pressure, density, temperature
and Mach number respectively and subscripts 1 and 2 denote the upstream and
downstream states. The flow upstream of the shock wave is perturbed by the weak
disturbance field of the incident vorticity-entropy wave which is assumed to be a
plane wave that makes angle ¢; with the z axis. The variables u',v',p', p' and T"

represent the fluctuating velocities, pressure, density and temperature. The incident
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field has the following form:

!
Uy

=lA, eik(mz+ly—-—Ulmt) (32&)

1

!
_gll_ — —mA,, ezlc(mz+ly—U1mt) (32b)
p1 ik ly—Uymt
B 4, citmetty=timy (3.2¢)
T! '
T_ll = —% (3.2d)
p; =0 (3.2¢)

where the variables m = cos; and ! = sint;. The shock wave deforms in response
to the incident disturbance; the displacement is denoted by z = £(y,t). The analysis
involves solution of a boundary-value problem for the shock displacement and the
flow field behind the shock wave. The governing equations behind the shock wave

are the Euler equations that are linearized about the uniform flow behind the shock.

€.,
pr+U py = —p (ug +vy) (3.3a)
1
! ! 1 I
v, +U v, = > Py (3.3¢)
sy +U s, =0. (3.3d)
Also,
! ! ! I ! !
P_P L ad SE2_F (3.3¢)
D p T Cp AP P

The variables s' and ¢, in the above equations represent entropy fluctuations and
the specific heat at constant pressure respectively.

The above equations are solved on the domain z > 0 subject to boundary
conditions imposed at z = 0 (the mean position of the shock wave). The boundary
conditions are obtained by linearizing the Rankine-Hugoniot equations in a frame
of reference that moves at the instantaneous speed of the shock wave. This yields

the following equations that describe the flow field immediately behind the shock
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wave; t.e. at £ =0,

uy — & (y—1)M} -2 (u'l—ft) 2 (Tx')
U, -~ (+ DM o, ) Yoo \T, (3.4a)

v _ v 2AMI-1)

o= Ot e (3.4b)
Py _ 4 u—&\ _(-DM +4 (T4
oo (n ) oo (7)) 04
B (o)t (B). 6w
P 2/M{-(y-1)\ U 29Mf —(v-1) \T, )’ '

The governing equations and boundary conditions suggest that the solution
could be obtained by superposing the solutions to the interaction of the shock
with a vorticity (Ribner, 1953) and entropy wave (Chang, 1957) independently.
It is simpler however, to directly solve the combined problem. The independent
interaction of the shock with vorticity and entropy waves become special cases of
our analysis and will be used as baseline cases for comparison. Our solution in these

limiting cases is of course identical to that of the above workers.
3.2.3 The two regimes behind the shock wave

The solution to equations (3.3) has two different regimes that differ in the
nature of the pressure field. The incidence angle of the disturbance and the Mach
number of the shock wave determine the regime that the solution lies in. The two
regimes are demarcated by a critical angle of incidence that we denote as v,. If
0 < 1 < %, the pressure field behind the shock wave (and hence its associated
velocity and thermodynamic field) is a plane wave. If however, 1. < ¥; < 7/2, the
pressure field behind the shock wave corresponds to an evanescent wave and decays
exponentially. The vorticity and entropy fields behind the shock wave correspond

to plane waves over both regimes.

The existence of the two regimes is illustrated as follows. The pressure field

behind the shock wave satisfies the wave equation; i.e.,
Pit +2U2 py — (a3 — U}) iz — 0} p)y, = 0. (3.5)

Continuity at the shock wave requires that the solution behind the shock wave have
the same transverse wave number and frequency as the incident disturbance. The

pressure may therefore be expressed as ,

pl = F($) eik(ly-mUﬂ)‘ (3.6)
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Substituting the above expression for pressure into equation (3.5) yields the follow-

ing equation for F.
2
az U5l Uz o | 12 2 @3
—= F 2k F'+k -1 F=0. .
E R e S -] G0

o~

Assume that the pressure field is a plane wave; i.e. F ~ ¥, Substitution into

equation (3.7) yields the following equation for k.

2 U. a2
Ay Y2 (72 27 12 2
[-——Ulz Uz]k +2kmU1 k—k [ l U2] =0. (3.8)

The discriminant of the above quadratic equation determines if % is real or imagi-
nary. A real valued % would ensure that the pressure field is indeed a plane wave.

The discriminant is given by,

a2 2 a? U2
Discriminant = 2k % _ph (_2 _ _’b’_)
\/ U2 U? Uz\U 2 U

m? al U2
= 2kl - (i - —-2—). 3.9
U, \/12 Uz U? (3.9)

Recall that m = cos 1; and I = sin ;. The requirement for real ¥ is therefore,

a2 U2
t2 2 _ 22 .
cot” ¥y > (U12 U12) (3.10)
i.e., 0 < Py < 1. where 9. is a root of,
2 U2
£2 0 = [ o2 — 22 ), 11
ot o= (3~ 77) (811

Note that %, is a function of the Mach number of the shock wave. If the incidence
angle exceeds 1., k becomes imaginary. Denoting the real and imaginary parts of

k by %, and and ki respectively, the function F' is now given by,

~

F ~ ki gikrz, (3.12)

i.e. the pressure field decays exponentially behind the shock wave.

The existence of two regimes of the pressure field is a common feature of prob-

lems involving acoustic wave propagation. Classical examples include the scattering
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of sound by a vortex sheet and the propagation of sound generated by a flexural

wall.
3.2.4 The solution behind the shock wave

The functional form of the solution behind the shock wave is derived in this
section. Recall that the preceding section had outlined the two regimes of the
solution. The arguments of the vorticity, entropy and acoustic modes over both

regimes are derived below.

It was noted that the vorticity and entropy fluctuations were plane waves over
both regimes. Since vorticity and entropy fluctuations are both convected by the

mean flow, they are of the same form which is given by:

o gik(ly—mUr 1) (3.13)

Note that the transverse wavenumber and frequency have been matched to that of
the incident disturbance. The variable k is obtained as follows. Convection by the
mean flow requires that the vorticity and entropy fluctuations have the following

dispersion relation:

w = Ulkm = Uzk‘
i.e.,
k= kmﬂ = kmr. (3.14)
U,

The vorticity and entropy fields are therefore of the form:

eik(mrz+ly—mUit) (3.15)

The form of the pressure field was derived in the previous section. However, explicit
expressions were not derived for the variables k, k; and k,.. Evaluation of these vari-

ables would completely determine the functional form of the pressure field. Recall

)

that k was defined as the root of equation (3.8); i.e,

SS

az
—2kmt + 2kl§f\/ - (vz, -

F= :
25 - %)

(3.16)
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The other root is rejected on the grounds that it leads to a physically unacceptable
solution that grows exponentially behind the shock wave. This yields,

—mbp g 2 - (- 8)
=

U M m: U2/ 1
“U21—M22[ mM2+l\/12—U12 )| (3.17)

The above expression is real only if 0 < 1¥; < 9.. If the angle of incidence exceeds

k
E

e, kis complex. Equation 3.16 shows that the real and imaginary parts of k are

given by: _
k, U, 1 Uy M?
L m—— = 2 (3.18)
k U 2 U, 1— M2
Hd-w) M
2 U2 2 ’
~ I# (—%——%)—7—"—
ki B U, Uj Us ! __lUl M2 \/UZZ( 1 1) m? (3 19)
(il “nioam\v\g ) T E @
(_lf%_%?) 2 2 | Ui \M;

The argument of the vorticity, entropy and acoustic modes behind the shock
wave are now completely determined over both regimes of the solution. Expressions

for the velocity and thermodynamic field behind the shock wave follow and are given

below.
2'2_ = F eizzeik(ly—mUlt) +G eilc(mrz:+ly—mU1t)
Ux
_‘l_);_ - H eiZzeik(ly—mUlt) +7 eik(mrz+1y—mU1t)
Uy
' ~
B_Z_ =K eikzeik(ly—mUlt) (320)
P2
! K = . .
E_Z_ - = ezkzezk(ly—mUlt) +Q ezk(7n1'z:-+-ly—mU1t)
[ Y
_1_1__2' — 7Y - 1K eﬁc’zeik(ly—mUﬂ) _ Q eilc(mr:::+ly—mU1 t).
T, Y '

The boundary conditions across the shock wave yield the following expressions for

the velocity and slope of the shock front:

€ _ [ ik (ty-mUs). ¢, = _ b ik y-mUiy (3.21)

U1 m
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The coeflicients F, H and K in the above expressions are associated with the acoustic
component. The vortical component is represented by G and I. The variable Q

represents the entropy component.

The above expressions for the solution are next substituted into the governing
equations behind the shock wave and the boundary conditions at the mean position
of the shock front. Since the argument of the solution has been matched to that of
the incident disturbance this yields a set of equations relating the coefficients. This
system of equations is analytically solved thereby completing the solution. Details
of this procedure are not particularly enlightening and are deferred to Appendix A.
The coefficients thus obtained are functions of the mean upstream Mach number
M, the incidence angle of the disturbance t); and the amplitude ratio (4,) and
phase difference (¢, ) between the vorticity and entropy waves; i.e. 4,e'%r = 4,/A,.

3.3 Results

Expressions are now derived to describe the streamwise evolution of statistics
behind the shock wave. Consider for example the streamwise component of velocity.
The kinetic energy associated with this component is denoted by -u'z_z = W
where the overbar implies averaging over the transverse direction and time and the
“*’ denotes complex conjugate. The following expression is obtained for uTZ from
Equation 3.20:

2

T = [|Ff Rz |G 4 FGrei(bbmns 4 frGemi —bmnz | 4 12, (3.20)
1

The spatial variation of u'22 is different over the two regimes. The wavenumber £ is

real over the propagating regime and hence

-z o
22 = [|FP +|GP + 2(F. G, + FGi)cos(k — kmr)a
1
—2AFiG, — F.Gsin(F — kmr)z] |A2.  (3.23)

" and ‘¢’ denote the real and imaginary parts respectively.

where the subscripts ‘r
The kinetic energy thus has spatially uniform contributions from the vortical and
acoustic components of the velocity field and an oscillating component whose argu-

ment is the phase difference between them. Similar expressions may be written for
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quantities such as v_f, density and temperature in the propagating regime. Vari-
ables such as vorticity,dilatation and pressure that depend on only one component

(see equation 3.20) are of course spatially uniform. e.g.,

2

2 o~

—1‘322 = |K?* |4,|% (3.24)
2

The evolution of u'22 over the decaying regime may be shown to be given by:

= = e-";’:"”|17"'|2 +1G]2 + 2e”i"(fr§r + FiGy)cos(ky — kmr)z

~

— 26_’;‘$(Fzér - ﬁréi)Sin(zr - kmr)x] lA”|2(325)

The corresponding equation for pressure is:

2 ~
Pr_ _ kR |4, 2 (3.26)
p;

The kinetic energy over this regime is seen to have a spatially uniform vortical
component, an acoustic component that decays exponentially behind the shock wave
and a damped oscillating component due to the correlation between the acoustic
and vortical modes that the shock wave introduces. In describing the flow-field
behind the shock wave, z = 0 is referred to as the ‘near-field’ and z — oo is called
the ‘far-field’. We will see that the far-field values are attained over a distance
comparable to the lengthscale of the incident disturbance. As a result, it is the

far-field values that are of practical importance.

The analysis is now applied to the interaction of a vorticity-entropy wave with
a Mach 1.5 shock wave. Incidence angles of 45° and 75° are considered so that be-
havior over both regimes is illustrated. (The critical angle is 61.36°). The objective
here is to demonstrate the influence of entropy fluctuations and their correlation
with the incident vorticity fluctuations. The interaction of the vorticity-entropy
waves is therefore contrasted with the independent interaction of the shock with a
vorticity wave and entropy wave at the same angle of incidence. These two limiting

cases are referred to as the ‘pure vorticity’ and ‘pure entropy’ limits.

The normalization of the curves in the pure entropy limit deserves clarification.

There is no incident velocity field in the pure entropy limit; i.e., ¢? = wiz = 0. The
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FIGURE 3.2: Evolution of g behind the shock wave in the propagating regime. The inci-

dence angle is 45° and the mean Mach number is 1.5.

1, =0), - (Ar = 1; ¢, = 180°), —-— (Pure entropy).

(Pure vorticity), -—~- (A, =

appropriate normalization in this limit is (¢2/U2)/ (p'l_z/ﬁlz). We set the intensity
p1/Py in the pure entropy limit to equal its value in the vorticity-entropy wave;
i.e., (p1/P1)pure ent. = Ar(\/E;f /Ui)vort.—ent.- This allows a consistent comparison
between the pure entropy limit and the other curves.

Figure 3.2 shows the evolution of kinetic energy behind the shock wave over
the propagating regime (1; = 45°). All three curves are normalized by the incident
kinetic energy. The presence of entropy fluctuations is seen to significantly affect the
amplification of kinetic energy across the shock wave. The evolution of ¢? is strongly
affected by both the amplitude ratio and phase difference between the vorticity and
entropy waves. Dependence upon the amplitude is monotonic. Entropy fluctuations
that are in phase with the vorticity fluctuations (u} and T} are negatively correlated)
enhance the amplification of kinetic energy. Suppression of amplification is observed
when v} and T} are positively correlated. The pressure fluctuations behind the shock

wave are similarly affected.

The decaying regime (1; = 75°) as shown in figure 3.3 displays similar influence

of the entropy fluctuations. Both near-field and far-field levels of kinetic energy are
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FIGURE 3.3: Evolution of ¢* behind the shock wave in the decaying regime. The incidence
angle is 75° and the mean Mach number is 1.5. (Pure vorticity), -—-- (4, = 1; ¢, =
0y, ------- (Ar = 1; ¢, = 180°), —-— (Pure entropy).

affected. The dependence upon amplitude ratio and phase difference is identical to
that seen in the propagating regime. Also note that the curves asymptote to the

far-field levels within a wavelength of the incident disturbance.

This influence of the entropy fluctuations is not limited to the two angles con-
sidered above; it extends over all angles of incidence. This is illustrated in ﬁgure 34
where the far-field levels of amplification of ¢* are plotted against the angle of inci-
dence. The Mach number of the shock wave is 1.5. Note that the notion of far-field
is introduced into the propagating regime by ignoring the oscillating component in
Equation 3.25. Reason for this neglect is statistical cancellation of this component
in the far-field for an incident turbulent field. Also shown in figure 3.5 is the ampli-
fication of vorticity across the shock wave. Negative correlation between u' and T'

is clearly seen to increase the amplification while positive correlation suppresses it.
3.4. Comparison to numerical solution

The analysis makes the assumptions of linearity and inviscid flow. Its validity

is therefore evaluated by comparison to numerical solution where nonlinear and
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FIGURE 3.4: The amplification of kinetic energy across the shock wave as a function of the
angle of incidence. Far-field kinetic energy levels are plotted and the mean Mach number
is 1.5. (Pure vorticity), ~--- (4, = 1;¢, = 0), -------- (Ar = 154, = 180°),
—-— (Pure entropy).
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FIGURE 3.5: The amplification of vorticity across the shock wave as a function of the angle of
(Pure vorticity), ---- (4, = 1; ¢, = 0),
........ (Ar = 1; ¢, = 180°),—-— (Pure entropy).

incidence. The mean Mach number is 1.5.
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FIGURE 3.6: The amplification of vorticity across the shock wave as a function of the angle
of incidence. The mean Mach number is 1.5. The line corresponds to linear analysis while

the symbols are from numerical solution.

viscous effects are retained. We present numerical results of the interaction of
a sinusoidal vorticity-entropy wave with a Mach 1.5 shock wave. The governing
equations are the discretized two-dimensional unsteady compressible Navier Stokes
equations. Details of the discretization are discussed in Chapter 4. The shock wave
is stationary at the center of the domain in the mean. The shock structure is a result
of molecular viscosity; no shock capturing or shock -fitting is used. A structured
mesh that is non-uniform in the streamwise direction is used to resolve the shock

wave. About 7 mesh points are located inside the shock wave.

Periodic boundary conditions are imposed transverse to the shock. The distur-
bance field corresponding to a vorticity-entropy wave is superposed onto the super-
sonic mean flow at the inflow boundary. Approximately non-reflecting boundary
conditions (Poinsot and Lele, 1992) are used at the outflow boundary. The initial
condition is a numerically computed steady shock wave. The vorticity-entropy wave
is then introduced through the inflow boundary condition. The transients set up
by the initial period of adjustment are allowed to exit the domain. Statistics are

then gathered over a period of the inflow disturbance.

The computations examine the dependence of the interaction upon the inci-
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dence angle of the disturbance. The incidence angle was varied from 0 to 90 degrees
while the amplitudes A, and A, were fixed at 0.05. We compare in figure 3.6 the
computed values of amplification of vorticity fluctuations to the linear analysis pre-
dictions. The vorticity fluctuations in the computation decay on both sides of the
shock wave. The plotted values of vorticity amplification use the values of vortic-
ity immediately outside the intermittent region associated with shock oscillation.
Depending upon the incidence angle, the width of the intermittent region and the
decay rate of vorticity behind the shock could be large enough for the decay of
vorticity over the width of the intermittent region to be significant. Extrapolation
of the downstream decay rate is then used to calculate the ‘inviscid’ vorticity ampli-
fication. Such correction for viscous effects was used for the 15° and 30° incidence
angles. Note however that these viscosity corrections are less than 5% of the uncor-
rected values of vorticity amplification. As shown in figure 3.6, excellent agreement
is seen away from the critical angles. Appreciable deviation is observed around the

critical angle (the maximum deviation is about 20% at the critical angle).

As noted by Ribner (1953) and Chang (1954), within linear analysis the un-
steady interaction of an oblique wave with a normal shock may be transformed into
the steady interaction of an oblique wave with an oblique shock. The transforma-
tion involves defining the coordinates x, = z,y, = y — Uytcot ;. The governing
equations in the transformed coordinates are the steady Euler equations linearized
about uniform mean flow at a Mach number:

_ U2 + cot? U

2
a;

M2

M? equals unity at the critical angle whose vicinity therefore corresponds to tran-
sonic mean flow in transformed coordinates. It is likely that the inconsistency of
linear equations in the transonic regime causes the deviation between computation

and linear analysis around the critical angle.
3.5 A simple explanation

An explanation is provided for the influence of entropy fluctuations on the
evolution of a turbulent flow across a shock wave. Consider the following idealization
of the mean field associated with the shock:

U=U(z); p=5z); p=7p(). (3.27)
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Linearization of the Euler equations about the above mean flow yields the following

governing equations for the fluctuations:

P (ug+Uup +w'U) +p' U Us = —p; (3.28)
p (vy + Uvy) = —pj,. (3.29)
Denoting the fluctuating vorticity by ', the following equation may be derived for
w's
pl pl
wi + Uwl, = —w'U, — %g P, + ﬁ—;’ P (3.30)

The above set of equations represents the effects of bulk change across the shock
wave. Effects due to shock distortion are absent. The motivation to examine the
above set of equations is that, although the interaction of a vortical field with a
shock wave generates acoustic waves, the contribution of these acoustic waves to
the downstream kinetic energy is not significant. It will be seen in Section 3.8.2
that amplification and generation of vortical fluctuations accounts for most of the
kinetic energy (99%) behind the shock wave.

The evolution of the vorticity fluctuations can therefore be related to that of
kinetic energy. Equation 3.30 shows three terms that modify the vorticity field. The
first term (—w'U;) represents the effect of bulk compression. The drop in mean
velocity across the shock wave indicates that this term would enhance vorticity
fluctuations. The second and third terms in equation 3.30 represent baroclinic

contributions to the change in vorticity across the shock wave.

If the incident disturbance comprises of vorticity and entropy fluctuations, then

p' = 0 and hence,
!

W+ Ul = ' Uy - 2 5, (3.31)

p
The incident vorticity fluctuations are thus enhanced by bulk compression. The
incident entropy fluctuations produce vorticity at the shock wave through the baro-
clinic term. The baroclinic contribution can enhance or oppose the effect of bulk
compression. The phase difference between the vorticity and entropy waves deter-

mines whether enhancement or opposition is observed.

Consider for example the plane vorticity-entropy wave represented by equation
(3.2). It is easily shown that,

!

"‘w,Uz - ';ngl_ ﬁz ~ Av UUz - Ae l%. (3.32)
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Since U, is negative and P, is positive across a shock wave, the two sources of
vorticity are of the same sign if A, and A, are of the same sign. They oppose
each other if A, and A, are of opposite sign. Thus, if u’' and T" are negatively
correlated the entropy field enhances the amplification of fluctuating vorticity. On
the other hand, a positive correlation between u' and T" suppresses the amplification

of vorticity across the shock wave.

Further insight is gained from a schematic illustration of this effect. Figure 3.7
shows a fluid element of circular cross-section passing through a shock wave. The
geometric center of this element is denoted by Cr, while Cjs denotes the center of
mass. The disturbance field associated with the fluid element is that of a vorticity-
entropy wave. The element therefore exhibits solid body rotation (with associated
vorticity w') which is assumed positive in the direction shown. Also, the density
gradient associated with the entropy wave causes the centre of mass to differ from the
centre of force (the geometric centre). Note that C)y is below Cp, if the correlation

between u' and T" is negative.

Bulk compression compresses the element in the streamwise direction thereby
enhancing the rotation. In addition, the shock wave exerts a pressure force (asso-
ciated with the adverse pressure gradient) that passes through Cr. This pressure
force would exert a torque about the centre of mass. This torque manifests itself
as the baroclinic source of vorticity. Note that if Cjs is below Cp, the baroclinic
rotation is in the same direction as the rotation due to bulk compression. It is in
the opposite direction, if C'ys is above CF (positive correlation between u' and T").
The upstream correlation between u' and T’ thus determines the location of Cjy
with respect to Cr, and thereby the relative sense of rotation that the baroclinic

torque produces.
3.6 Scaling of the evolution of vorticity across a shock wave

Equation (3.31) is used to derive approximate expressions for the evolution of
vorticity fluctuations across the shock. The expressions are evaluated by comparing

to the linear analysis predictions. Equation (3.31) is rewritten as:

!
D(Uw') = -22 Up,. (3.33)
p

where D, denotes the material derivative 8/t + Ud/dxz.
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FIGURE 3.7: A spherical element of fluid passing through a shock wave. The effects of
bulk compression and baroclinic vorticity production are shown. u' and T" are negatively
correlated upstream of the shock wave in (a) while (b) corresponds to positive correlation

between u' and T".
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Using the relation p, = —pUU, in the above equation yields:
pl P,
D(Uw') = g” UU, = 5% (U3),. (3.34)

The shock wave is approximated as a discontinuity. (U?), is expressed as AU36(z),
where A(U?) represents the difference in U? across the shock wave, and §(z) denotes
the Dirac delta function. An approximate solution to the above equation is obtained
by setting pj, equal to its upstream value. Transforming coordinates to ¢’ = & —
Ut,7 =t and integrating yields the following expression for the change in vorticity

across the shock wave:

ikl (U} -U?)

Uzw; - Ulwi ~ —3—Ae U] (3.35)
which yields:
ikl 1-r3
wy ~ Tw) + 3 A Uy = (3.36)

where r = U; /U, is obtained from the Rankine-Hugoniot equations. Equation
(3.36) suggests that the incident vorticity fluctuations amplify by an amount equal
to the mean density ratio across the shock. The vorticity produced by the incident

entropy fluctuations is predicted to scale as kA (1 — r®)/r?.

These expressions are next, evaluated in figures 3.8 and 3.9. Figure 3.8 shows
the amplification of vorticity in the interaction of a vorticity wave with a shock.
Mean Mach numbers from 1.25 to 2.5 are considered. Both scaled and unscaled
values of rms vorticity behind the shock wave are plotted as a function of incidence
angle. The interaction of an entropy wave with a shock is examined in figure 3.9.
The proposed scaling seems to yield reasonable collapse of the curves for the incident
entropy waves, especially in the propagating regime. Validity of the scaling for a
turbulent field would depend upon the fraction of incident waves in the propagating
regime. The scaling is less satisfactory for the incident vorticity waves. It performs
well for incidence angles near zero, however a systematic deviation is seen with

incidence angle and Mach number.

3.7 The interaction of a shock with an isotropic field
of vorticity and entropy fluctuations

The analysis is extended to describe the evolution of a turbulent flow across a
shock wave. In light of Morkovin’s hypothesis, the turbulence is represented as a

random three-dimensional field of vorticity-entropy waves.
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FIGURE 3.8a: Unscaled amplification of the rms level of vorticity in the interaction of a
(M; = 1.25),-==- (M7 = 1.5), -~ (M; = 2),

vorticity wave with a shock wave.

—-— (M = 2.5).

FIGURE 3.8b: Scaled amplification of the rms level of vorticity in the interaction of a
(Ml = 1.25),—"—-’ (Ml = 15)’ ........ (Ml — 2)’

vorticity wave with a shock wave.

—— (M = 2.5).
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FIGURE 3.9a: Unscaled rms level of vorticity produced in the interaction of an entropy

wave with a shock wave. (M; = 1.25), -==- (M1 = 1.5), -----=-- (M = 2),
—-— (M, = 2.5).
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FIGURE 3.10: Coordinate system used in the interaction of isotropic turbulence with a shock

wave.

The turbulent field upstream of the shock wave, is assumed to be isotropic. It
will be seen however, that the procedure is easily extended to consider anisotropic

turbulence.

The incident turbulent field is represented as a superposition of plane vorticity-
entropy waves (Fourier modes) in three dimensions. Each of these waves would
interact independently with the shock wave under linear analysis. For a given
upstream spectrum, the interaction of each of these waves with the shock wave
is predicted. Integration over all waves behind the shock wave yields turbulence
statistics behind the shock.

The three dimensional problem is related to the two dimensional analysis of the
preceding section as follows. Consider an incident plane wave in three dimensions.
As shown in figure 3.10, the wavenumber vector of the wave lies in a plane that
makes angle ¢ with the y axis. In this plane which we call the z — z, plane, the
wave makes angle v; with the z axis. It is readily seen that the z — z, plane is

identical to the plane of interaction in the two-dimensional problem.

The solenoidal nature of the incident velocity field requires the velocity vector
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of the wave to be normal to the wavenumber vector. The velocity field may therefore
be expressed as a sum of two components: one normal to the wavenumber vector
in the z — z, plane and the other normal to the # — z, plane (the ¢ direction). It
is intuitively clear that the ¢ component of velocity would pass unchanged through
the shock wave. As a result, the three dimensional problem may be solved using
results of the two dimensional analysis in the z — z,. plane. The following discussion
uses subscripts ‘r’ and ‘¢’ to denote the components in the r and ¢ directions
respectively. Equations 3.20 and 3.22 allow the following expressions to be written

for the components of kinetic energy behind the shock wave:

?]121 _ [ II’;—'»'Z + |é|2 + f;?é’*ei(’l:—kmr)z + f*ée—i(’l\c’—kmr)z ] IAvlz- (3.37)
1
E"‘T — ﬁ 2 + f2 +ﬁ'f*ei(’i:’—lcmr)z +ﬁ*fe—i(x—kmr)z Av 2. 3.38
Ut

Recall that the variables in parentheses depend upon M;,;,A./A, and k. The
term |A,| represents the magnitude of the velocity vector in the ¢ — z, plane. It is
related to the cartesian components of kinetic energy as follows. Figure 3.10 shows
that,

! .
|Ay] = @ (3.39)
This implies that
El
[ = o5 (3.40)

where the superscript ‘1’ denotes the state upstream of the shock. Since the incident

turbulence is isotropic, it has an energy spectrum of the form,

E(k) kik;
E}; = ik (5ij - _kT]) (3.41)

where E(k) is the three dimensional energy spectrum tensor such that [ E(k) dk =

g2 /2. The wavenumbers in cartesian coordinates are given by:
ki =kcostyy; ko =ksintyicosd; ks = ksint; sing. (3.42)

Using the above expression to obtain E},, we see that,

E(k)

2 _
41" = 4nk?’

(3.43)
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Alternatively, |A,|? could be obtained using,
|4,* = B}, + E;, = E}, — By, (3.44)
where E7, and E}, may be obtained from,
v' =ujcos¢d—uysing; w'= Uy sin ¢ + uy cos ¢. (3.45a)

u, =v'cos¢+w'sing; uy =w'cosd—v'sing. (3.45b)

Ei; and E,, behind the shock wave will be completely determined once E(k) and
A./A, are specified. We use the following form for E(k):

4 2
E(k) ~ (-:—0) e~ 255)", (3.46)

The quantity A./A, may be represented as A.e'®r where A, and ¢, are both func-
tions of the wavenumber vector. Appropriate functional dependencies may be as-
sumed depending upon the flow being considered. This report presents results for
é. = 0 and =; i.e. the density field is either perfectly correlated or perfectly anti-
correlated with the velocity field. Also, two forms of the upstream density spectrum
are considered. One case assumes the density field to be isotropic with the same
three-dimensional spectrum as the velocity field; i.e. A, is assumed constant. For

this case it is easily shown that

’ PR
4, = 3PP (3.47a)

V&I

The second case assumes that the density field satisfies Morkovin’s hypothesis at
every wavenumber. For isotropic velocity field, it is easily seen that the resulting

density field is axisymmetric; z.e.

Ar = (y — 1)M? siny. (3.47b)

Once E(k) and A./A, are specified, equations 3.37 and 3.38 are used to obtain
E;; and E,, behind the shock wave. The following expressions for E;; and F33 are

obtained from equation 3.45a:

Ey = cos® ¢ Epp +sin? ¢ E4y —sin2¢ Epg. (3.48a)

68



Chapter 3: Role of entropy fluctuations Section 3.7: Isotropic turbulence

E;33 = sin® o E..+ cos? ¢ E4y +sin2¢ Ery. (3.480)

Recognizing that turbulence behind the shock wave will be axisymmetric, we solve
for F22 + E33. The above set of equations show that,

E22 + E33 = Err + E¢¢- (3.49)

E4¢ was noted to remain unchanged across the shock wave and hence is equated to
its upstream value. Equation 3.44 is used to obtain the upstream value of Egy; i.e.,

E(k)
1 _ ol 2 _
Ejy = Brn— 4o = T (3.50)
This yields,
E(k)
E22 + E33 = Err + — . k2 (351)

The spectra are then integrated over all wavenumbers to obtain statistics as a
function of distance behind the shock wave. The elemental volume of integration is

given by the expression:

d*k = k?siny; dy, do dk (3.52)
where k varies from 0 to oo, 1; varies from —x /2 to /2 and ¢ varies from 0 to 2.

The following expressions are obtained for the streamwise variation of kinetic

energy behind the shock wave:

/ / E11 k SlIli/)] d¢ d¢1 dk. (353)
k=0 ¢1——1l'/2

Recall the problem is symmetric about ¢, = 0. Also the transfer functions that
yield Fi; are independent of ¢. As a result,

u! 2 oo pnrf2
2 =4 / E11 k? sintpy dy; dk. (3.54)
=0J ¢ =0

The integration over k and %; is performed numerically. Similar expressions are

obtained for the transverse components of kinetic energy. i.e.,

1)2 w2 E( ) 2 .
U2 = = /k—o/l_o [E,”,.+4 k2] k* sin 1y dip; dk. (3.55)
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The evaluation of scalar quantities behind the shock wave is considerably simpler.
For example the pressure field behind the shock is given by the following expression
(Equations 3.24 and 3.26) :

/ co pwf2
b k=0 J ;=0
where E,, = |K|?|A,[? in the propagating regime and e~2%i%| K|2| A, [? in the de-

caying regime respectively.
3.8 Results

The evolution of turbulence statistics across the shock wave is examined in this
section. The spatial variation of kinetic energy behind the shock wave is discussed
in Section 3.8.1. Dependence of the far-field levels of kinetic energy on the mean
Mach number are examined in Section 3.8.2. Section 3.8.3 presents the evolution of
fluctuating vorticity and Taylor microscales across the shock wave. The influence
of the incident fluctuations on the oscillation of the shock front is discussed in
Section 3.8.4. Section 3.8.5 examines the spatial evolution and far-field levels of the
thermodynamic fluctuations behind the shock. The influence of entropy fluctuations
on the interaction is emphasized throughout. Finally, Section 3.8.6 examines the

validity of Morkovin’s hypothesis behind the shock wave.
3.8.1 The spatial evolution of kinetic energy

The variation of ¢ with distance behind a Mach 1.5 shock wave is plotted
in figure 3.11. The combined interaction of vorticity and entropy fluctuations is
compared to that of vorticity and entropy fluctuations alone. As mentioned before,
two representative cases of combined interaction are considered: one where u' and
T' are negatively correlated upstream of the shock (A, = 0.58,¢, = 0) and the
other where u' and T" are positively correlated (4, = 0.58, ¢, = 7). The value of
0.58 was (arbitrarily) chosen to satisfy Morkovin's hypothesis at a Mach number of
1.35. All four curves are normalized with the incident value of ¢2. As discussed in
Section 3.3, ¢2/¢? in the pure entropy limit corresponds to 0.17 (¢2/UZ)/ (?/;{7)
where the factor 0.17 equals (p’l_z/pl_z) /(g3 /U?) for A, = 0.58.

Similar spatial variation is exhibited by all three curves. Amplification of ¢?

across the shock wave is followed by rapid drop and rise immediately downstream
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FIGURE 3.11: Evolution of ¢? behind a Mach 1.5 shock wave. (Pure vorticity),
-——- (A, =0.58; ¢, = 0), - (Ar = 0.58; ¢, = 180°), —-— (Pure entropy).

of the shock wave. Temperature fluctuations that are negatively correlated with
u' yield higher levels of kinetic energy at all streamwise locations while positively

correlated temperature fluctuations have the opposite effect.

The rapid variation of kinetic energy behind the shock wave is a fundamen-
tal feature of shock/turbulence interaction. DNS of isotropic vortical fluctuations
interacting with a shock wave (Lee, Lele and Moin, 1993) exhibits this feature, as
does linear analysis of acoustic fluctuations (Mahesh, Lee, Lele and Moin, 1995)
interacting with a shock. The discussion (Section 3.3) of single vorticity-entropy
waves interacting with a shock reveals that waves incident at angles greater than the
critical angle (decaying regime) produce this rapid variation through the damped
oscillatory correlation between acoustic and vortical fluctuations behind the shock

wave.

This correlation was overlooked by Lee, Lele and Moin (1993) in their linear
analysis of a shock wave interacting with isotropic vortical fluctuations. This led
them to erroneously conclude that linear analysis could not reproduce this rapid

variation of kinetic energy seen in their computations. This error was subsequently
corrected by them (Lee, Lele and Moin, 1993). Equations 3.23 and 3.25 suggest
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that ¢? behind the shock wave may be decomposed into four components: a spa-
tially uniform vortical component, an acoustic component that decays exponentially
and non-monotonic components corresponding to the correlation between acoustic
and vortical fluctuations over both regimes of the solution. This decomposition,
was performed by Mahesh, Lee, Lele and Moin (1995) in their analysis of acoustic
fluctuations interacting with a shock wave. The correlation between acoustic and
vortical fluctuations produced by waves in the decaying regime of the solution were

seen to produce the rapid variation of kinetic energy.

The variation of kinetic energy behind the shock wave may be further clar-
ified by examination of the equations governing its evolution. Rearrangement of
equations 3.3 shows that the quantity,
™ [ﬁ p? ] P’

Itotal = 9 | + = (357)

2 =2
a®  y*p pa
is conserved along a mean streamline. Iiota changes across the shock wave and
remains constant downstream. As will be seen in the next section, p'? decays ex-

ponentially behind the shock wave. The rapid non-monotonic variation of ¢* may
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therefore be explained as a result of partitioning between potential and kinetic en-
ergy brought about by the correlation between acoustic fluctuations and the shock-
normal component of fluctuating velocity. This is illustrated in figure 3.12 where

the terms in Equation 3.57 are plotted.

The p'u' correlation may be decomposed into two components as follows:

p’u' = p’u,prop + p’u'decay' (358)

where the subscripts ‘prop’ and ‘decay’ refer to the propagating and decaying
regimes respectively. The above decomposition is performed in figure 3.13 and
reveals that the correlation between acoustic fluctuations and the velocity field in
the decaying regime causes the rapid variation of ¢? behind the shock wave. Note
that the pressure-velocity correlation in the far-field is solely due to the incident
fluctuations in the propagating regime. The far-field levels of ¢ are therefore deter-
mined by the correlation between pressure and acoustic component of the velocity

field in the propagating regime.
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3.8.2 Far-field kinetic energy

The influence of entropy fluctuations on far-field levels of kinetic energy ampli-
fication is examined as a function of mean Mach number. If A./A, is independent
of k, it is easily shown that turbulence statistics in the far-field are independent
of the upstream energy spectrum. Equation 3.54 outlined the expression for ;’2—2
Substituting for Ey; from equations 3.23 and 3.25 into equation 3.54, the following

expression is obtained:

_IZ— "/)c ~ —~ 7"/ 2 —~ o0
(%) - [ / (1F2+|G?) sin vy dipy + / lelk sin¢1d¢1] / E(k)dk.

Ul far—field 0 Pe 0

(3.59)

In writing the above expression, use is made of the fact that the correlation term
in the propagating regime integrates to zero in the far-field. Since fooo E(k)dk =
¢?/2, the above expression is independent of the upstream energy spectrum. The
above discussion holds also for the other components of kinetic energy and the
thermodynamic fluctuations. Thus if A, /A, is independent of k, the far-field levels
depend only upon M; and A./A,.
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The far-field levels of kinetic energy amplification are plotted in figures 3.14
and 3.15 respectively. The presence of entropy fluctuations is seen to significantly
influence the levels of kinetic energy behind the shock wave. Recall that the far-
field kinetic energy may be decomposed into vortical and acoustic components.
Figure 3.16 illustrates that while acoustic waves are generated at the shock wave,
their contribution to the kinetic energy is not very significant; amplification and
generation of vortical fluctuations accounts for most of the kinetic energy behind

the shock wave.

Entropy fluctuations also influence the anisotropy of the turbulence behind the
shock. As shown in figure 3.17, negatively correlated fluctuations of »' and T" up-
stream of the shock wave increase the fraction of energy in the streamwise direction
behind the shock. On the other hand, positively correlated fluctuations tend to

decrease the fraction of turbulence kinetic energy in the streamwise direction.
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3.8.3 Vorticity fluctuations and Taylor microscale

The evolution of vorticity fluctuations and Taylor microscale of the vortical
component of the flow is examined in this section. Equations 3.20 and 3.45 may be
used to derive expressions for the vorticity behind the shock wave. The streamwise
component of vorticity is observed to remain unchanged across the shock wave.
The transverse components are altered by the shock and are given by the following

expression:

w/2 oo - _ — e
Yo _ Y _g / / [ {oost ¢ [T+ PIGF — 2mrl(F.G + TG ]

1=0

+m?sin? ¢} k*A,[® sinyyy dk dy; dg  (3.60).

Substituting for |A,[> and integrating over ¢, we get:

2 2 w/2 ~ o~ ~ o~
e T N / [ m2r2 |1 + 2|GJ? — 2mrl(I, G, + I,G;) + m? | sine; dihy

U2 B U12 Y1 =0
oo 1,2
y / FEK) 4. (3.61)
k=0 2

For isotropic incident spectrum, it is easily shown that the incident vorticity is given

by the following expression:

2 12 n/2 oo 1.2
w22 = w32 2/ (2- lz)sinlpl d'(ﬁl/ k E(k)dk (3.62)
Ui Ui P1=0 k=0 2

The amplification of vorticity fluctuations across the shock wave is therefore inde-
pendent of the incident energy spectrum if A./A, is independent of k. As expected,
the amplification of transverse components of vorticity is considerably affected by
the presence of entropy fluctuations. As shown in figure 3.18, negative correlation
between u' and T" upstream of the shock increases vorticity levels behind the shock.

Positively correlated fluctuations yield lower levels of amplification.

Equations 3.20 and 3.45 may be used to derive expressions for the Taylor
microscale behind the shock wave. The influence of entropy fluctuations on the
Taylor microscale of the vortical component is examined in figure 3.19. The incident
entropy fluctuations are seen to have negligible effect on the drop of the streamwise

Taylor microscale across the shock wave.
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FIGURE 3.19: The evolution of shock-normal Taylor microscale across the shock wave.
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3.8.4 Statistics of the shock front

The oscillation of the shock wave is considerably affected by the presence of
entropy fluctuations in the incident field of disturbances. Results for the velocity

and amplitude of oscillation of the shock front are presented below.

From equation (3.21), the rms level of the oscillation velocity is given by:

2 oo pwf2
6—2 = 4m / / |L|? |Ao|? K?singpy dk depy. (3.63)
Ul k=0 1=0

Substitution for [4,|? from equation 3.43 yields:

E;z. w2 oo
L. / EP singy dyy / E(k) dk. (3.64)
Ul P1=0 k=0

i.e., the rms velocity of oscillation of the shock wave is independent of the incident
energy spectrum if A./A, does not depend upon k. The influence on incident
entropy fluctuations on the rms level of &; is illustrated in figure 3.20. The oscillation
velocity is seen to be of the order of the incident velocity fluctuation. Entropy
fluctuations with negatively correlated u' and T" enhance the oscillation velocity of

the shock wave. Positively correlated fluctuations are observed to suppress it.

The amplitude of oscillation of the shock wave is similarly affected. Integration

of equation (3.21) yields the following expression for the rms oscillation amplitude:

_ oo pw/2 |Z|2
€2 =4n / / |4y k% sinyyy dk de;. (3.65)
=0 1=0

m2k?

Substituting for |4,|?> from equation (3.43) we get:

[P = B(k)
62 = / —sin¢1 d'l/)] dk. (366)
P1=0 m? k=0 K2
Unlike the oscillation velocity, the amplitude of oscillation is dependent upon the
incident spectrum. As shown in figure 3.21, the oscillation amplitude is increased
by the incidence of temperature fluctuations that are negatively correlated with u'.
Decrease in the amplitude of oscillation is observed when v’ and T” in the incident

field are positively correlated.
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FIGURE 3.20: The rms level of fluctuations in shock speed. —— (Pure vorticity),
——== (Ar = 0.58; ¢, = 0), === (A, = 0.58; ¢, = 180°), —-— (Pure entropy).
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FIGURE 3.21: The rms level of displacement of the shock front. (Pure vorticity),

-——- (A, = 0.58; ¢, = 0), -~ (A, = 0.58; ¢, = 180°), —-— (Pure entropy).
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FIGURE 3.22: The variation of thermodynamic fluctuations behind a Mach 1.5 shock

wave.The incident fluctuations correspond to A, = 0.58 and ¢, = 0. All three curves

are normalized with 1/¢7/Us. 252 /), === (W52 /Pa), -+ (VT§2[Ta).

3.8.5 Thermodynamic fluctuations

The streamwise variation of pressure, density and temperature fluctuations
behind a Mach 1.5 shock wave is shown in figure 3.22. The incident field comprises of
vorticity and entropy fluctuations (A, = 0.58, ¢, = 0). Pressure fluctuations decay
exponentially behind the shock wave while density and temperature fluctuations
exhibit non-monotonic behavior. The pressure fluctuations in the near-field are
seen to be intense while the far-field intensity is smaller than those of density and

temperature.

The preceding sections showed how entropy fluctuations affect the vortical part
of the flow-field. Figure 3.23 shows that this influence extends to the acoustic
component. The far-field intensity of pressure is plotted as a function of Mach
number. The combined interaction of vorticity and entropy fluctuations is compared
to that of vortical fluctuations alone. Fluctuations with a negative correlation
between u' and T' are seen to increase the level of sound in the far-field while
positively correlated fluctuations suppress it. Over the range of Mach numbers

shown, this difference in sound level is calculated to be between 4 and 5 decibels.
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FIGURE 3.23: Intensity of pressure fluctuations in the far-field of the shock. (Pure
vorticity), -—-- (A, = 0.58;¢, = 0), === (A, = 0.58; ¢, = 180°),—-— (Pure

entropy).

3.8.6 Morkovin’s hypothesis across a shock wave

The applicability of Morkovin’s hypothesis (Equation 3.1) across a shock wave
is examined in this section. The incident field of vorticity and entropy fluctuations
is constrained to satisfy Morkovin’s hypothesis i.e., A, is chosen (Equation 3.47b)
such that the relation,

Aoz
&~ (y-nmiy (3.67)

is satisfied at every wavenumber. The fluctuations in the far-field behind the shock
are then examined to see if the hypothesis holds in the rms sense. The results
(figure 3.24) show that the first part of the hypothesis i.e., p'/p = —T" /T is still a
good approximation behind the shock wave especially, if the mean Mach number 1s
less than 2. However the part of the hypothesis that relates T' to u' exhibits large

deviation with Mach number. This behavior is explained below.

The equation, p'/p = —T'/T is obtained by setting p' to zero in the linearized
equation of state. It amounts to neglecting the acoustic mode in comparison to
the entropy mode. As seen from equation 3.2d it is an identity as far as the ini-

tial disturbance field is concerned. Upon interaction with the shock, the incident
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field of vorticity and entropy fluctuations generate acoustic waves. The generation of
acoustic waves is however accompanied by amplification of the incident entropy fluc-
tuations. Also a fraction of the acoustic waves decays behind the shock. As a result
the acoustic contribution in the far-field to the thermodynamic fluctuations becomes
significant only at the larger Mach numbers. The first part of Morkovin’s hypothesis
is therefore a good approximation behind shock waves of moderate strength.

The relation, ' /

T? = (- DML (3.68)
is obtained by assuming negligible fluctuations in stagnation temperature in the
linear limit. Denoting the stagnation temperature by Ty,

u? + v? + w?

.___ch___

(U + ul)2 + 02 4 w'?
2¢, '

Th=T+

=T+T + (3.69)
Linearizing the above equation yields the following expression for fluctuations in
stagnation temperature:
. , U
To = T + _— (3.70)
Cp
Setting T to zero and rearranging yields equation 3.68.

In the linear limit, fluctuations in stagnation temperature obey the relation,
DT /Dt = 0p' /0t behind the shock wave. Decomposing the temperature field into
acoustic and entropic components, and the velocity into acoustic and vortical com-
, and Ty such that DT}, /Dt =0
/Dt = 0p'/0t. The Rankine-Hugoniot equations may then be used to

ponents allows decomposition of Ty into Ty
and DT

Oacous

acous

show that equation 3.68 cannot be valid behind a shock wave if it is assumed to hold
upstream of the shock. The energy equation requires the stagnation temperature to
be constant across the shock in a frame of reference that moves at the instantaneous
speed of the shock wave. i.e.,

n (U2 + uy — ft)2 + véz + wéz

R €)% + v} 4wy’

m ! _m 1
Tit T 2¢, =Tty 2¢,
(3.71)
Linearization of the above equation yields:
! !
T+ Ur(ug — &) _ T 4 Uz (ug ft). (3.72)

Cp Cp
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FIGURE 3.24: Evaluation of Morkovin’s hypothesis in the far-field of the shock wave.
12— P 2
- ( pIZ /Pz)a I ( T2' /TZ)’ """" (7 - 1)M22 u'2 /UZ

Upon rearrangement,

!

!
Ulul — TZI +

T, +
Cp Cp

+ g—t(Ul - Us). (3.73)
Cp

The validity of Morkovin’s hypothesis upstream of the shock wave requires that:

!
8y, (3.74)
Cp
This implies: ,
o U2 6t( _U,). (3.75)
Cp Cp

i.e., the fluctuations of stagnation temperature are not zero behind the shock wave.
Dividing through by T and rearranging, we get:

!

T, o Uh (U1 ).ft
== 1M =—(v—-1M{ — -1 .76
T2+(7 ) ZU (7 ) 2 U2 as (37)

The applicability of Morkovin’s hypothesis immediately behind the shock wave re-

quires that,
(v — 1M, (% - 1) & o (3.77)

az

84



Chapter 3: Role of entropy fluctuations Section 3.8.6: Morkovin’s hypothesis

3.0

2.5

2.0

1.5

T?/T

1.0

05 —

1.0 1.5 2.0 2.5 3.0
M,

FIGURE 3.25: Decomposition of stagnation temperature fluctuations using linear analysis.
, Tar field

value; ———~ , contribution due to vorticity and entropy fluctuations; -------- , near field value.

All the curves are nondimensionalized by the upstream value of tUrms/U.

The rms values of the near-field stagnation temperature are plotted in figure
3.25 as a function of mean Mach number. The plotted values are seen to be compa-
rable to the terms in Morkovin’s hypothesis (figure 3.24) leading to inapplicability of
the hypothesis immediately behind the shock wave. The above argument may next
be extended to show why the hypothesis does not hold in the far-field. Decomposi-
tion of the stagnation temperature fluctuations into vorticity-entropy and acoustic
components shows that both near and far field values of the stagnation temperature
fluctuations are dominated by the vorticity-entropy component. As shown in figure
3.25, the vorticity-entropy component is indistinguishable from the total level in
the far-field, while its contribution to the near-field level is greater than 80% over
the range of Mach numbers shown. Figure 3.25 and equation 3.76 therefore show
that appreciable level of stagnation temperature fluctuations are generated imme-
diately behind the shock wave due to oscillation of the shock front. Most of these
fluctuations arise from vorticity-entropy fluctuations, which convect downstream to
generate an appreciable level of stagnation temperature fluctuations in the far-field

of the shock wave. This leads to inapplicability of Morkovin’s hypothesis in the
far-field.
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3.9 Summary

Inviscid linear analysis was used to study the simultaneous interaction of vortic-
ity and entropy fluctuations with a shock wave. The two-dimensional interaction of
a shock wave with a plane vorticity-entropy wave was initially considered. Expres-
sions were derived for the flow-field behind the shock and the displacement of the
shock front. The statistics of kinetic energy and thermodynamic fluctuations behind
the shock wave were examined. The amplitude ratio and phase difference between
the incident entropy and vorticity fluctuations were shown to significantly influ-
ence the statistics. Dependence upon the amplitude ratio was monotonic. Entropy
fluctuations in phase with the incident vorticity fluctuations (v’ and T" negatively
correlated) were observed to enhance levels of kinetic energy and thermodynamic
fluctuations behind the shock. Positively correlated fluctuations were observed to

have a suppressing effect.

An explanation was provided to explain these trends. The evolution of fluctuat-
ing vorticity across the shock wave was noted to have two important contributions:
bulk compression of incident vorticity and baroclinic production of vorticity through
the incident entropy fluctuations. The upstream correlation between vorticity and
entropy fluctuations was shown to determine whether these two sources of vorticity
enhance or oppose each other thereby determining kinetic energy levels behind the
shock wave. A scaling was then proposed for the evolution of vorticity across the

shock wave.

The analysis was extended to consider the interaction of a shock wave with an
isotropic field of vorticity and entropy fluctuations. Both spatial variation behind
the shock and far-field levels of turbulence statistics were examined. The presence
of entropy fluctuations was shown to significantly affect the levels of kinetic energy,
vorticity and thermodynamic fluctuations behind the shock. Higher levels of kinetic
energy and vorticity were observed when u' and T" in the incident fluctuations were
negatively correlated. Positive correlation had the opposite effect. Acoustic waves
were produced through the interaction. The level of sound behind the shock wave
was enhanced by the incidence of fluctuations with negative correlation between
u' and T'. Suppression of sound level was observed if the incident fluctuations
were positively correlated. The incidence of entropy fluctuations was observed to
affect the oscillation of the shock front. Negatively correlated fluctuations of u' and

T' increased the velocity and amplitude of oscillation while positively correlated
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fluctuations suppressed it.

The applicability of Morkovin’s hypothesis behind a shock wave was examined.
Statistics in the far-field indicate that neglect of the acoustic mode is a good ap-
proximation in the far-field of shock waves of moderate strength (M; < 2). The
part of the hypothesis relating v’ and T' was seen to be invalid behind the shock.
Non-negligible oscillation of the shock front was shown to be responsible.
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Chapter Four

Direct Numerical Simulation: Numerical Procedure

4.1 Introduction

This chapter discusses the numerical computation of the interaction of a turbu-
lent shear flow with a normal shock wave. A schematic of the problem is shown in
figure 4.1. Note that the mean flow upstream of the shock wave is supersonic and has
uniform velocity gradient across the mean streamlines. Also, a mean temperature
gradient that maintains uniform mean Mach number across the mean streamlines

is imposed. The mean flow at the inflow is approximately given by the relations,

Ui (y)

Gom @)

Us(y) = Uo + SOy — ymin),  Bo(y) = % Tu(y) =

The following sections describe the procedure used to numerically compute
the interaction of this shear flow with a normal shock wave. Section 4.2 describes
the governing equations that were solved. Details of the computational grid are
provided in section 4.3. The methods to compute the spatial derivatives and the
time advancement scheme are outlined in sections 4.4 and 4.5 respectively. Section
4.6 describes details of how the shock wave was treated. This is followed in sections

4.7 and 4.8 by a description of the initial and boundary conditions.

4.2 Governing equations

The governing equations are the three-dimensional, unsteady, compressible con-
tinuity, energy and Navier Stokes equations. The equations are solved in Cartesian

coordinates for the conservative variables; 1.e.,

Op* 0

5 T 551;(10 uj) =0 (4.20)
0 * ¥ 0 * Kk * aT:?
5o (p*ui) + oz (p*ujuj + p*bij) = '5;;— (4.2b)
6E: 0 * Y, *] __ aq: 0 *__%
S0 T a_mr[(Et +p*)ui]l = ~Bat + 527 (uir5)- (4.2¢)
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FIGURE 4.1: A schematic of the computational domain. Also shown is the mean flow at the

inflow of the domain.

The superscript ‘*’ is used to indicate that the variables are in dimensional

form. The variables p*,u},p*, 7};

namic pressure, viscous stress tensor and heat flux respectively. E} denotes the

and ¢ denote the density, velocity, thermody-

total energy which is defined as the sum of internal energy and kinetic energy; i.e.,

By =pi(e"+ 22, (4.3)

where the variable e* represents the specific internal energy. The viscous stress and

heat flux are modeled using Stokes hypothesis and Fourier’s law of heat conduction;

i€,
Our Oui 20u}
=t : - = 8;i .
=k (am;s t B2t " 300y ’)’ (4.40)
* *aT*

where the variables u* and k* denote the molecular viscosity and thermal conduc-
tivity respectively. Note that the bulk viscosity of the fluid is assumed to be zero.

The fluid is assumed to be a perfect gas; i.e.,
p* = p*RT" (4.5)

where R is the specific gas constant. Also the specific internal energy and enthalpy
(h*) are given by:
e’ = c,T* and  h* =c,T", (4.6)
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where the variables ¢, and ¢, denote the specific heats at constant volume and
constant pressure respectively. The ratio of specific heats, v = ¢, /c, is assumed to
be 1.4 in our computations. Note that the variation of viscosity with temperature

is neglected in the turbulent calculations. Instead of the commonly used power law
p* o T*", (4.7)

we set u* to be constant. The desire to reduce the variation in turbulence Reynolds
number across mean streamlines prompted this approximation. If in addition to
the gradient in mean density across mean streamlines, u* were allowed to vary with
temperature, then the variation in turbulence Reynolds number across the mean
streamlines would be large. Setting p* to be constant reduces the variation in

turbulence Reynolds number.

The thermal conductivity is related to molecular viscosity through the assump-

tion of constant Prandtl number:
pre
Pr = —E-B (4.8)
The Prandtl number was assumed to be 0.7 in our calculations.
The governing equations are non-dimensionalized prior to solution. An arbi-
trary length L7 and reference speed of sound cj are chosen as length and velocity

scales respectively. The density and viscosity at the reference state are then used to

nondimensionalize density and viscosity. This yields the following non-dimensional

variables:
z; t*cg ul p*
xi = E, = L(*’ y u' = c—;—, p e p—o.
Iat* p* p* 1 T* e*
u:—* p: " =—* T=—-——* € = 22" (4.9)
Ho ’ P0032 7P0’ v—11; ’ Co2

The non-dimensional form of the governing equations is as follows:

0
= (p ) (4.10a)
ij or;
7y (Pui) == (pu uj +pbi) + 32 (4.100)
]
OB, __ & % 90
ot Bz [(Et + p)ui] oz + oz, =~ (uiTij). (4.10c)
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FIGURE 4.2: A schematic of the desired slope (dz/ds) in the mapping between non-uniform

(z) and uniform (s) grid.

The constitutive relations are given by:

i p (Bui + Ou; 2 0ug 5ij)

~ Re Oz; Oz; " 30z
o __# T
%= " RePr Oz;’ (4.11)
where Re is a Reynolds number defined as:
Re = P29 L8 (4.12)
Ko
Similarly, the perfect gas law in non-dimensional form is given by:
-1
p= lrpT. (4.13)

4.3 Computational mesh

The governing equations are discretized on a structured mesh that is non-
uniform in the streamwise direction and uniform in the y and z directions. The
streamwise nonuniformity is designed to cluster points around the shock wave. An

analytical transformation is used for this purpose.
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Using the variable s to denote a coordinate that varies uniformly from 0 to
1, a transformation z = z(s) is derived to cluster points around the center of the
domain (since the shock wave is around the center). z varies from 0 to 1 initially; it
is subsequently rescaled to vary from 0 to L, where L, is the streamwise extent of
the computational domain. Recognizing that dz/ds is representative of Az/As and
hence the mesh spacing, the derivation is initiated by assuming a suitable form for
dz/ds. The variation shown in figure 4.2 was considered desirable. The variables d
and r approximately represent the mesh size at the shock wave and the boundaries
respectively. The extent of the domain that has a fine mesh is controlled by the
variables b and d. Superposition of two hyperbolic tangent profiles was used to

achieve the desired profile; i.e.,

1dz r+(r—d

~ T = . ) [tanh b(s — 3/4) — tanh b(s — 1/4)] (4.14)

where C is an undetermined constant. Integrating the above equation and using

the conditions z(0) = 0,z(1) = 1 yields the following expression:
r— cosh b(s—3/4) cosh b/4

rs+ (2_bd) In [cosh b((s—l/{l))cosh 3b//4]
r+ (r;d) In [c%t;s}flsbb/‘l«;]

The above equation is rescaled to allow = to vary from 0 to L, such that points

(4.15)

r =

are clustered around L, /2. This yields the following expression for the nonuniform

mesh:

r—d cosh b(s—3/4) cosh b/4
T rs+ ( 2b ) In [cossh b((s—l//4))cosh 3bl/4:|
== (4.16)
()
Equation 4.16 is differentiated to obtain the metrics, dz/ds and d?z/ds?. Typical

values for the parameters b,r and d are 10, 1.9 and 0.15 respectively. For example,

a grid of 191 points and the above choice of parameters is used to compute a Mach
1.5 shock wave. Figure 4.3 illustrates the streamwise variation of the grid spacing
that results.
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FIGURE 4.3: An example of the non-uniform mesh in the streamwise direction. The mesh

spacing is plotted against streamwise distance.

4.4 Computation of spatial derivatives

The spatial derivatives in the governing equations are computed using a modi-
fied Pade scheme developed by Lele (1992b). The first derivative on a uniform mesh

is given by the following implicit equation:

, (fi+1 — fi-1) + ay (fi+2 — fi-2)

fintafi+fiza=a As As (4.19)
where the coefficients a; and a3 are expressed in terms of a; as:
1 + 2(1,1 . 4 — aq
ag = 3 3 az = 12 . (420)

The above equation with the parameter a; set to equal 3 is applied to the interior
nodes (j=4 to N — 3). Along the periodic directions, the above equation is also
applied to the boundary nodes. In the non-periodic directions, expressions are
derived for the nodes at the boundary to close the system. These expressions
are constrained to satisfy discrete global conservation when coupled to the scheme
applied in the interior. Also the tridiagonal aspect of the scheme is preserved. The
details are described by Lele (1992b) and are not repeated here. These additional
equations are given by:

—5fi+4fa+ fz
As ’

2f! +4f) = j=1 (4.21a)
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i il

! 4! I=
hHt4fa+ =3 As

j=2 (4.21b)

fr+afs+ fi=a (f"A—sz) + (fsgsfl); j=3. (4.21¢)

The variables @y, a, and a3 are defined as:

1+2a1' ,62_1+261 63_4—51
-3 To12

a; =16

=165 (4.22)

Similar expressions are written for the nodes j = N —2 to N. The resulting system
of equations is then solved following LDU decomposition. Note that the derivatives
are computed on a uniform mesh. The transformation derived in the preceding
section is used to obtain derivatives at the non-uniformly spaced nodes in the z

direction; i.e.,

of 1 of
dz ~ h(s) s

where h(s) = dz/ds. Taylor’s series analysis (Lele, 1992b) shows that the scheme

used in the interior is sixth order accurate. The equations used at the boundaries are

(4.23)

less accurate; equations (4.21a) and (4.21b,¢) are third and fourth order accurate

respectively.

A similar compact scheme is used to compute the second derivatives. The
following expression is used at the interior points (j = 3 to N — 2):

_, fi+1 =2fi + fi fiv2a = 2f; + fi—2

As? +bs As?

where by and b3 are given by:

by = 4@- by = 10__91_

3 12
The variable by is set to 11/2 thereby yielding sixth order accuracy (Lele, 1992b).

Along non-periodic directions, the system of equations is closed by the following

(4.25)

expressions near the boundaries:

13f1 —27f; + 15f3 — fa
As? '

12(fs — 2f2 + f .
(fs A322 1); j=2. (4.26b)

Equations (4.26a) and (4.26b) are third and fourth order respectively. Similar ex-

1 +H11f; = j=1 (4.26)

1 +10fy +f5 =

pressions are written for the nodes at the other boundary. The system of equations
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FIGURE 4.4: The modified wavenumber of the sixth order Pade scheme. (Exact),
——=— (First derivative), -------- (Second derivative). Note that V'k'“ is plotted for the second

derivative.

is then solved to obtain the second derivatives on the uniform mesh. Analytical ex-

pressions for the metrics (section 4.3) are then used to obtain the second derivatives

on the nonuniformly distributed points in the streamwise direction; t.e.,
&f 10*f A of

dz> h20s? K20z (4.27)

The schemes used to compute the derivatives in the interior have good reso-
lution properties in addition to being sixth order accurate. Fourier analysis and
the ‘modified wavenumber’ provide an effective means of quantifying the resolution
characteristics. Consider differentiating the function e'**. The exact solution is
tket**. Numerical differentiation on the other hand will yield a solution of the form
ik'e’*2 The variable k' is a function of k and is called the modified wavenumber.
The closeness of k' to k provides a measure of the resolution characteristics of the

scheme.

For the differencing scheme described by equation (4.19) the modified wavenum-
ber is given by:
(ag sin kAs + a3 sin 2kAs)

, —
kAs=2 a1 +2coskAs

(4.28)
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A similar procedure can be followed for the second derivative. Numerical differen-
tiation would yield an expression of the form —k'?¢i** as compared to the exact
solution of —k%e***. Once again the modified wavenumber may be examined as a
function of k. For the scheme described by equation (4.24) the modified wavenumber

is given by:

b1 + 2coskAs (4.29)

W As — 2\/62 sin? kAs/2 + bs sin? kAs.
The resolution properties of the spatial scheme are illustrated in figure 4.4 where
the modified wavenumber is compared to the exact solution. Note that about 55%

of the range of wavenumbers is very accurately represented.

4.5 Time advancement

An explicit scheme is used for time advancement. The third order compact
storage Runge-Kutta scheme (Wray, 1986) is used to advance the conservative vari-
ables (p, pui, Ey). When applied to the equation, dy/dt = f(y,t), this scheme has

the following predictor-corrector form (we advance from t, to tn41):

Yn+1/3 = Yn + %Atf(yn,tn) (4.30a)
Ynt2/3 = Yn t+ %Atf(yn,tn) + %Atf(yn+l/37tn+l/3) (4.300)
Ynt+1 = Yn + %Atf(yn,tn) + Z—At F(Ynt2/3 tnt2/3) (4.30¢)
where: o X
tnpijs =t + AL tayaps =tat ZAL (4.30d)

The time step is constrained by the following requirements of convective and

viscous stability. Convective stability is determined by the wave equation:

of of

- -_—= 4.31
Fri (u+¢) . 0 (4.31)
where the variables u and c represent the velocity and speed of sound respectively.
u 4+ ¢ is used as the convection velocity since it is the largest of the three eigenvalues
of the one-dimensional Euler equations. Using the transformation z = z(s) the

above equation is rewritten as:

Of  u+cdf
o T h(s) 05

0. (4.32)
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Recognizing that the time step will be constrained by the maximum value of (u +

¢)/h(s), we approximate the above equation by:

of  uteds _
ot hmin 0s

0 (4.33)

Assuming periodic boundary conditions and Fourier transforming yields the follow-
ing equation for the Fourier coefficients:
df _utec,,p

& ="k F (4.34)

where the variables f and k' denote the Fourier transform of f and the modified

wavenumber respectively.

The above equation is of the form y' = Ay where the variable ) is imaginary.

Numerical stability requires that:
At < V3 (4.35)

when RKS3 is used to integrate the above equation. Thus,

YE At < V3 (4.36)

Prmin
The maximum value of k' as given by equation (4.28) is 1.989/As. The stability

criterion is therefore:
(u +c)At < V3
hminAS 1.989°

Since hminAs equals Azpyin to a very good approximation, the above equation may

(4.37)

be expressed as:

At

Tmin

(u+ ¢) 5z —— < 0.871. (4.38)

The corresponding criterion that we use in the three dimensional computations is:

[|u1|+c+ |u2|+c+ lug| + ¢

At < 0.871 .
Az, Az, Az, ]mx < 0.87 (4.39)

where the maximum value is computed over the entire domain. Defining a CFL

number as,

|u1|+c+ |u2|+c+ lus| + ¢

CFL= t
[ A.’El A.’Eg A.’L’s ]maxA,

(4.40)
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the time step is given by CFL < 0.871.

The viscous terms in the Navier Stokes equations impose a similar restriction

on the time step. Consider the diffusion equation:

of o f
Assuming periodic boundary conditions and Fourier transforming we get:
df ~
Y kg (4.42)

dt
which is of the form y' = Ay where X is real and k' is the modified wavenumber for

the second derivative approximation (equation 4.29). The use of RK3 to integrate

the above equation requires that:
IA|At = vk"2At < 2.5.  (443)

The modified wavenumber for the second derivative approximation has a maximum
value of 2.619/As. Substitution into equation (4.43) yields the following stability
criterion: At

v

— < 0.365. .

AL <0.3 (4.44)

The variable As is replaced by Az, in computing the time step for a nonuniform

mesh. The stability criterion in three dimensions is:

At( A’;% + A’;% + Al;i)mx < 0.365. (4.45)

The convective criterion is the more restrictive of the two criteria for the com-
putations reported. In practice either a constant time step is specified or the CFL
number is specified which is then used to compute the time step from equation
(4.40). Typically accuracy requirements restrict the CFL number (as defined in
equation 4.40) to be less than 0.5.

4.6 Treatment of the shock wave

4.6.1 Resolving the thickness of the shock wave

The thickness of a shock wave in a viscous (Navier Stokes) fluid represents a.
balance between inertial forces, viscous forces and compressibility. As a result, typ-

ical shock thicknesses in a turbulent medium are considerably smaller than typical
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lengthscales of the turbulence. To illustrate this, consider the following expres-
sion for the thickness of a weak laminar shock derived by Taylor (for details see

Thdmpson, 1984):
5§ 3 A
A 4M -1

where § is the shock thickness, A is the mean free path of the medium and A is a

(4.46)

constant that depends on the precise definition of the shock thickness. A has the
value 9.19 if the edges of the shock wave are defined to lie at U — U, = 0.99(U; — U>)
and U — U, = 0.01(U; — U3). The mean free path may be approximated by the

relation:

A= (4.47)
pc
This yields the following expression for shock thickness:
cd  6.89
o =M1 (4.48)

where M; denotes the shock-normal upstream Mach number. In assessing the thick-
ness of a shock wave in a turbulent medium, M; ~ (U; + u})/(¢1 + ¢} ), which upon
linearizing equals My(1 + u!/U; — ¢{/e1). The above estimate is expected to be
adequate as long as the change in Mach number caused by the turbulent fluctu-
ations is small compared to the mean Mach number. Typically, this is a good
assumption for mean Mach numbers exceeding 1.15. In our calculations the mean
Mach number exceeds 1.2. Also, the rms values of u} /ﬁl and ¢} /¢; are about 2.5%.
Mi(1+ 4} /U1 — ¢} /e1) is therefore equal to M to a very good approximation.

The shock thickness is therefore given by:
c16 6.89

141 - M] - 1
The thickness of the shock wave is related to the turbulence lengthscale through the

turbulence Reynolds number. Defining a Reynolds number based on the streamwise

(4.49)

Taylor microscale as,

Ry = (4.50)

equations (4.49) and (4.50) may be combined to obtain the following expression

relating the turbulence lengthscale to the shock wave thickness:

i\l\/’z _p M-l (4.51)

5 & 680
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Now,

\/_E _ v 8 _ M, il: (4.52)
51 @1 9

where the fluctuation Mach number M; is defined as M; = ¢;/¢. The quantity,
?/ qi has a typical value of 0.55 in incompressible shear flows (Townsend, 1976),
implying that:

12
Uy

~ 0.74M,. (4.53)

c1

Substituting into equation (4.51) we get,

M _Ry(M-1)

§ 51 M, (4.54)

Typical values for Ry and M, in our calculations are 30 and 0.03 respectively.
For these values of Ry and M;, we tabulate below the ratio of streamwise Taylor

microscale to shock thickness as a function of the mean upstream Mach number.

M, | /6
1.2 39
1.5 98
20 | 196
3.0 392

TABLE 4.1: The ratio of the upstream streamwise Taylor microscale to shock thickness as a

function of the mean upstream Mach number.

This disparity in lengthscale results in the number of points in the streamwise
direction increasing with Mach number if the shock wave is to be resolved. Also the

system of equations becomes increasingly stiff. These effects are estimated below.

The smallest grid spacing in the streamwise direction is determined by the shock
thickness. Typically about 10 points are needed to resolve the shock wave thick-
ness. The smallest grid spacing Azmin is therefore approximately §/10. Although
a stretched mesh is used in the streamwise direction, accuracy requirements impose
an upper bound on the rate of stretching. The total number of points and the rate

of stretching determine the maximum grid spacing Azyax. In our shock-resolving
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calculations, AZmax/AZmin ~ 20. This maximum grid spacing which occurs at the
boundaries is required to resolve the turbulent fluctuations. The length of the do-
main upstream of the shock wave is determined by the distance taken by the inflow
fluctuations to evolve into a ‘realistic’ state. Since the shock is around the center
of the domain, the domain length downstream of the shock is the same as that
upstream. Typically, the length of the domain in our calculations is about 10A; in

the streamwise direction. i.e.,

A1
76

_ Ry (Ml - 1)
- 105.1 M,

~ 1961(M; — 1)é (4.55)

L, ~10A; =10

]

where Ry and M; are taken as 30 and 0.03 respectively. A crude estimate of the
number of points in the streamwise direction is provided. We assume that the non-
uniform mesh is such that the mesh spacing is approximately Azmax on both sides
of the shock and Azp;, inside the shock wave. Note that this assumption provides
an optimistic estimate of the number of streamwise points. The actual number of
points would be higher if the variation in mesh spacing is properly represented. The

number of points in the streamwise direction is given by:

L,
Ny ~ + 10

Tmax
0  AZmax
=1961(M; —1 —F+10
( ! )A-'Emin Azpin
S—— N —
10 1/20
— 980(M; — 1) + 10. (4.56)
M, N,
1.2 206
1.5 500
2.0 990
3.0 1970

TABLE 4.2: The approximate number of streamwise points in a shock-resolving computation

as a function of the upstream Mach number.
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N, is tabulated as a function of M; in Table 4.2. It becomes apparent that it
would be impractical to exceed a mean Mach number of 1.5 while trying to resolve
the thickness of the shock wave.

The increase in numerical stiffness with Mach number is illustrated next. As
noted in Section 4.5, the time step is determined by the time scale of acoustic wave

propagation over the smallest grid spacing. i.e.,

FL
At = ¢ (4.57)
uy|+te uz|4c uzl|+e
which may be approximated as:
A min
At~ BT CFL (4.58)
c M, +1+ Aznin + Azpin
' Az, | Az
S N —
~0.05 ~0.05

where ¢ = ¢; is the mean sound speed upstream of the shock. This yields the

following expression for the time step:

Azpin
At=CFL —————. 4.59
C(Ml + 1.1) ( )
Substituting §/10 for Azpin and using equation (4.54) for §, we get:
EA cAt 1 _ 0.561 . (4.60)
M, N CFL (M -D(M +11)
M, Timestep
1.2 1.11
1.5 0.39
2.0 0.16
3.0 0.06

TABLE 4.3: The variation of the timestep with the mean upstream Mach number in a

shock-resolving computation.

This non-dimensional time step is tabulated in Table 4.3 as a function of Mach

number. The total amount of time taken for statistics to converge is determined
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by the timescale of the upstream turbulence and is not significantly affected by
Mach number. As a result, the decrease in time step with Mach number causes
the total number of timesteps to increase. Our preliminary (unreported) Mach
1.2 calculations took about 350 hours on the Cray C-90. Based on Table 4.3 the

corresponding run times for the stronger shock waves are estimated below.

M, Cray C90 Single Processor hours
1.2 350
1.5 987
2.0 2428
3.0 6420

TABLE 4.4: The approximate run-time of a turbulent shock-resolving simulation as a func-

tion of the mean upstream Mach number.

The impracticality of computing flows with Mach numbers exceeding 1.5 with
an explicit time advancement scheme, while resolving the thickness of the shock is

obvious.
4.6.2 Shock Capturing

A practical alternative to resolving the thickness of the shock wave is ‘shock
capturing’: where numerical viscosity is used to smoothen the shock wave. A wide
body of literature exists on the subject (see for example Hirsch, 1990). A brief

summary leading up to the scheme used in our computations is provided below.

The classical approach to shock capturing adds a linear diffusion term to the
governing equations. Such schemes do not ensure non-linear stability and can there-
fore result in instability or oscillatory solutions when applied to strong shock waves.
More recently, shock capturing schemes have been designed for non-linear conser-
vative hyperbolic equations. These schemes are equivalent to adding a non-linear

viscous term to the equations, ensuring non-linear stability in the process.

The development of shock capturing schemes relies on the Lax-Wendroff theo-
rem (Lax and Wendroff, 1960) which shows that the limit solution of a consistent
conservative finite difference approximation of the equations satisfies the Rankine-

Hugoniot equations across a shock wave. An entropy inequality (Leroux, 1977;
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Majda and Osher, 1979) is further needed to ensure that the scheme captures the
physically relevant solution of the Euler equations i.e., ‘expansion’ shocks are not
obtained. The term ‘shock capturing scheme’ refers to the numerical scheme used
to approximate the inviscid flux terms in the governing equations. Standard (usu-
ally central difference) schemes are used for the viscous terms (in our case the sixth

order Pade scheme is used).

A brief introduction to shock capturing is given below. The Navier Stokes
equations are first expressed in the form:
_a_q:‘ _ a.ﬁnv. 6.Jinv. a’_{inv. af;isc. 6g'visc. aiivisc.

ot~ 8z 8y 0z + Oz + dy + 0z (4.61)

where the subscripts ‘inv.” and ‘visc.” refer to the inviscid and viscous fluxes
respectively, and §' = (p, pu, pv, pw, E)7, fany. = ug+ p(0,1,0,0,u)7, Giny. = v7 +
»(0,0,1,0,v)7 and Pinv. = wq+p(0,0,0,1,w)T. The viscous fluxes may be similarly

obtained by comparison to equations 4.2.

Truly multi-dimensional shock-capturing schemes, where the conservative prop-
erties of all three inviscid flux terms are simultaneously enforced, are still a topic
of research. A popular alternative is to approximate the three inviscid flux terms
separately. The core of a shock capturing scheme is therefore a one-dimensional
approximation to each of the flux terms. Consider the following one-dimensional

conservative hyperbolic equation:

ou O
£ + a—mf(“) =0 (4.62)

where f(u) is a non-linear flux term. In accordance with the Lax-Wendroff theorem,

the spatial derivative is approximated as:

fj+1/2 - fj—l/z
Az

(4.63)

where fj+1 /2 and fj_] /2 are numerical fluzes that are functions of the nodal values
of u. The numerical fluxes are required to be consistent with the governing equation

in the sense:
Flou,u,u,..) = f(u). (4.64)

Upon integrating in time, most schemes are expressible in the form:

u?“ = G(..uj_q,uf,ujyy ) (4.65)

105



Chapter 4: DNS Procedure Section 4.6.2: Shock-capturing development

The form of the numerical flux term and the function G, distinguishes one shock
capturing scheme from another. The hierarchy of shock capturing schemes includes
monotone, total variation diminishing (TVD), total variation bounded (TVB) and
essentially non-oscillatory (ENO) schemes. A comprehensive review of monotone
and TVD schemes is provided by Yee (1987). Monotone schemes are necessarily
first order accurate. While TVD schemes may be of high order, their constraint
on the total variation limits them to first order at the extrema of discontinuities.
TVB schemes recover high order accuracy at extrema by relaxing the constraint
on the total variation; however, their fixed stencil causes excessive smearing of the
shock and the solution in its vicinity (Shu and Osher, 1988). These methods are
therefore unsuitable to compute shock waves in flows where small scale features are

important; turbulence being a prime example.

The ENO schemes are promising candidates to compute shock waves in turbu-
lent flows. An adaptive stencil (based on difference tables) in these schemes uses
the smooth parts of the solution to approximate derivatives around a discontinu-
ity. ENO schemes were first introduced by Harten and Osher (1987) and Harten,
Enquist, Osher and Chakravarthy (1987). Subsequent modifications by Shu and Os-
her (1988, 1989) have considerably increased the efficiency and simplicity of these
schemes. Computations that evaluate the accuracy of the ENO schemes have been
conducted by Shu (1990) and Shu, Erlebacher, Zang, Whitaker and Osher (1991).
Details of the development of the ENO scheme may be found in these references
and will not be repeated here. The final form of the ENO scheme that is used in

our computations is summarized below.

Consider approximation of the flux term 0 f /0z (the subscript ‘inv.’ is dropped
for notational brevity). It may be approximated either in terms of the characteristic
variables (Shu et al., 1991) or each of its component elements may be approximated
individually. The latter approach is chosen for its ease of implementation. Also,
the global Lax-Friedrichs flux splitting is used for upwinding. The flux is first split

into two parts as follows:

=@+ @ (4.66)
where the fluxes f+ and f ~ are defined as follows:
£ =(f+ad)/2 (4.67)

where « is the maximum value of |u| + ¢ in the z direction. Note that this de-

composition ensures that the eigenvalues of f+ are positive while those of f ~ are
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negative. Upwinding (in the appropriate direction) is then used to compute the

spatial derivatives of both fluxes.

Denoting a component of either f"‘ or f ~ by f, the derivative of f (as indicated

in equation 4.63) is approximated as:

of _ fj+1/2—fj—1/2
30 - — A (4.68)
where the numerical fluxes are defined as:
fivip =Y c(i—j,m) fli,m] (4.69)

m=0

where 7 is the leftmost point in the stencil used to approximate the flux and f[j, &]

represents the (undivided) difference of f defined as:

15,01 = f(u;)

_ _ _ (4.70)
fli, k1= fls +1,k—1] - flj,k - 1]; k=1,..,r

where the variable r denotes the spatial order of the scheme. ENO schemes of arbi-
trary order may thus be constructed. Note that the above representation satisfies
the consistency requirement of equation 4.64. The coefficient matrix ¢(s,m) is given

by the following relation:

s+m s+m

c(s,m) = +1)‘ > I] (-p+1). (4.71)

lsP—

The matrix ¢ is computed once and stored. An adaptive procedure is then used
to determine the index :. Having decided upon the overall order of the scheme,
the variable 7 in equation 4.69 is chosen to yield the smallest absolute value of the
undivided difference at every order k; i.e., having started with s = jor: =3 +1

(depending upon the direction of upwinding), the following logic is implemented:
i=1—1if | fle, k]| > | fli—1,k] | ; k=1..r (4.72)

The above algorithm tends to strongly inhibit differencing across a discontinuity.
This is the base form of the ENO scheme as described by Shu et al. (1991). The

above scheme was found to have an unexpected degeneracy in the accuracy of the
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solution with increasing order of the scheme or increasing number of points by
Rogerson and Meiburg (1990). Shu (1990) attributed this degeneracy to choice
of linearly unstable stencils during the adaptive procedure. Biasing the adaptive
choice of stencil towards the linearly stable stencil (central differencing in our case)
was advocated by him as a cure. This bias is achieved by the following modification

to equation 4.72:

i=i—1if 2| fli,k]| > |fli—=1,k]; k=1l..r (4.73)

The ENO scheme described above was used by Lee (1992) and Lee, Lele and
Moin (1994) to compute the interaction of isotropic turbulence with shock waves
of Mach numbers 2 and 3. The scheme was first evaluated by computing spatially
decaying isotropic turbulence. Results of a sixth order ENO scheme were found to
be in good agreement with results obtained using the sixth order Pade scheme. In
computing shock/turbulence interaction, use was made of a priors knowledge of the
approximate location of the shock wave. The ENO scheme was only applied locally
around the shock; the sixth order Pade scheme was used everywhere else. This was
done primarily to improve code performance, since the adaptive nature of the ENO

scheme makes it more expensive to compute derivatives than the Pade scheme.

The interaction of two dimensional turbulence with a Mach 1.2 and Mach 2
shock was then computed using this hybrid scheme. Comparison to simulations
where the thickness of the shock was resolved showed very good agreement. The
smallest grid spacing using ENO was about 5 - 6 times that using shock-resolving.
In computing three dimensional shock/turbulence interaction, application of ENO
in all three coordinate directions was found to significantly increase the dissipation
of turbulent kinetic energy. To alleviate this effect, ENO was used to only compute
the flux terms in the streamwise (shock-normal) direction; the Pade scheme was
applied to the transverse directions. The interaction of a Mach 1.2 shock wave with
isotropic turbulence was then computed using this scheme. The results were in very

good agreement with their simulations where the shock wave was resolved.

We use the same scheme as Lee et al. The sixth order ENO scheme biased
towards central differencing is applied in the streamwise direction in the immediate
vicinity of the shock wave. The sixth order Pade scheme is applied everywhere else.
The zone over which ENO (r = 6) is applied is defined a prior: by N; < : < N,
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where,

_Nx+1
- 2

_N:c+1

N
: 2

5r; N, +5r. (4.74)

4.6.3 Evaluation of the shock-capturing scheme

The hybrid scheme described above, is evaluated in this section. A steady
one-dimensional normal shock is first computed using both shock capturing and by
resolving the shock thickness. The results are then contrasted. The ability of shock
capturing schemes to compute shock waves in turbulent flows is then tested by
computing the interaction of a Mach 1.5 shock wave with a plane vorticity-entropy
wave at varying angles of incidence. The results are evaluated by comparison to
linear analysis. Parameters such as domain length, viscosity, mesh and amplitude
of the incident disturbance in these test problems are matched to those in the shear
flow/shock wave simulation. These test problems are therefore used to determine

the computational parameters of the turbulent simulation.

A steady Mach 1.5 normal shock is first computed. The initial condition ( a
one-dimensional version of equations 4.80) ensures that the shock is at the center of
the domain whose length L, is 3w. The reference Reynolds number ( Re in equations
4.2) is set equal to 750. The flow is advanced at a CFL number of 0.4 till steady state
is reached. A non-uniform mesh is used for both computations. The parameters
b,r and d of the mesh are 15, 1.9 and 0.1 when the shock wave is resolved while the
shock capturing calculation has values of 10,1.9 and 0.15 respectively. This choice
of mesh parameters is made by trial and error. Also, the number of points was
progressively increased until the solution obtained was found acceptable. The two
computations are compared in Table 4.5. Note that shock capturing reduces the
number of points from 447 to 191. This is accompanied by an increase in the time
step; Atshock cap. = 3.9 Atshock resolv.- The thickness of the shock wave is increased
by a factor of 2.4 while the number of points inside the shock wave decreases from
10 to 6.

The quality of the solution obtained is illustrated in figure 4.5 where the veloc-
ity, pressure, density and temperature are plotted. Both solutions seem to smoothly
transition through the shock wave to their downstream values. However, closer ex-
amination reveals the presence of small streamwise oscillations behind the shock
wave when shock capturing is used. These oscillations are largest in the density

and temperature; they are imperceptibly small in the velocity and pressure profiles.
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In contrast to standard central difference schemes, these oscillations are bounded;
they do not lead to instability. This behavior of the ENO schemes is documented in
the literature (Meadows et al., 1993, Woodward and Collela; 1984, Roberts; 1990,
Lindquist and Giles; 1991). Shock capturing schemes (not necessarily ENO) are
known to produce spurious oscillations in entropy (reflected in density and temper-

ature) when applied to slowly moving shock waves.

Shock resolving Shock capturing
N, 447 191
AT pax 4.01 x 1072 9.13 x 1072
AZmin 2.16 x 1073 8.39 x 1073
AZmax/ATmin 19 11
At 0.35x1073 0.14x1072
Shock thickness 0.018 0.043
Points inside shock 10 6

TABLE 4.5: Comparison between shock-capturing and shock-resolving in the computation

of a Mach 1.5 laminar shock wave.

Meadows et al. show that the approximate frequency of these oscillations is
us/Az where u, is the velocity of the shock wave with respect to the grid. Thus
strictly speaking, shock capturing does not yield a steady solution. They use the
above frequency to estimate the wavelengths of the pressure and entropy waves
behind the shock as (u; + a2)Az/u, and usAz/u, respectively. Increasing shock
speed or decreasing the mesh spacing decreases the magnitude of these oscillations.
As suggested by Meadows et al., both these factors increase the frequency and hence
decrease the wavelength of the oscillations. This allows the dissipation inherent in
the shock capturing scheme to eliminate the oscillations. While Meadows et al.
examined a moving shock wave, the source of shock velocity in our computations
is less clear. Switching of the stencil by the adaptive algorithm is the most likely
cause of change in shock location and hence shock velocity. To allow computation
of shock/turbulence interaction, we ensure that the magnitude of the oscillations
in density behind the shock wave is small with respect to the magnitude of density

fluctuations behind the shock wave in the turbulent simulation. Since we have no
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FIGURE 4.5: Comparison between shock-resolving and shock-capturing in the computation
of a Mach 1.5 normal shock.
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shock-resolving while the dashed line with circles is from shock-capturing
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FIGURE 4.5 continued: See previous page for caption.
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control over the shock speed, iteration on the mesh is necessary until the oscillations
are acceptably small. The numerically induced oscillations in density are about
0.02% of the mean density behind the shock wave. By comparison, the intensity
of density fluctuations in the turbulent simulation are about 2.5% upstream of the
shock wave; the downstream values will be higher. The above level of numerical

oscillation in density is therefore considered acceptable.

The unsteady two-dimensional interaction of a Mach 1.5 shock wave with a
plane vorticity-entropy wave at varying angles of incidence is next computed. The
results are compared to the linear analysis described in Chapter 3. Recall that a
similar computation where the shock wave was resolved was performed in Section
3.4. The results were found to agree well with linear analysis. The computational
domain has dimensions of 37 and 27 in the streamwise and transverse directions
respectively. The streamwise mesh is identical to that used to compute the steady
one-dimensional shock. A uniform mesh of 33 points is used in the y direction. The
mean flow parameters are identical to those in the steady shock wave computation.
Periodic boundary conditions are imposed at the y boundaries. All the flow variables
are specified at the inflow boundary and non-reflecting boundary conditions (Section
4.8) are used at the outflow boundary. The flow is initialized by a steady normal
shock wave over which the fluctuating vorticity-entropy wave is superposed; i.e., at
t=0,

u=U + U1 A, sinyy cos(kzz + kyy)

v = Uy Ay cos 9y cos(kzx + kyy); p=7p
p =7+ pAc cos(kzz + kyy) (4.75)

where the overbars denote mean quantities and the subscript ‘1’ refers to the state
upstream of the shock wave.

The wavenumbers k., and k, are given by:
k, = kcos; ky = ksiny (4.76)

where k is the magnitude of the wavenumber vector and ; denotes the angle the
wavenumber vector makes with the z axis. The variables A, and A. denote the
intensity of velocity and density upstream of the shock wave and are both equal to
2.5%. The unsteadiness associated with the incident wave is specified through the

inflow boundary condition; i.e., at (z = 0),
u = Uy + Uy Ay sinepy cos(kyy — Urk,t)
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FIGURE 4.6: The amplification of vorticity across a Mach 1.5 shock wave in its interaction
with a plane vorticity-entropy wave. The line corresponds to linear analysis while the symbols

are from numerical solution.

v = Uj A, cos ¢y cos(kyy — Urkst); p=7p
p =P+ p1Ac cos(kyy — Urkgt). (4.77)

The parameters k and 1, are selected so that we have one wavelength in the y
direction i.e.,

ky = ksiny; = 1. (4.78)

The solution is advanced at a CFL number of 0.4 until initial transients exit the do-

main. Statistics are then gathered over a period of the inflow disturbance, 27 /U k.

The incidence angle 1, is varied from 0 to 7/2 and the results are compared
to linear analysis. The amplification of vorticity across the shock wave is the least
ambiguous to compare to analysis since vorticity varies monotonically on both sides
of the shock. We tabulate below (and plot in figure 4.6) the computed amplification
of vorticity across the shock. Also listed are predictions of the linear analysis. The
two values are seen to agree to about 1% away from the critical angle (the error is
computed with respect to linear analysis prediction). As explained in Chapter 3,
the deviation around the critical angle is a limitation of the linear analysis, not the

computation. These computations also help in assessing the performance of the exit
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boundary conditions. The performance of the non-reflecting conditions are known
to degrade as the angle of the acoustic waves with the normal to the exit boundary
increases. This results in some reflection that corrupts the dilatational component
of the flow near the boundary. Vorticity is unaffected. The incident waves around
0° and 90° are unaffected by the outflow boundary conditions while some corruption
is seen for the other angles. The decaying regime is more benign in this respect
since the amplitude of the acoustic wave decays exponentially behind the shock
wave. Note that the length scale of the upstream fluctuations are smaller in the
turbulent calculation as compared to the single mode computation. Also, reflected
acoustic waves would not travel upstream uninterrupted in a turbulent flow. The
influence on the solution inside the domain will therefore be smaller in the turbulent
calculation. Similar observations were made by Lee, Lele and Moin (1992) on the

exit boundary conditions in their computations of isotropic turbulence/shock wave

interaction.

Y1 (degrees) Computation | Linear analysis Error

0 3.43 3.45 0.6%

15 4.05 4.07 0.5%

30 4.69 4.66 0.6%

45 5.22 5.26 0.8%

61.36 6.89 8.5 19%

75 4.60 4.53 1.55%

90 3.70 3.71 0.3%

TABLE 4.6: Vorticity amplification factors from simulation compared to linear analysis in

the interaction of a Mach 1.5 shock with a plane vorticity-entropy wave.

Besides statistics, instantaneous fields are examined for spurious oscillations.
Increased distortion of the shock wave could generate spurious oscillations due to
our use of the Pade scheme in the y direction. Figure 4.7 shows the v component
of velocity for incident angles of 45°, 75° and 90° respectively. The smooth change
in the angle of propagation and wavelength of the incident wave is noted over the
propagating regime. Some small amplitude periodic oscillations are observed for the
incidence angle of 75°. These spurious oscillations are generated at the shock front

around the region of maximum slope and are subsequently convected downstream.

115



Chapter 4: DNS Procedure

Section 4.6.3: Shock-capturing evaluation
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FIGURE 4.7: Contours of v in the interaction of a vorticity-entropy wave with a Mach
1.5 shock. Figures (a),(b) and (c¢) correspond to incidence angles of 45°,75° and 90°

respectively. The solid and dashed lines denote positive and negative values respectively.
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Their amplitude is small as reflected in the statistics of vorticity amplification shown
in Table 4.6. In summary, while the shock-capturing scheme is not perfect, it does
represent the interaction accurately for most of the incidence angles. It is therefore
expected to be quite adequate in predicting the interaction of the turbulent field

with the shock wave.

4.7 Initial conditions

The turbulent simulations are initialized by superposing turbulent fluctuations
onto the steady laminar solution of the shock wave in the shear flow. The lami-
nar solution is obtained from a two-dimensional computation where the extent of
the domain and the mesh were the same as the turbulent simulation. The two-
dimensional computation is performed in two stages as follows. The domain is first
initialized as a one-dimensional normal shock at every y location; i.e., given the

following state at the inflow:
Ul(y) =Uo + S(y - ymin)9 Vi=0

v 1= s Uiy
pl(y)—v, T1(y) CEENTA (4.79)

the rest of the domain is initialized as follows:

Us(y) + Ua(y) + Ua(y) — Ur(y)

(z — z.)

U(z,y) = 5 5 tanh 5 V(z,y) =0
Tl =Ta() + B - LO - gy LT ()

2 2 - (v — DT1(y) U(z,y)
The subscript ‘2’ in the above equations denotes the state behind the shock wave

and is obtained from the Rankine-Hugoniot relations; u.e.,

Ualy) _ 2+ (y— DM}

Tily) ~ (7 + DM (+81)

The variable z, denotes the location of the shock wave and is set equal to L. /2.
The parameter 6, is a measure of the distance over which the initial field varies

between upstream and downstream states. It is typically set equal to 2.

The one-dimensional Navier Stokes equations are then advanced at each y lo-
cation. The purpose of this one-dimensional calculation is to provide shock profiles

that can be used to specify boundary conditions at the y boundaries in the turbulent
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calculation. The flow is advanced till a steady state is obtained. The inflow bound-
ary being supersonic, all flow variables are specified there. Non-reflecting boundary
conditions ( Section 4.8) are specified at the outflow boundary. No boundary con-

ditions are needed at the y boundaries since the calculation is one-dimensional.

The steady solution that is obtained is used to initialize a computation on
the same mesh where the two-dimensional Navier-Stokes equations are solved. The
one-dimensional steady solution that was obtained is used to specify boundary con-
ditions at the y boundaries. Quantities that vary across the shock wave (U, p and
P) are set to equal the values obtained at the boundary from the one-dimensional
solution. The velocity in the y direction is obtained by advancing the y momentum
equation. The boundary conditions at the inflow and outflow boundaries are the
same as those in the one-dimensional computation. The flow is then advanced in
time until a steady state is obtained. This steady solution is then used as the mean

field to initialize the three-dimensional turbulent simulation.

The turbulent fluctuations (see Section 4.8) are obtained from a temporal com-
putation of a shear flow. The mean flow in the temporal simulations matches that
at the inflow of the shock wave computation. The temporal simulation has periodic
boundary conditions in the z and z directions. Non-reflecting boundary conditions
are specified at the y boundaries. The spatial extent and grid in the y and z direc-
tions matches that of the shock wave computation. An instantaneous realization
(the same as that used to generate inflow turbulence; see section 4.8) of the temporal

simulation is used to compute fluctuations of the primitive variables (u;, p, p).

The two-dimensional steady solution is first specified over all z — z planes. The
turbulent signal obtained from the temporal simulation is then interpolated onto
the grid used in the spatial calculations and then superposed onto the mean flow.
Note that the temporal turbulent field is only representative of the flow upstream
of the shock wave. As a result, it is specified only over the part of the domain
upstream of the shock. This is achieved by applying a smoothing function to the
turbulent signal in the streamwise direction. The smoothing function is based on
the hyperbolic tangent profile and smoothly varies from one near the inflow to

zero a bit upstream of the shock wave. A primitive variable, f(z,y,z) is therefore
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computed as follows:

1 — tanh[bips. (2

flz,y,2) =F + 5

—L,/4)] Z f(kl,y,k3)expi(k1$+kaz)-
k1,ks
(4.82)

where the variable f is obtained from the steady laminar solution. The variable binit.
determines the rate at which the smoothing function varies from zero to one; it was
set to equal 5. Absence of the smoothing function would result in the specification
of turbulent fluctuations over the entire length of the computational domain. Such
initial fields were found to generate severe transients in the vicinity of the shock
wave. Numerical instability was a consequence. This effect was found to be more
pronounced as the shock strength increased. The use of the smoothing function was

therefore found essential to generate tolerable transients.
4.8 Boundary conditions

4.8.1 Inflow boundary

Since flow at the inflow boundary is supersonic, all flow variables are prescribed
there. Unsteady fluctuations representative of the turbulence in the shear flow are
specified. Details of the procedure and validation of this method of generating
turbulent fluctuations at the inflow are provided in Appendix C. A brief summary

is provided below.

Essentially, an instantaneous realization of a developed temporal simulation is
used to generate inflow turbulence. The fluctuations in primitive variables of the
temporal field are first Fourier transformed in the z and z directions; u.e., f(z,y, 2) is
transformed into f(kl , ¥, k3). Taylor’s hypothesis is then used to convert the stream-
wise wavenumber k; into frequency w. Inverse Fourier transforming then yields
f(t,y,2); i.e., £ = Ugt is used to express f(t,y,z) as Zkl,ka f(kl, Yy, k3) exp (tk1U.t)
exp (tksz). This amounts to convecting a temporal realization into the spatial do-
main at a convection velocity U.. To ensure randomness in time, the amplitude and
phase of the Fourier coefficients are randomly jittered with time. The fluctuations
thus obtained are superposed onto the mean field at the inflow. This method of

specifying inflow turbulence is a considerable improvement over that proposed by
Lee, Lele and Moin (1992).
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4.8.2 Outflow boundary

Approximately non-reflecting boundary conditions are specified at the sub-
sonic outflow boundary. The boundary conditions comprise of a ‘sponge layer’
in the streamwise direction, followed by a characteristics-based boundary condi-
tion (Poinsot & Lele, 1992) at the outflow plane. Boundary conditions involving a
sponge layer have been used in the past in a variety of problems: e.g. Givoli (1991),
Israeli & Orszag (1981), Colonius, Moin & Lele (1995). The boundary conditions
with a sponge were shown (Colonius et al.) to yield significantly better results than

boundary conditions without the sponge layer.

Accordingly, a ‘cooling term’ of the form, —o(U — Uy.¢) is added to the right-
hand side of the governing equations over the sponge layer alone. U,es denotes the
vector of reference variables towards which the solution in the sponge layer is forced.
It is set to equal the steady laminar solution that was used to specify the initial

condition. The coefficient o(z) is a polynomial function; i.e.

' (z —zs)"

o(z) = Asm

(4.83)
where, z, and L, denotes the start of the sponge and the length of the domain
respectively. Typical values of Ay, n and (L; — z,)/L; used in our simulations are

5, 3 and 0.14 respectively.

The formulation proposed by Poinsot and Lele (1992) is used at the exit plane.
These boundary conditions are an extension of the formulation proposed by Thomp-
son (1987). Given the hyperbolic nature of the Euler equations, the solution at the
boundary supports waves that propagate out and into the domain. While the am-
plitudes of the outgoing waves are determined by the solution inside the domain,
the incoming waves need to be specified. For lack of a better approximation, the

amplitude of the incoming waves 1s set to zero.

The implementation of these boundary conditions is equivalent to specifying
conditions on the derivatives of some flow variables normal to the boundary. Details
of the boundary conditions may be found in Poinsot and Lele (1992). The Navier
Stokes equations are expressed as follows:

o7 , of
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where RHS contains the viscous terms and inviscid terms involving derivatives par-
allel to the boundary. The RHS is therefore computed using the solution in the
domain. The propagation of waves across the boundary is determined by the one-

dimensional equation:
 + 7 =0. (4.85)

The above equation is expressed in terms of the primitive variables and diagonal-
ized (Thompson; 1987, Poinsot and Lele; 1992). This equation has five eigenvalues
u,u,u,u + c,u — c. In the linear limit, these eigenvalues correspond to the prop-
agation of vorticity, entropy and acoustic waves. The diagonalization relates the
amplitudes of the characteristic variables to the spatial derivatives of the physical

variables as follows (the notation used by Poinsot and Lele is retained):

0
P = [Ly + (Ls + Ly)/2]/ (4.86a)
0 ,
0
ua—z = (Ls — L1)/2pc (4.86c)
0
u-a—:: = L, (4.86d)
0
u(-% =1L, (4.86¢)
where the L;’s are defined as:

_ Op ou

L1 = (u - C) (a—x - Cé;) (487(1)
dp Op
— 2-F B
Ly = u(c % 89:) (4.87b)
L; = ua—v (4.87¢c)
Oz
ow

L4 = Ua' (4.87d)

_ JOp Ou
L5 = (u + C) (a + pc%) . (4.876)

L; denotes the amplitude of the characteristic variables in the linear limit. The
number of boundary conditions that are specified is equal to the number of incom-

ing waves. The sign of the eigenvalues determines whether a wave is incoming or
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outgoing. Since the exit boundary is subsonic, the only negative eigenvalue is u — c.
The exit boundary condition is therefore to set the amplitude of the corresponding
incoming waves to zero. i.e.,

Li =0. (4.88)

The other L;’s are computed using equations (4.87) and the solution in the domain.
This yields the derivatives normal to the boundary which are then substituted into
equations (4.2) (Poinsot and Lele, 1992).

4.8.3 Top and bottom boundaries

Boundary conditions at the top and bottom boundaries pose a formidable chal-
lenge since the flow is not compact. These boundary conditions are required to have
a non-reflecting character while fixing the mean location of the shock wave. These
dual requirements are hard to achieve. Several variants of the characteristic based
non-reflecting conditions were tried. The boundary conditions were evaluated by
computing a steady two-dimensional laminar solution to the shock wave in the shear
flow. The shock wave was either found to travel upstream or, numerical instability

resulted when these boundary conditions were used.

The dual requirements of shock stationarity and non-reflecting character were
achieved through use of ‘sponge’ regions near the top and bottom boundaries. As
done near the outflow boundary, a term of the form, o(U — U,s.) is added to
the governing equations near the top and bottom boundaries. The variable o is
increased from zero at the start of the sponge region to a finite value at the boundary.
The reference solution Uy, is set to equal the laminar solution that is used to specify
the initial condition. The solution in the sponge region is thus gently damped
towards the steady laminar solution. Hence, at the top and bottom planes (j =
1, Ny), u, p and p are set to equal their laminar values while the transverse velocity

components are obtained from the y and z momentum equations.

4.9 Simulations performed

Results from two simulations are discussed in this report. The mean upstream
Mach number in the two computations is 1.2 and 1.5 respectively. Apart from
the difference in the shock strengths, there is one important difference between
the two simulations: the sign of the upstream velocity-temperature correlation is
different. Also, the ‘sponge’ regions discussed above were not implemented in the

Mach 1.5 computation. Section 4.8.1 and Appendix C discussed the procedure
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used to generate inflow turbulence for the Mach 1.2 computation. Recall that
the temporal simulation used to generate inflow turbulence was initialized with
an isotropic velocity field and zero thermodynamic fluctuations. The temporal
evolution of Ry and R, (figure C.11) showed that R, was positive while
Ry, was negative. The linearized equations governing the evolution of the velocity-
temperature correlation (equations C.14-C.16) were used to show that u/T" was
positive because the mean velocity and temperature both increase with increasing

y in the computations.

However, Morkovin’s hypothesis (equation C.1) and experimental measure-
ments show that 4'T” in an adiabatic boundary layer is negative; R,/ is nearly
-1. As a result, it was decided to ensure that the turbulence upstream of the Mach
1.5 shock wave had negative w'T'. This was achieved through the initial conditions
used in the temporal simulation to generate inflow turbulence for the Mach 1.5 sim-
ulation. The linear equations governing the evolution of the velocity-temperature

correlation are reproduced below from Appendix C:

0 T 0P
—'T" — T = 20T Tv'o — __TI 4.
5" + anv —v M + 9 (4.88a)
N—— ; N -— s
0 negative neglect
Koy O e A UL —T'a” . (4.88b)
ot Oz dy dy p Oz
H/—/ N\ J - ~ )
0 positive neglect

Of the three ‘production’ terms, ——v—’z—dT/ dy is always negative. Since the initial
turbulence is isotropic, u'v' is initially zero; as the turbulence evolves, it becomes
negative, and the term —u'v'dT/dy becomes positive. The remaining production
term is —v'T'dU/dy. If v'T’" were negative, then equation (4.88) shows that this
would tend to decrease u'T". Equation 4.88a shows that if the initial thermodynamic
field were zero, then v'T' would be negative. However, if v'T’ was initially positive,
then there would be a transient period of time when »'T' would remain positive

and u'T" would be negative (since its initial value is zero).

This was the procedure used to generate the initial thermodynamic field for the
Mach 1.5 temporal simulation. In addition to an isotropic velocity field, an initial
field of entropy fluctuations with positive v'T" (i.e., negative v'p' ) was specified;
t.e., initially,

(3.89)
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FIGURE 4.8: The evolution of velocity-temperature correlation at the centerline in the Mach
(Rurt), ——== (Ror7).

1.5 temporal simulation.

The variable B is a constant that was by trial and error set to 18. Increasing j
ensures that u’T" stays negative for longer periods of time, thereby allowing the
velocity field to develop further. Figure 4.8 shows the temporal evolution of the
velocity-temperature correlation in the Mach 1.5 simulation. An instantaneous
realization at St = 2.8 was taken and used to generate inflow turbulence. The
properties of the resulting turbulence immediately upstream of the Mach 1.5 shock
wave are tabulated below. Corresponding values for the Mach 1.2 shock are reported
in Chapter 5.

Ra 29.0 M, 0.03
u'?/g? 0.53 v/ 0.23
w'?/q? 0.24 W/ q? -0.22
NN 0.025 Prms/PT 0.03
Trms/T1 0.03 Pems/YP1 0.0014
UWT [trmsTrms -0.1 V'T" [ Vs Tems -0.24
P'T" | prmsTems -1.0

TABLE 4.7: Parameters upstream of the Mach 1.5 shock wave at the center streamline.
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Chapter Five

Direct Numerical Simulation: Results

5.1 Introduction

This chapter presents the results obtained from direct numerical simulation of
the interaction of the turbulent shear flow with a normal shock wave. The relevant
parameters of the computations are first outlined. Properties of the turbulent flow
upstream of the shock wave are then discussed in section 5.2. Section 5.3 outlines
the evolution of the mean flow across the shock wave. This is followed in section 5.4,
by a discussion of the evolution of the turbulence kinetic energy. The influence of
the shock wave on the Reynolds shear stress of the turbulence is then presented in
section 5.5. Section 5.6 discusses the evolution of the thermodynamic fluctuations
across the shock. The chapter is then concluded with a discussion of the turbulence

length scales in section 5.7.

Mach 1.2 Mach 1.5
M, 1.2 1.5
L, 12 37
L, om 3
L, o 3r
N, 191 191
Ny 121 81
N, 121 81
b 12 10
r 1.9 1.9
d 0.25 0.15
U 2 2
S 0.2 0.1

TABLE 5.1: Numerical parameters in the simulations conducted.
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FIGURE 5.1: The mean profiles upstream of the Mach 1.2 shock wave (z/)y = 14.5).

Uy, === (p), -~ (p), —-— (T'). All the variables are normalized by their value
at the center streamline (y/Ao = 0).

Results from two simulations are presented in this chapter. The two compu-
tations differ in the shock strength, which is Mach 1.2 and Mach 1.5 respectively.
Also, as discussed in Chapter 4, the upstream correlation between the velocity and
temperature fluctuations is different between the two simulations. Results from the
Mach 1.2 simulation will be discussed in detail, with the Mach 1.5 results supple-
menting the discussion. The relevant parameters of the computations are tabulated
in Table 5.1. Note that M; denotes the mean upstream Mach number, L,, L, and
L, denote the length of the domain in the z,y and z directions, the number of
points used in the three coordinate directions is represented by N, Ny and N, the
variables b, and d denote the parameters involved in the streamwise nonuniform

mesh and Uy and S determine the mean upstream velocity profile.

5.2 The flow upstream of the shock wave

Profiles of the mean velocity, pressure, density and temperature measured im-
mediately upstream of the Mach 1.2 shock wave (z/A¢ = 14.5) are plotted in figure
5.1. Note that the ‘sponge’ regions are not shown. Also, A¢ is the Taylor mi-
croscale of the initial isotropic field in the temporal simulation used to generate

inflow turbulence (Appendix C).
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FIGURE 5.2: Turbulence Reynolds stresses upstream of the Mach 1.2 shock wave (z/\g =
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FIGURE 5.4: Intensity of the thermodynamic field upstream of the Mach 1.2 shock wave
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Ry 24.5 M, 0.034
u'?/q? 0.57 v?/q? 0.14
w'?/q? 0.29 W/ g? 0.17
NZAn 0.029 Prms/P1 0.057
Tems/T1 0.056 Prms/ 7Py 0.0018

WT [trmeTrms 0.71 V'T" [ VemsTims -0.65

T/ prmsTems | -0.996

TABLE 5.2: Parameters upstream of the Mach 1.2 shock wave at the center streamline.

As anticipated, the mean velocity varies linearly across streamlines, the mean
pressure is uniform and the mean temperature varies quadratically. The transverse
components of mean velocity, while not plotted, were examined and found to be

negligible; v is four orders lower than U.

Profiles of the turbulence Reynol(is_ stresses (ﬂi—u—']_ at the same streamwise
location (figure 5.2) show the ordering (u'? > w'? > v'%) that is commonly observed
in two-dimensional shear flows (Townsend, 1976). The kinetic energy is observed
to decrease in magnitude with increasing y location. As noted in Appendix C, this
behavior is consistent with viscous effects increasing in the y direction due to the
decreasing mean density in that direction. Also, as shown in figure 5.3, the Reynolds

stresses normalized by ¢? are nearly uniform across the mean streamlines.

The turbulence results show some oscillations, suggesting limited statistical
sample. Note that the plotted results were obtained by averaging over the z—
direction and time. After initial transients were allowed to exit the domain, a
total of 95 time samples were obtained over 8550 timesteps (3.8 time units). For
reference, it takes 4.4 time units to convect a single realization of inflow turbulence
at the inflow plane and about 3.9 time units for a particle at the centerline to travel
the length of the domain. The computational cost is approximately 225 single
processor Cray C90 hours per flow-through time based on the centerline velocity.
The cost of obtaining statistical convergence to the extent possible in computations
with at least two homogeneous directions was estimated to be prohibitive. As a

result, some oscillation in the results was tolerated.

The intensity of the dehsity, temperature and pressure field upstream of the
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Mach 1.2 shock wave is plotted in figure 5.4. The value of pys/p is seen to be
nearly equal to that of Tyys/T. By comparison, the value of pyms/P is seen to be
noticeably smaller. The correlation coefficient between the density and temperature
fluctuations (p'T"/prmsTrms) is plotted in figure 5.5 and is equal to approximately
-0.99 at all y— locations. In light of Kovasznay’s (1953) modal decomposition,
this suggests that the thermodynamic field upstream of the shock is dominated by
entropy fluctuations. Also, the intensity of the density and temperature fluctuations
are comparable to that of the velocity fluctuations. As shown in figure 5.4, pyms/p
and Tyms/T are approximately twice \/q—2 J/U. The correlation between the velocity
and temperature fluctuations is shown in figure 5.5. As anticipated from Appendix

C, u'T" is seen to be positive on all streamlines.

The relevant non-dimensional parameters of the turbulence upstream of the
Mach 1.2 shock wave are tabulated in Table 5.2. All quantities tabulated, are
measured at the center streamline (y/A¢ = 0) immediately upstream of the shock
wave (2 /Ao = 14.5). The upstream turbulence is seen to be at low Reynolds number,
low fluctuation Mach number, and dominated by vortical and entropy fluctuations

that are correlated such that u'T"-is positive.
5.3 The mean flow across the shock wave

The mean flow undergoes noticeable change across the shock wave, which ap-
pears to be predicted quite accurately by the Rankine Hugoniot relations for a
steady laminar shock. Figure 5.6 shows profiles of the mean streamwise velocity
on both sides of the shock. The upstream profile is measured at the location,
z /Ao = 14.5 while the downstream profile is measured at /)¢ = 25. The velocity
profiles are seen to be quite linear on both sides of the shock, with the shear rate

being lower on the downstream side.

The velocity ratio across a steady laminar shock is known to be given by the

relation,

Uz 2+ (y-—1)M}
Z2 _ . 5.1
U (v+ 1)M12 (5.1)

Figure 5.6 tests the validity of the above equation across the shock wave on each

mean streamline in the shear flow. The downstream velocity profile is divided by

the velocity ratio across a laminar shock and the resulting profile is compared to
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FIGURE 5.6: The mean velocity upstream and downstream of the Mach 1.2 shock wave.
(z/Ao = 14.5), -——- (z/A¢ = 25). The symbols are obtained by dividing the

downstream velocity profile by the jump across a laminar shock.

10

i 1 T 1 1 | | L) ] 1 I ¥ 1 L T I 1 1 iT Ll i
i I ]
[ I i
51 |
= I -
X b
K I ]
<L o | =
= C | i
. l i
N | i
5 I
. | ]
i I .
_ | i
_10 A il L L L 1 1 1 l L 1 1 1 I 1 11 1
0.8 1.0 1.2 14 1.6
P

FIGURE 5.7: The mean pressure upstream and downstream of the Mach 1.2 shock wave.
(z/Xo = 14.5), ==== (z/Ao = 25). The symbols are obtained by dividing the

downstream pressure profile by the jump across a laminar shock.
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FIGURE 5.8: The mean density upstream and downstream of the Mach 1.2 shock wave.

(/Ao = 14.5), ===- (z/Ao¢ = 25). The symbols are obtained by dividing the

downstream density profile by the jump across a laminar shock.
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FIGURE 5.9: The mean temperature upstream and downstream of the Mach 1.2 shock
(x/Xo = 14.5), =—-= (z/Ag = 25). The symbols are obtained by dividing

the downstream temperature profile by the jump across a laminar shock.

wave.
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FIGURE 5.10: Streamwise variation of the mean flow at the center streamline (y/Aq = 0).

All curves are normalized with their value at the inflow.
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the upstream profile. As seen in figure 5.6, the comparison is quite good, suggesting
that the laminar normal shock equations predict the jump in the mean velocity
profile quite accurately. The mean pressure, density and temperature profiles show
similar behavior. As shown in figures 5.7 through 5.9, dividing the downstream
profiles by the corresponding jump for a laminar shock shows good agreement with

the upstream profiles.

5.4 Turbulence kinetic energy

Interaction with the Mach 1.2 shock wave is observed to decrease the kinetic
energy of the turbulence in the shear flow. As shown in figure 5.11, the streamwise
component of kinetic energy u'? drops across the shock wave, v'? increases slightly,
while the spanwise component w'? remains nearly constant. The net result is a
slight drop in the total kinetic energy ¢? across the shock wave. This result appears
intriguing at first glance. Past studies of isotropic solenoidal turbulence interacting
with a shock wave (Ribner; 1954, Lee, Lele and Moin; 1992) show increase in
turbulence kinetic energy across the shock. In addition, rapid distortion theory

used in Chapter 2 predicted the amplification of kinetic energy in the shear flow to
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FIGURE 5.11: Streamwise variation of the turbulence Reynolds stresses at the center stream-
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be even higher than that of isotropic turbulence. As shown in Table 5.3, the DNS

results do not follow the trends predicted by linear analysis.

Amplification of Ribner: Isotropic RDT: Shear DNS: Shear
u? 1.37 1.60 0.78
v? 1.15 1.00 1.05
w'? 1.15 1.19 0.98

TABLE 5.3: Amplification of turbulence kinetic energy across the Mach 1.2 shock wave.
Linear analysis prediction for isotropic turbulence (Ribner 1954) and shear flow (RDT: 3, =
3) is compared to the DNS value.

The difference can however be reconciled by recalling that the analyses of Rib-
ner and Chapter 2 do not allow for the presence of upstream entropy fluctuations.
As noted from section 5.2, the upstream shear flow has an appreciable level of en-
tropy fluctuations (twice the intensity of the velocity fluctuations). The influence
of the upstream entropy fluctuations on the evolution of turbulence kinetic energy

across the shock wave would therefore be quite significant.

134



Chapter 5: DNS: Results Section 5.4: Turbulence kinetic energy

We recall that the linear analysis performed in Chapter 3 showed that upstream
entropy fluctuations with positive u'T" would suppress kinetic energy amplification
across the shock wave. More specifically, figure 3.14 showed that u'® decreases across
the shock wave if the intensity of the entropy fluctuations is comparable to that of

the velocity fluctuations. The transverse component »'? still increases across the

shock wave, although by smaller levels (figure 3.15).

These trends are in agreement with those observed in DNS of the shear flow.
Although the analysis performed in Chapter 3 considered isotropic turbulence up-
stream of the shock, it can be argued that the observed trends should extend to
the shear flow. Denoting the shock thickness by §, the turbulence is strained by the
shock wave on a time-scale §/U;. The turbulence is simultaneously strained by the
mean shear on a time-scale 1/5, where S = dU/dy. Using the variable ! to denote
the lengthscale of the turbulence, the turbulence turn-over time scale is approxi-
mately equal to I/q. Since, §/1 < 1, and Sl/q (Appendix C) is typically between 5
and 10, the effect of the mean shear is expected to be small as the turbulence passes
through the shock wave. As a result, as argued in section 3.5, bulk compression and
baroclinic torque are expected to be the primary factors that influence the evolution
of the vorticity fluctuations across the shock. The positive correlation between u’
and T upstream of the shock wave is therefore expected to suppress kinetic energy

amplification in the shear flow.

Morkovin’s hypothesis and experimental observations show strong evidence
that u' and 7" are negatively correlated in supersonic boundary layers with the cor-
relation coeflicient varying between -0.8 and -1. The analysis performed in Chapter
3 suggested that this negative correlation would result in strong kinetic energy am-
plification across a shock wave. To test this assertion, DNS of the Mach 1.5 shock
wave interacting with a shear flow was performed. In contrast to the Mach 1.2
simulation, the turbulence upstream of the shock wave had negative «/T" on all the
streamlines. This was made possible by the initial conditions used in the temporal
simulation to generate inflow turbulence. Details of this procedure are discussed in

section 4.8.

The evolution of turbulence kinetic energy across the Mach 1.5 shock wave
is plotted in figure 5.12. All components of kinetic energy are seen to undergo
noticeable amplification across the shock wave. Using the downstream value at

z/Ao = 19, the kinetic energy amplification across the Mach 1.5 shock wave is
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FIGURE 5.12: Variation of the turbulence kinetic energy across the Mach 1.5 shock wave. All

(W), === @'%), oo (W),

curves are normalized with their value at the inflow.

compared in Table 5.4 to linear analysis predictions. The amplification levels are
seen to be uniformly higher than that of isotropic turbulence. Also, the amplification
of the transverse components is higher than predicted by RDT, which is consistent
with the absence of entropy fluctuations in the analysis. However, the amplification
of the streamwise kinetic energy is lower than predicted by RDT, suggesting that
RDT tends to overpredict the streamwise kinetic energy amplification. A similar
conclusion regarding RDT was reached by Lee, Lele and Moin (1992) in their study

of the interaction of isotropic turbulence with a shock wave.

Amplification of Ribner RDT: Shear flow DNS: Shear flow
u'? 1.6 2.6 2.3
v? 1.38 1.25 1.9
w'? 1.38 1.59 2.0

TABLE 5.4: Amplification of turbulence kinetic energy across the Mach 1.5 shock wave.
Linear analysis prediction for isotropic turbulence (Ribner 1954) and shear flow (RDT: 8, =
3) is compared to the DNS value.
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FIGURE 5.13: Profiles of Reynolds shear stress on both sides of the shock wave. (u'v!
upstream), —=-- (u'v’ downstream), ------ (u'v'/q? upstream), —-— (u'v'/q? down-
stream). The upstream and downstream profiles are measured at z/A¢ = 14.5 and 25

respectively.

Note that the turbulence kinetic energy increases rapidly immediately behind
the Mach 1.5 shock wave, similar to the trend observed when the upstream turbu-
lence is isotropic. In contrast, this rapid rise in kinetic energy is not observed behind
the Mach 1.2 shock wave (figure 5.11). This difference between the two simulations
may be explained by the different signs of the upstream velocity-temperature corre-
lation. Linear analysis applied to the interaction of isotropic turbulence interacting
with a shock wave shows a similar trend. Figure 3.11 shows noticeable rise in ¢*
behind a Mach 1.5 shock wave if w'T' is negative upstream. On the other hand,
this downstream rise in energy is strongly suppressed if the velocity temperature

correlation is positive.

Section 5.5 Reynolds shear stress

The influence of the shock wave on the Reynolds shear stress, u'v’ is considered
in this section. Figures 5.13 and 5.14 show the evolution of u'v' and the non-
dimensional shear stress u'v' /¢? across the Mach 1.2 shock wave. Both quantities are
seen to undergo a decrease in magnitude across the shock. Using values measured
at /A = 14.5 and 25 respectively, the change in shear stress across the Mach 1.2
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FIGURE 5.14: Streamwise variation of the turbulence Reynolds shear stress for the Mach
1.2 shock (y/Ae = 0).
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Upstream Downstream
u'v! -0.61 -0.34
' /¢ -0.17 -0.12

TABLE 5.5: Variation of Reynolds shear stress across the Mach 1.2 shock wave at the center
streamline (y/A¢ = 0). u'v’ is normalized by the value of U;m¢¥rms at the inflow. The

upstream and downstream values are measured at /)¢ = 14.5 and 25 respectively.

shock wave is tabulated in Table 5.5.

We saw in Section 5.4 that turbulence kinetic energy decreased across the Mach
1.2 shock wave due to u'T" being positive upstream. However, the decrease in mag-
nitude of shear stress is not a result of positive velocity-temperature correlation.
Recall that RDT predicted similar decrease in shear stress magnitude across a nor-
mal shock. Also, as shown in figure 5.15, u/T" is observed to decrease in magnitude

across the Mach 1.5 shock wave although «'T" is negative upstream.

Instantaneous fields of u'v’ from the Mach 1.5 simulations were examined. The
fluctuations were computed with respect to the mean obtained by averaging over
the z— direction. The shear stress field upstream of the shock wave was seen to
essentially consist of regions of high negative values interspersed with regions of
low positive values. Upon passage through the shock wave, the negative regions
were observed to be suppressed in magnitude while the positive regions were seen
to amplify. The net result is a decrease in shear stress magnitude across the shock

wave.

Recall that the decrease in u'v' across a normal shock wave was attributed (us-
ing RDT) to amplification of the pressure-strain correlation in the equation for u'v'.
A more physically appealing argument is proposed below. Experifnents (e.g., Head
and Bandopadhyay, 1981) and computations (e.g., Moin and Kim; 1985, Rogers,
Moin and Reynolds; 1986) have shown that the vortical structures (away from the
wall) in shear flows such as the turbulent boundary layer, channel flow and homoge-
neous shear flow tend to align at approximately 45° with the direction of the mean
flow. That is, distributions of the angle 6 = tan™"(w, /w}) tend to peak at 45° with

the direction of the mean flow.

Linear analysis and DNS show that passage through a normal shock tends to

amplify the transverse components (w, and w}) of vorticity, while the streamwise
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component stays nearly constant. This implies that vortical structures immediately
behind the shock wave are closer to being vertical; i.e., § peaks at an angle greater
than 45°. This increase in the peak inclination angle would result in a decrease in
the magnitude of u'v’; if the vortical structures were vertical, then u’v’ would be

Z€Ero.

Section 5.6 Thermodynamic fluctuations

The evolution of the thermodynamic fluctuations across the shock wave is con-
sidered in this section. Figure 5.16 shows the variation of the pressure, density and
temperature fluctuations along the center streamline (y/A¢ = 0) of the Mach 1.2
shock wave. All three variables are seen to amplify, with the amplification of the
pressure fluctuations noticeably exceeding that of density and temperature imme-
diately behind the shock wave. The rms level of pressure fluctuations immediately
behind the shock is seen to be about 15 times its upstream value. As observed in
the interaction of isotropic turbulence with a shock, the pressure fluctuations decay
rapidly behind the shock to attain a far-field (z/A¢ = 25) level that is 2.16 times

its value at the inflow.

This high level of amplification of pressure fluctuations is explained below. As
shown in figure 5.4, prms/P upstream of the shock wave is noticeably smaller than
prms/P, Tems/T and q/U. As a result, the intensity of the pressure field behind the
shock wave is determined by the upstream levels of pyms/p and ¢/U; i.e., prms/P1
behind the shock wave scales with the upstream value of pyms/p7 (figure 5.17). This

implies that the amplification of pressure fluctuations,

VPaown _ VPhown /BT 3/ Pup/PT

VP Plup/Pi \/Pup/PT

Profiles of prms/YP, prms/p and Tyms/ T in the near-field (z/Ao = 15.7) and far-
field (z/Ag = 25) behind the Mach 1.2 shock wave are plotted in figures 5.18 and 5.19

respectively. The intensity of pressure fluctuations is seen to be of the same order as

> 1L (5.2)

that of density and temperature immediately behind the shock wave. However, due
to their rapid decay behind the shock wave, the far-field intensity of the pressure
fluctuations is seen to be noticeably smaller than density and temperature. As

shown in figure 5.20, a similar trend is observed across the Mach 1.5 shock wave.
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Section 5.6: Thermodynamic fluctuations
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FIGURE 5.16: Streamwise variation of the thermodynamic fluctuations at the center stream-
line (y/Ao = 0) of the Mach 1.2 shock. (Prms)y === (Prms)s ~=*=="- (Trms)- All
variables are normalized by their values at the inflow.
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FIGURE 5.17: Streamwise variation of the thermodynamic fluctuations at the center stream-

line (y/Ao = 0) of the Mach 1.2 shock.
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FIGURE 5.19: Profiles of the intensity of the thermodynamic field in the far-field behind the
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FIGURE 5.20: The intensity of the thermodynamic field across the Mach 1.5 shock wave.
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Passage through the shock wave is seen to affect the velocity-temperature cor-
relation. Plots of the streamwise evolution across the Mach 1.2 shock wave (figures
5.21 and 5.22) show a drop in the magnitude of the correlation between u' and
T'. Interestingly, the correlation coefficient between v’ and T" is seen to increase
in magnitude. Using values measured at z/A¢ = 14.5,15.7 and 25 respectively, the
values of the correlation coefficients on both sides of the shock wave are tabulated
in Table 5.6.

Upstream Near-field Far-field
WT [trmsTrms 0.70 0.38 0.34
V'T" /Vrms Trms —0.64 -0.76 -0.74
2T/ prmsToms —0.996 -0.96 -0.996

TABLE 5.6:

fluctuations across the Mach 1.2 shock wave. The upstream and downstream values are

Variation of the correlation between the velocity, density and temperature

measured at z/Ag = 14.5,15.7 and 25 respectively.
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FIGURE 5.21: Streamwise variation of the correlation between the temperature, veloc-

ity and density fluctuations at the center streamline (y/A¢ = 0) of the Mach 1.2 shock.
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FIGURE 5.23: Variation of the Taylor microscales along the center streamline of the Mach
1.2 shock (y/Xo = 0). (A1/X0), ==== (A2/Aq), =+ (A3/ o).

Also tabulated, is the correlation coefficient between density and temperature
fluctuations. The correlation coefficient is nearly -1 upstream, and drops slightly
across the shock due to the appreciable level of pressure fluctuations immediately
behind the shock wave. As the pressure field decays behind the shock, the corre-
lation coefficient increase in magnitude to a far-field value of nearly -1, indicating

the dominance of entropy fluctuations in the far-field.
Section 5.7 Turbulence lengthscale

The lengthscales of the turbulent fluctuations are seen to decrease across the
shock wave, irrespective of whether the upstream velocity-temperature correlation

1s positive or negative. Using the Taylor microscale,

12
2 U o

as a representative lengthscale, the streamwise evolution of A\, across the Mach
1.2 and Mach 1.5 shock waves is plotted in figures 5.23 and 5.24 respectively. As
observed when the upstream turbulence is isotropic, the microscales in all three

directions decrease across the shock, with the shock-normal microscale decreasing
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the most. Interestingly, all three microscales behind the Mach 1.5 shock wave are

seen to be equal.

This behavior is different from that observed by experiments on the interaction
of a turbulent boundary layer with a shock wave, where an increase in turbulence
lengthscale is observed across the shock (Smits and Muck, 1987). The difference
can however, be reconciled by noting that a turbulent boundary layer separates
upon interacting with a shock wave. The separation would result in an increase
in lengthscale of the boundary layer turbulence. Similar increase in lengthscale
is observed in incompressible boundary layers upon separation. However, when
unbounded turbulent flows interact with a shock, in the absence of separation, the
bulk compression across the shock wave would result in a decrease in turbulence

lengthscale.
5.8 Summary

Results obtained from direct numerical simulation of the interaction of the
turbulent shear flow with a normal shock wave were presented in this chapter.

Two cases were considered: Mach 1.2 and Mach 1.5 respectively. The sign of the
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correlation between u' and T' upstream of the Mach 1.2 shock wave was positive,
while that upstream of the Mach 1.5 shock wave was negative. The influence of
the shock wave on the mean flow, turbulence kinetic energy, Reynolds shear stress,

thermodynamic fluctuations and lengthscales was discussed.

The mean flow was seen to noticeably change across the shock wave, with the
change being predicted quite accurately by the Rankine Hugoniot equations for a
steady laminar shock. The evolution of the turbulence kinetic energy was observed
to be different between the two simulations. While the kinetic energy of the tur-
bulence decreased across the Mach 1.2 shock wave, it amplified considerably across
the Mach 1.5 shock. These trends were attributed to the different nature of the
upstream entropy fluctuations in the two computations. The observed evolution of
turbulence kinetic energy followed the trend predicted by linear analysis, where pos-
itive upstream u'T"' was seen to suppress the kinetic energy while negative upstream

correlation was seen to considerably enhance it.

The Reynolds shear stress u'v’ was observed to decrease in magnitude across the
shock wave irrespective of the sign of the upstream velocity-temperature correlation.
The observed decrease followed the trend predicted by rapid distortion theory. An
argument based on the inclination of vortical structures was proposed to explain
this decrease in shear stress magnitude across a normal shock wave. Instantaneous
fields of shear stress showed that the upstream turbulence was essentially composed
of regions of high negative shear stress interspersed with regions of low positive
shear stress. Upon passage through the shock, the negative regions were suppressed
in magnitude while the positive regions amplified, leading to an overall decrease in

shear stress magnitude across the shock wave.

The fluctuations in pressure, density and temperature were observed to amplify
across the shock wave, with the amplification of pressure fluctuations far exceeding
those of density and temperature. The intensity of pressure fluctuations immedi-
ately behind the shock wave was found to be significant. However, due to rapid
decay behind the shock wave, the intensity of pressure fluctuations in the far-field
was significantly smaller than that of density and temperature; i.e., the far-field

was dominated by entropy fluctuations.
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Chapter Six

Conclusions

We have used direct numerical simulation and linear analysis to study the in-
teraction of a shock wave with a turbulent shear flow. Our study aimed towards a
fundamental understanding of shock/turbulence interaction. Of particular interest
were factors likely to be important in the interaction of a shock wave with a turbu-
lent boundary layer. The simulations examined the interaction of a normal shock
with a turbulent shear flow whose mean velocity gradient and mean Mach number
were uniform across mean streamlines. The analyses complement the simulation
in identifying and explaining important aspects of the interaction. The salient
conclusions drawn from this study are summarized below. Sections 6.1 through
6.3 discuss the influence of the anisotropy of the upstream turbulence, upstream
acoustic waves and upstream entropy fluctuations. The applicability of Morkovin’s
hypothesis across a shock is discussed in Section 6.4. Section 6.5 describes the va-
lidity of linear analysis for shock/turbulence interaction. Finally, conclusions drawn

from the simulations are summarized in Section 6.6.
6.1 Anisotropy of the upstream turbulent fluctuations

Rapid distortion theory shows the strong dependence of shock/turbulence in-
teraction on the anisotropy of the upstream turbulence. The evolution of turbulent
fluctuations in a shear flow across a shock is considerably different from that of
isotropic turbulence. The anisotropy of the shear flow results in larger amplifica-
tion of turbulent kinetic energy. If the shock-normal direction is denoted by z, the
evolution of kinetic energy is strongly influenced by the upstream energy spectrum,
Ey11(k1) and the upstream value of F/ ¢°>. Mean shear increases the streamwise
lengthscale of the turbulent fluctuations thereby moving E; to lower wavenumbers
upstream of the shock wave. Also, turbulent fluctuations in a shear flow have a
larger fraction of their energy in the streamwise direction; IL—’?/ ¢? in a shear flow is
about 0.55 as compared to 0.33 in isotropic turbulence. The RDT equations show
that these two factors combine to yield higher amplification of kinetic energy across

the shock wave.

Reynolds stress modeling in the RDT limit (i.e. only rapid terms are re-

tained) shows that popular models ( e.g. Launder, Reece, Rodi, 1975; Speziale,

149



Chapter 6: Conclusions

Sarkar, Gatski, 1991) for the pressure-strain correlation are unable to reproduce
these trends. For example, the Launder, Reece, Rodi model considerably under-
predicts the amplification of kinetic energy. The lack of dependence on upstream

spectral information is likely responsible for this deficiency.

The Reynolds shear stress u'v' decreases in magnitude across a normal shock
wave. Analysis reveals that amplification of the pressure-strain correlation is re-
sponsible for this trend. An explanation based upon the inclination angle of the
vortical structures in the shear flow was provided to explain this decrease in shear
stress magnitude. Instantaneous shear stress fields from the computations shows
that the upstream turbulence is essentially composed of regions of high negative
shear stress interspersed with regions of low positive shear stress. Upon passage
through the shock, the negative regions are suppressed in magnitude while the
positive regions amplify, leading to an overall decrease in shear stress magnitude
across the shock wave. Reynolds stress modeling in the RDT limit shows that the
Launder-Reece-Rodi model is unable to predict this drop in magnitude; it predicts

an increase instead.

6.2 The influence of upstream acoustic waves

Supersonic flow in wind-tunnels are likely to have high levels of acoustic fluctu-
ations. The influence of these acoustic waves on shock / turbulence interaction was
therefore examined using linear analysis. Acoustic fluctuations differ significantly
from vortical fluctuations in their evolution across a shock. The kinetic energy
of acoustic fluctuations decreases slightly across shocks of moderate strength (up-
stream Mach number between 1.25 and 1.8). Presence of acoustic waves in the
upstream turbulent flow would therefore result in lower levels of kinetic energy am-
plification over this range of shock strength. The amplification of kinetic energy
of acoustic fluctuations significantly exceeds that of vortical fluctuations for mean
Mach numbers exceeding 3. In fact, the kinetic energy amplification of acoustic fluc-
tuations is asymptotically unbounded; it varies as MZ. These trends were explained

using linear analysis.

Significant increase in sound level is observed across the shock wave. The sound
level increases by 5 to 20 decibels across shocks ranging from Mach 1.5 to Mach 5.
Acoustic fluctuations generate vortical fluctuations - ‘turbulence’ behind the shock
wave. The contribution of these vortical fluctuations to the far-field kinetic energy

increases as the shock strength increases.
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6.3 The role of upstream entropy fluctuations

Upstream entropic temperature (or density) fluctuations significantly influence
the evolution of turbulent fluctuations across the shock wave. Both, the magnitude
of temperature fluctuations and their correlation with the velocity field influence
shock/turbulence interaction. Temperature fluctuations that are negatively corre-
lated with the streamwise (shock-normal) velocity significantly increase turbulence
intensity, vorticity and sound levels behind the shock wave. Positively correlated
fluctuations have a suppressing effect. A simple argument based on the effects of
bulk compression and baroclinic torque explains these trends. This explanation was
further extended to derive a simple formula that predicts the amount of vorticity

produced in the interaction of a shock wave with entropic temperature fluctuations.

Appreciable levels of entropy fluctuations are known to be present in turbu-
lent flows with mean temperature variation (e.g. boundary layers, jets and wakes)
and reacting flows. For example, measurements in flat plate boundary layers show
that temperature and density fluctuations arise largely from entropy fluctuations.
The intensity of these fluctuations is measured to be around 5% (in non-hypersonic
boundary layers), which is of the same magnitude as the intensity of velocity fluc-
tuations. In addition, the velocity and temperature fluctuations are strongly corre-
lated; measurements and Morkovin’s hypothesis show that the correlation coefficient
between u’ and T" is nearly -1. Our results strongly suggest that upstream temper-
ature and density fluctuations have a large influence on shock wave/boundary layer

interaction.
6.4 Morkovin’s hypothesis across a shock wave

The validity of Morkovin’s hypothesis:

prms _ Tome _ (1) p2 rme (6.1)
p T U

across a shock wave is questionable. Linear analysis and simulation show that the

first part of the hypothesis is a reasonable approximation in the far-field of shock

waves of moderate strength (M; < 2.5). The second part of the hypothesis, which

requires that fluctuations in stagnation temperature be small does not hold across

the shock. Non-negligible oscillation of the shock front is shown to be responsible.
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6.5 The validity of linear analysis

Linear analysis seems to be a very useful tool in predicting the interaction of a
shock wave with an unsteady field of disturbances. Computations of the interaction
of a Mach 1.5 shock wave with plane acoustic and vorticity-entropy waves were
compared to analysis. Very good agreement was seen at all incidence angles away
from the critical angle. This deviation around the critical angles is explained by
noting that it corresponds to transonic flow in suitably transformed coordinates.
The primary limitation of linear analysis appears to be in the transonic regime.
Strong insensitivity to disturbance amplitude is noted (in the non-transonic regime).
Of course, an additional restriction is that the analysis is restricted to very simple

mean flow; as a result, application to more complex flows is qualitative.

The one-dimensional compression of homogeneous turbulence has restricted rel-
evance to shock/turbulence interaction. It is useful only in predicting the evolution
of an incompressible velocity field across a shock of moderate strength. The inter-
action of acoustic or entropic fluctuations with a shock is not properly represented.
Primary reasons for this deviation are the absence of shock distortion effects, lack
of enforcement of the Rankine Hugoniot equations, completely different behavior of

pressure fluctuations and absence of baroclinic effects in the linear limit.
6.6 Direct numerical simulation

The method of Lee, Lele and Moin (1992) was modified to use an instantaneous
realization of a developed temporal simulation to generate turbulent fluctuations at
the inflow boundary. This approach is considerably better than the use of random

numbers with prescribed energy spectrum.

The interaction of a low Reynolds number (R ~ 30) turbulent shear flow with
Mach 1.2 and Mach 1.5 shock waves was computed. The simulations support the
predictions made by linear analysis. The evolution of turbulence kinetic energy
across the shock wave is seen to depend on the upstream anisotropy and velocity-
temperature correlation. Large levels of amplification (2 to 2.5) is seen when w'T"
is negative upstream of the shock. Negligible amplification is observed when the

upstream correlation is positive.

The shear stress (u'v') decreases in magnitude across the shock. The Taylor

microscales noticeably decrease across the shock wave. The fluctuations in pressure,
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density and temperature amplify across the shock wave, with the amplification of
pressure fluctuations far exceeding those of density and temperature. The intensity
of pressure fluctuations immediately behind the shock wave is significant. However,
due to rapid decay behind the shock wave, the intensity of pressure fluctuations in
the far-field is significantly smaller than that of density and temperature; i.¢., the

far-field thermodynamic field is dominated by entropy fluctuations.
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Appendix A
Supplement to Chapter Three

This appendix supplements Chapter 3 where linear analysis of a shock wave
interacting with a vorticity-entropy wave was performed. Recall that Chapter 3
developed the analysis to a point where the solution was known except for some un-
determined coefficients. The procedure for obtaining those coefficients is discussed

here.

The form of the solution is reproduced from Chapter 3 (Equations 3.20 and
3.21):

Y2 _p eiizeik(zy—mvlt) + @ ek(mratiy—mUit)
Uy
vy —H (k2 yik(ly—mUr 1) + T eik(mra+ly—mUy 1)
U,
! ~
%Z_ - K ezkzezk(ly—mUlt) (Al)
Elg_ — L\: eiZzeik(ly—mUlt) + Q eik(mrz+1y—mU1t)
Py
Z_z' Y IK eﬁc'zeik(zy—mu1 ) Q cik(mredly—mU, )
T, gl
£ ik (ly—mU, 1) Lo ik (ly—mUnt)
U_ = L e , Ey = —'—L [A .
1 m

Recall that the wavenumber k may be real or complex depending on ¢; being less
or greater than .. The following expression for k is reproduced from Equations
3.17,3.18 and 3.19:

If0<¢1 <¢)ca

_ U M, m?2 UZ2( 1

If ¥, < iy <7r/2,~:l:r+i1:,~where,

o] &

kr U] M22

% U 1- M2

(A.3a)
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];; U] M2 U22 ( 1 1) mz

T =T wY '

=l (A.3b)

The coefficients F, G, H, I, K, Q and L are obtained by substituting the solution
into the governing equations behind the shock wave and the boundary conditions at
the mean position of the shock front. Since the argument of the solution has been
matched to that of the incident disturbance this yields a set of equations relating
the coefficients. This system of equations is then solved thereby completing the

solution.

The form of the incident disturbance, the governing equations behind the shock
wave and the boundary conditions at the shock front are given by Equations 3.2 ,

3.3 and 3.4 respectively. Substitution into the x momentum equation yields,

~ 1 ~
Ui(—FikmU,) + UUy Fik = —ﬁ—PzKik (A.4)
2
which may be rewritten as 5
a? £
F=—-2_F K A.
’YUIZ m— £ (4)

For reasons of convenience, a complex variable a is defined such that the above

equation becomes:

F=aK (A.6)
The momentum equation in the y direction yields,
Uy(—HikmU,) + UpUy Hik = —%PzKikl (A.7)
2
Rearranging, we get
a3 l
H=2 —_K (A.8)
YU m — 7:5;

which is expressed in terms of the complex variable 3 as,
H=8K (A.9)

The acoustic component of the velocity field has already been constrained to satisfy
the acoustic equations. As a result, the continuity equation behind the shock wave

reduces to the vortical component of the velocity field being solenoidal. This yields,
U1Gikmr + U1 Iikl = 0 (A.10)
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which implies,

I= —#G (A.11)

Prior to substitution, the boundary conditions at the shock wave are written in the

following compact form:

Gt et T s
% =0 “'IU‘I & C, ;_1; (A.12b)
1%% _D, “'lvfl & . p, % (A4.12¢)
%=%+mg (A.12d)

The variables By, B,,C1,Cy, Dy, Dy and E; are readily obtained by comparison to

Equations 3.4. Substitution of the solution into the above equations yields:

F+G-L=B(A,—L)- B, A, (A.13q)
g +Q=Ci(lA, — L) - C, A, (A.13b)

K = Dy(IA, — L) — D1 A, (A.13¢c)
H+I=-mA,- EI%L (A.13d)

Equations A.6,A4.9,A.11 and A.13 may solved to obtain the coefficients. Rather
than solve them directly, we normalize them by the incident vorticity wave and
then solve the resulting equations. This involves dividing through the equations by
A, and using a tilde to denote the normalized coefficients; i.e., L= L/A,. This

yields the following set of equations.

F=0aK (A.14a)
H = 8K (A.14b)
I= —’—”lié (A.14c)
FrG-I=B(-D)- B (A.14d)
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K = ~ A,
7+Q_CI(I_L)—CZA_,, (A.14¢)
. . A,
K:Dl(l—L)—DgA— (A.14f)
H + IT=—-m-— E, EE (A.149)

The ratio A./A, is the ratio of Fourier coefficients of the entropy and vorticity
waves. It may be expressed as A,e'®r where A, and ¢, denote the amplitude ratio

and phase difference between the entropy and vorticity waves.

Equations A.14 are solved first for L. Equation A.14¢g implies,

I ~ "
Ey—L=-m-H-1I (A.15)
m
The variables H and I need to be expressed in terms of L. Now,
~ ~ A,
K=D{l-L)- Dg—A— (A.16)
Substituting for K in Equation A.14b, we get,
H= ﬂ(Dll ~ ngi) ~ DL (A.17)
The variable T is expressed in terms of L as follows. Equation A.14d yields,
é:i(l—Bl)—ﬁJrBlz-Bz‘—:i (A.18)
But,
F=aK=aD(I-L)- aDg% (A.19)
This implies,
~ ~ Ae Ae
G=L(1—Bl+aD1)—a(D1l—Dzz—)+Bll—BZX- (A20)
v v

The coefficient I may now be expressed in terms of L as,

I= _2(1 — By +aDy)L - ? —a(Dyl - Dz%) + Byl - 32% (A.21)
v v

Substituting for H and T into equation A.15 and rearranging yields the following

expression for L:

—m — B(D1l — D2 4*) + T [~a(D1l - Dy42) + Byl — By 4]
Ei1t — BDy — BL(1 — By + aD4)

Once L is known, the other coefficients are easily obtained using equations A.14.

L=

(A.22)

This completes the solution.
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The Interaction of an Isotropic Field
of Acoustic Waves with a Shock Wave

B.1 Introduction

This appendix uses linear analysis to study the interaction of a shock wave with
an isotropic field of acoustic waves. The analysis aims at characterizing the effect
of compressibility in the interaction of a compressible turbulent flow with a shock
wave. Within the linear framework, a field of acoustic waves would correspond
to the dilatational component of a compressible turbulent flow. As discussed in
Chapter 3, there is evidence to suggest that compressible effects are negligible in
non-hypersonic turbulent boundary layers. However shear flows such as the mixing

layer and supersonic jet are known to be significantly affected by compressibility.

Increased level of compressibility in these flows (parametrized by the ratio of
kinetic energy in solenoidal and dilatational components) suggests that effects due
to the dilatational component would be important in their interaction with a shock
wave. Past analytical work related to shock/turbulence interaction (Chapter 1) has
considered the interaction of a shock wave with a plane acoustic wave. To the best
of our knowledge, the interaction of a field of acoustic waves with a shock wave
has not been analyzed before. Qur analysis is based upon Moore’s (1954) study of
the interaction of a shock with a plane acoustic wave. Moore’s analysis is extended
to study the evolution of an isotropic field of acoustic waves across a shock. The
results are then applied to predict the response of a compressible isotropic turbulent

flow to a shock.

This appendix is organized as follows. Section B.2 formulates the problem
of a plane acoustic wave interacting with a shock. The results are evaluated by
comparison to DNS. The analysis is then extended to examine the evolution of an
isotropic field of acoustic waves across a shock. The statistics of turbulent kinetic
energy and thermodynamic fluctuations behind the shock wave are described in
Section B.3. A brief discussion including description of shock wave/compressible

turbulence interaction is presented in Section B.4. Summary of the study in Section
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FIGURE B.1: Schematic of the interaction of a shock wave with an acoustic wave that is

incident from upstream.

B.5 is followed by the concluding section (B.6) where some of the details of Moore’s

analysis are outlined.

Parallel may be drawn between Chapter 3 and the following analysis. The
notation used below might differ from that in Chapter 3; we have retained Moore’s
notation and method of analysis for consistency. The work described below is
essentially a reproduction of the published article by Mahesh, Lee, Lele and Moin
(1995).

B.2 Formulation of the problem

B.2.1 The interaction of an acoustic wave with a shock wave

Figure B.1 shows a schematic of the problem. A normal shock propagates at
speed V into fluid that is at rest in the mean. The mean velocity behind the shock
1s denoted by U. The subscripts 1 and 2 denote the fluid in front and behind the
shock respectively. The fluid at rest is assumed to be perturbed by the weak field
of a plane acoustic wave that is incident at angle v; to the shock. The flow field
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associated with the acoustic wave is given by:

l t
fut :Alf(mxl y+a ) (B.1la)
%
v Azf("“lcl ly+“‘t> (B.1b)
vV
PL_ 45 mzy — ly + a1t B1
Pl - Y (B.le)
P mz; — ly + a1t
R -—-A4f( N ) (B.1d)

Here, P;, R; and a; are the mean pressure, density and sound speed in the fluid
ahead of the shock while u; and v; are the disturbance velocities in the z; and y
directions respectively. The pressure and density fluctuations associated with the
incident acoustic wave are denoted by p; and p;. The variables [ and m are related
to the direction of propagation by | = sin; and m = cos; and Ay represents
the lengthscale of the disturbance. Note that the coordinate system is fixed in the
fluid that is at rest, yilelding z; = Vit at the mean position of the shock wave.
The amplitudes of velocity, pressure and density are related through the governing
equations for an acoustic wave; i.e.,

[A; = —mAy; Az =vAy; A= ~7_MA3 (B.2)

M = V/a; is the mean Mach number of the shock wave and + is the ratio of
specific heats. Incidence of the acoustic wave causes the shock wave to deform with
a profile that matches the profile of the incident wave. The linearized Rankine-
Hugoniot equations are used to describe the jump of the disturbance across the
disturbed shock. This yields boundary conditions for the flow behind the shock
which is described by the Euler equations linearized about the uniform mean flow.
The linearized Euler equations are solved in consonance with the boundary condi-

tions to calculate the displacement of the shock wave and the flow field downstream
of the shock.

The flow behind the shock wave has two distinct regimes depending upon the
angle of incidence of the acoustic wave. The two regimes differ in the nature of
the pressure field (and hence, its associated velocity, temperature and density field)

behind the shock wave. Over a range of incident angles 0 < 1 < 91 or Yoy <
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Y1 < m, the pressure field behind the shock is a freely propagating plane acoustic
wave. However, if ¥¢ < ¥1 < tbcu, the pressure field behind the shock corresponds
to an evanescent wave and decays exponentially. Over both these regimes, the
vorticity and entropy waves propagate without decaying. 1. and 1., are roots of

the following equation (Moore, 1954):

an 2 1 U 2_ t a1 ’ B3
(%) - (1-7) = (cotwer Gpesen) (5:3)

Note that 1 and ., depend only on the mean Mach number. The displacement
of the shock front has a certain speed of propagation along the shock front due
to the unsteady nature of the incident field. Analogous to the classical flexural
wall problem in acoustics, (Pierce, 1981) the nature of the downstream pressure
field is determined by how the speed of the disturbance compares with the mean
speed of sound and velocity downstream of the shock. Moore (1954) illustrates the
two regimes geometrically. Ribner (1953) provides an equivalent explanation by
noting that the unsteady interaction of an oblique wave with a normal shock can be
transformed into the steady interaction of an oblique wave with an oblique shock.
In the transformed coordinates, depending upon the incident angle of the wave,
the flow behind the oblique shock is either supersonic or subsonic (yielding either a
wave equation or Poisson equation for the pressure), which corresponds to the two
regimes mentioned above. Alternatively, arguments similar to those in Chapter 3

could be used to demonstrate the existence of two regimes.

The method for solution of the downstream flow field is given by Moore. In the
interests of clarity, we reproduce his results at the end of the Appendix in Section
B.6. Apart from the existence of two different regimes, note that the velocity field
is a linear superposition of acoustic and vortical components. Similarly, the density
and temperature fields are superpositions of acoustic and entropic components. The

pressure field is associated solely with the acoustic component.

B.2.2 Comparison of linear analysis to numerical solution

We compare results of the linear analysis to numerical computations of the
interaction of a normal shock wave with a plane acoustic wave that is incident from
upstream. The computation solves the two-dimensional compressible Navier-Stokes
equations in a frame of reference that moves at the mean speed of the shock wave.

The sixth order Pade scheme (Lele, 1992b) is used to compute spatial derivatives
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and the third order Runge Kutta (Wray, 1986) is used to integrate in time. No
shock-capturing or shock-fitting is used to treat the shock wave; its structure is

resolved by a non-uniform mesh.

This comparison is intended to complement that by Zang et al (1984) who com-
pared the predictions of McKenzie and Westphal’s (1968) linear analysis to their
numerical solution of the two-dimensional Euler equations using a shock-fitting
scheme. Zang et al examined the effect of incident angle, shock-strength and the
amplitude of the incident disturbance in the interaction of acoustic and vorticity
waves with a shock wave. Results were presented only in the freely propagating
regime. The dependence on incident angle was examined in the interaction of dis-
turbances of amplitude 0.1% and 10% with a shock wave of Mach number 8. Good
agreement was seen away from the critical angle; divergence from the linear anal-
ysis prediction was seen within about 20° of the critical angle. The linear analysis
predictions were quite robust in terms of dependence on shock strength and distur-
bance amplitude. For an incident angle of 30°, the linear predictions were valid for
disturbance amplitudes as high as 25% for acoustic waves and 100% for vorticity

waves and shock waves whose Mach number was close to unity.

We present results of the interaction of a plane acoustic wave (p;/P1 = 2.5%)
interacting with a shock wave of Mach number 1.5. The Mach number of 1.5 was
chosen to be representative of experiments on the shock/turbulence interaction. In
the context of Zang et al’s results, we only present the dependence on the inci-
dent angle. Results are presented in both freely propagating and decaying regimes.
Figure B.2 compares the computed values of rms dilatation and vorticity with pre-
dictions of the linear analysis. Note that 1, and 1., have values of 97.16° and
154.45° respectively for M = 1.5. Excellent agreement is seen except for a region
within 25 degrees of the critical angles. As noted by Zang et al (for the shock wave
of Mach number 8), a decaying pressure field is observed downstream of the shock

wave before the critical angle is reached.

A possible reason for deviation of the computed result from the linear analysis
around the critical angle is as follows. Within linear analysis, the unsteady inter-
action of a plane disturbance with a normal shock wave may be transformed into
the steady interaction of the disturbance with an oblique shock wave. This trans-
formation is an integral part of Ribner’s (1953) and Chang’s (1957) analysis of the

interaction of a shock with a vorticity and entropy wave respectively. While Moore
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FIGURE B.2: Comparison of the predictions of the linear analysis to computed results. The
lines are values obtained from analysis while the symbols represent computed values. All
(92/91), ——=- ((.4)2/91). 92 and w9 denote the

rms dilatation and vorticity behind the shock wave respectively.

quantities are normalized by p;/P;.

does not employ this transformation, it exists and involves defining coordinates z'

and y' such that
a; + th

[

s.e., the flow is observed from a frame of reference that moves at the mean shock

f=z-Vt; ¢y =y-

speed in the z direction and at speed (a3 + mV)/! in the y direction. In these
transformed coordinates, the governing equations behind the shock wave are the
steady Euler equations that are linearized about uniform mean flow at an equivalent

Mach number M, that is given by the relation:

a2 = PV U + (a1 + mV)?

e 272
asl

This equivalent Mach number depends upon the Mach number of the normal shock
wave and the incident angle of the disturbance and equals unity at the critical angle.
As a result, incident angles close to the critical angle correspond to steady transonic
flow downstream of the shock wave in the transformed coordinates. It is well known

that the linear approximation is inconsistent in the transonic regime. We believe
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FIGURE B.3: Computed values of the vorticity behind the shock wave as a function of the
amplitude of the incident disturbance. The mean Mach number is 1.5. o (¥ = 100°),

« (1 = 60°).

that use of the transonic small disturbance equations are necessary to accurately

represent the interaction around the critical angle.

Further indication of this is provided in Figure B.3, where the dependence of
the interaction upon the amplitude of the incident disturbance is examined. The
interaction away from the critical angle (¢; = 60°) is compared to that close to
the critical angle (33 = 100°). The rms intensity (prms/P) of the incident pressure
fluctuation is varied from 0.14% to 14% in both cases. The vorticity (normalized by
the incident dilatation) behind the shock wave is plotted against the amplitude of
the incident disturbance in Figure B.3. The variation with the incident amplitude
is negligible away from the critical angle. However, significant dependence upon
the incident amplitude is seen close to the critical angle. This non-linear behavior
around the critical angle is in accordance with the expectation that the transonic

small disturbance equations are needed to describe the interaction in that range.

B.2.3 The interaction of a field of acoustic waves with a shock
wave

Moore’s analysis is now extended to describe the interaction of an isotropic
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field of acoustic waves with the shock wave. The problem is convenient to analyze
in cylindrical coordinates. Figure B.4 shows a schematic of the problem in a frame
of reference that moves at the speed of the undisturbed shock. The y — z plane
corresponds to the shock wave, while the acoustic wave lies in the z; — r plane
that makes an angle ¢ with the y axis. Irrotationality precludes any component of
velocity outside this plane. In the z; — r plane, the acoustic wave makes an angle
11 with the z; axis. The z; — r plane is equivalent to the z; — y plane used in

Moore’s analysis. It is seen from Figure B.4 that

v w

Up =

ug =0. (B.4)

cos¢ sing’

Moore’s results are used to obtain the following relations describing the amplitude
of the fluctuating field behind the shock for a plane incident wave. Note that we
transform to a coordinate system that moves at the mean speed of the shock i.e.,

our streamwise coordinate becomes 13 = —[z, — (V — U)t].

FOI‘OSi/)] <'¢‘clor¢cu<¢l SW,

Bl _ za B o
P22 - P12 ( . a)
Ia |2 F2 G2 2FG 1 a’2 12 |ﬁ1|2 B.5b
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|tra]” r2| _ |24 2 19T 1 a m2 p1/” B
+ I+ s\ LV I-7 P (B.5c¢)
~ 2
52| K ~9 ’Q 1a n 216
= — 2 — B.5d
R22 Y e+ Y AV i1-r P12 (B.5d)

The constants K , F and H are associated with the acoustic component of the
flow field. Similarly, G and T are associated with the vortical component and @

corresponds to the entropic component.

If Yo < 1 < teu, the amplitudes behind the shock are given by:

. =y | 2 | B[
[iia|* Z1R
= T+ B+ B o (B.6b)
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FIGURE B.4: Coordinate system used in analysis of the interaction of a shock wave with an

isotropic field of acoustic waves that are incident from upstream.

where,

Ty =Gy +Ghy  To=etmin [1:4(21) + f(zz)]

T3 = 2e~212/M1 [(ﬁ(l)é(l) + F(né(g)) cos b — (f(z)é(l) - ﬁ(])é(z)) sin 5] ;

cnz 1
0= — .
A] 1—7r
The amplitude of u,2/V may be obtained from the expression for uy/V by
replacing f(l),é(l),ﬁ(z) and 6(2) by I?(l),f(l),fl(z) and f(z) respectively. The
amplitude of p;/R; may be obtained from the expression for us/V by replacing
Fuy, Gy, Fz) and G(g) by K(1)/7,Q1), K(2)/7 and Q(z) respectively.

Analogous to the propagating regime, the constants K (a)s ﬁ(a) and H (o) are as-
sociated with the acoustic component of the flow field. é(a) and f(a) are assoclated

with the vortical component and é(a) corresponds to the entropic component.
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Note that the solution downstream of the shock wave requires the spectrum
of pressure fluctuations ahead of the shock. We assume the incident acoustic field
to be isotropic. This combined with the condition of irrotationality requires the

upstream spectrum of the velocity fluctuations to be of the form:

Eij(K) = g 7

where F;;(k) is the energy spectrum tensor and E(k) is the three-dimensional en-
ergy spectrum. Using the acoustic relation, A3 = yMA;/cos;, and the above

expression for the energy spectrum tensor, we get,

i _ (21" 2 -

Substituting for |p; |2(k) /P;? and integrating over wavenumber space at every
streamwise location (72), we get the streamwise evolution of statistics downstream
of the shock wave. This integration is done in polar coordinates in the wave number

space:
ki = kcostyr, ko =ksiny;cosd, ks =ksiny;sing, d3k = k%sine; dyp; dpdk

where, k = |k| varies from 0 to oo, 3; from 0 to 7 and ¢ varies from 0 to 27. Since
the coefficients in the above equations are independent of ¢, the integration over ¢

can be done analytically for isotropic initial spectra. For example,

2 ~ 2 ~ 12
v3(n2) _ /coquS |r2(n2, &, 1) d3k=7r// Iu‘;22| k2 sin o, duyy dk

V2 V2

The integration over k and ; is performed numerically at every streamwise
location. Note that the results depend upon the three dimensional energy spectrum,
E(k). We assume the following form for E(k):

E(k) (k)" 2
77 "\

This form of the spectrum was used by Lee et al. (1993,1994b) in their analysis
of the interaction of isotropic vortical turbulence with a shock wave. There is no data

that suggests the chosen spectral dependency for an isotropic field of sound waves.
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However, only the inhomogeneous part of the flow-field behind the shock wave is
dependent upon the energy spectrum of the incident waves; the far-field (n; — o0)
values are independent of the shape of the spectrum. We choose the same spectrum
as Lee et al to allow direct comparison to their results of the inhomogeneous near-
field behind the shock wave. Since the inhomogeneous component of the flow-field
exponentially decays behind the shock wave, it is the far-field that is of importance

and will be examined in detail.

B.3 Results

B.3.1 Spatial variation of kinetic energy

The evolution of the kinetic energy behind the shock wave is shown in Figure
B.5, where ¢ = R;; is plotted as a function of downstream distance. The inhomoge-
neous nature of the velocity field is apparent immediately downstream of the shock.
Note that the curves for M = 1.2 and M = 2 are qualitatively different. While
g* decays monotonically for M = 1.2, it exhibits rapid nonmonotonic variation for
M = 2. A similar rapid variation of kinetic energy was observed in the interaction
of vortical fluctuations with a shock wave by Lee et al (1993). However, in the
shock wave/vortical turbulence interaction problem, this variation was observed at

all Mach numbers considered.

Equations (B.5) and (B.6) are used to show that this variation of kinetic energy
behind the shock wave is a consequence of the acoustic waves that are incident at
Yel < Y1 < Pey. Recall that the downstream pressure field and hence the velocity
field set up by these waves decayed exponentially. Equation (B.6b) shows that the
downstream kinetic energy over this regime has three components: a homogeneous
component associated with the vorticity waves (71), a monotonically decreasing
component due to acoustic waves (T2) and a nonmonotonic component due to the
correlation between the vorticity and acoustic waves (T3). Upon integration over
all the incident waves, these components combine to produce the rapid evolution
immediately downstream of the shock.

As seen from equations (B.5a) and (B.5b), the kinetic energy associated with
waves incident outside this range has homogeneous vortical and acoustic components
and a nonmonotonic inhomogeneous component due to the correlation between
them. When integrated over all incident waves, this correlation term is however,

much smaller than the other components. This is illustrated in Figure B.6 where the
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FIGURE B.5: Evolution of ¢2 behind the shock wave as predicted by linear analysis. g% is
normalized with its upstream value. —— (M = 1.2), ---~ (M = 2.0).

kinetic energy is decomposed into four components (vortical, acoustic, correlation
term for ¥ < 91 < tcu and correlation term outside this regime) for M = 2.0.
The correlation term associated with waves incident at 1o < ¥; < 1y is seen to

produce the rapid nonmonotonic evolution downstream.

A similar decomposition for the M = 1.2 shock showed the correlation term
to be insignificant resulting in the monotonic evolution of Figure B.5. In our lin-
ear analysis calculations, the nonmonotonic downstream variation was observed for
shocks whose Mach number exceeded 1.5. In studying the interaction of vortical .
disturbances with the shock wave, Lee et al (1993) erroneously concluded that lin-
ear analysis could not reproduce this trend which they had found in the DNS. This
error was subsequently corrected and explained by them (Lee et al, 19944,19945).

The equation governing the evolution of kinetic energy downstream of the shock
wave provides further insight into the spatial evolution of kinetic energy. The Euler
equations linearized about uniform mean flow may be rearranged to show that the

quantity,

Ioaz = = .
total 5 a2+72P2 +Pa (B-8)

is conserved along a mean streamline. Iioa) changes across the shock wave and

A/M[q2 pz] pu
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FIGURE B.6: Decomposition of g2 behind the shock wave under linear analysis. The Mach
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relation for 0 < 91 < Y1, Yeu < 1 < ).

remains unchanged downstream. The pu correlation determines the partitioning
of Iiotal between potential and kinetic energy. The spatial uniformity of ;o1 and
the exponential decay of p? behind the shock wave show that the rapid evolution
of ¢ behind the shock wave is a result of the rapid change in the partitioning of
Liotal through the correlation between pressure and the shock-normal component
of fluctuating velocity. Decomposition of the pu correlation reveals that the rapid
evolution of kinetic energy behind the shock wave is produced by the waves that
are incident at ¥, < ¥; < ¥.y. The far-field values of kinetic energy and pressure
are however, determined by the correlation between pressure fluctuations and the

acoustic component of the velocity field in the propagating regime.
B.3.2 Far-field kinetic energy

As seen from Figure B.5, after a distance that is comparable to the lengthscale
(taken as 27 /kg) of the incident acoustic waves, the kinetic energy asymptotes to its
far-field value. The far-field values are independent of the upstream energy spectrum

since the inhomogeneous terms drop out in the far-field. As a result, the integration
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FIGURE B.7: Far-field kinetic energy as a function of Mach number. All components are
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normalized with their upstream value. ——-- (Iﬁ), -------- (v_2 = _1;2_),

over k can be performed independently of ¥; and ¢ to give [ E(k) dk = ¢2/2. To
gauge the effect of shock strength upon the interaction, we examine (Figure B.7) the
far-field kinetic energy (normalized with the upstream kinetic energy) as a function
of the Mach number of the shock wave. Note that the shock-normal component
of kinetic energy is larger than the transverse components for all Mach numbers
shown. An interesting feature of the evolution of kinetic energy is that kinetic
energy decreases slightly across the shock wave over a range of Mach number from
1.25 to 1.80. The transverse components decrease across the shock wave over a wider
range of the Mach number. This decrease in kinetic energy across the shock wave is
peculiar to the acoustic wave/shock interaction problem. It is not observed in the
interaction of vortical fluctuations with the shock wave where under linear analysis,
kinetic energy increases across the shock wave for all shock strengths. Also, for
M > 3, the amplification of kinetic energy is significantly higher than amplification

levels seen in the interaction of vortical fluctuations with the shock wave.

The decrease in kinetic energy across the shock wave may be explained by
decomposing (Figure B.8) the far-field energy into acoustic and vortical compo-
nents and examining their dependence on Mach number. Both components are

normalized with the upstream kinetic energy. This decomposition of kinetic en-

172



Appendix B: Acoustic waves/shock interaction Section B.3.2: Kinetic energy

12

10

Il‘,l]lllllllllllllllllIIIIIII

FIGURE B.8: The far-field kinetic energy decomposed into acoustic and vortical compo-
nents. Both components are normalized with the upstream value of gt e (Total),
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ergy is possible since the correlation between vortical and acoustic components falls
to zero in the far-field. Note that the kinetic energy associated with the vortical
component increases monotonically with Mach number and ezceeds the upstream
kinetic energy beyond a Mach number of about 2.25. The kinetic energy associated
with the acoustic component, however decreases across the shock wave for Mach
numbers exceeding about 1.2. These two components compete in determining the
overall evolution of kinetic energy. For lower Mach numbers, the acoustic compo-
nent dominates since not enough vorticity is generated downstream, causing the
overall kinetic energy to drop. At higher Mach number, the vortical component
dominates due to increased generation of vortical fluctuations and the overall ki-
netic energy rises across the shock. The vortical component of energy exceeds the

acoustic component for Mach number exceeding 2.

The decrease of the far-field acoustic kinetic energy with Mach number is ex-
plained as follows. As the Mach number increases, ¥y — %1 increases (see Fig-
ure B.4 of Moore) and hence a larger fraction of incident waves lie in the range
Yo < Y1 < eu. Recall that these waves make no contribution to the far-field

acoustic kinetic energy. The only contribution to the far-field acoustic kinetic en-
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FIGURE B.9: The far-field ‘turbulent’ intensity compared to the intensity of incident pres-
sure fluctuations. The curve asymptotes to 2.75 (y = 1.4).

ergy comes from waves incident outside this range whose amplification increases
upon increasing the Mach number. Upon integrating over all incident waves, the
net result of these éompeting factors is to produce (as seen in Figure B.8) a slow
decrease (for M < 3.5) in the the far-field acoustic kinetic energy. Note that the
variation of ¥ and 1., with Mach number is most rapid at lower Mach numbers;
in the limit of infinite Mach number, 1. and 1., are symmetrical about 90° and
(for v = 1.4), have values of 67.8° and 112.2° respectively.

B.3.3 The production of turbulence

Having observed the generation of vortical fluctuations - ‘turbulence’ behind
the shock wave, we examine in Figure B.9, the intensity of the turbulence relative
to the intensity of the incident pressure fluctuations. Note that (gvort./Uz)/(p1/P1)
is of the order 1 for most of the Mach numbers shown. (U; = V — U is the mean
velocity behind the shock wave if the shock were stationary in the mean) This
suggests an interesting possibility in turbulent flows involving multiple shock waves
(eg. unadapted supersonic jets). It is known that upon interaction with a shock
wave, turbulence generates intense sound. For isotropic turbulence, the intensity
of the sound generated (p;/P:) scales with the intensity of the incident turbulence

(¢1/U1). In turbulent flows involving multiple shock waves, it is reasonable to
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FIGURE B.10: The intensity of pressure, density and temperature fluctuations in the far-
field compared to the intensity of incident pressure fluctuations. (p2/P2), ———-
¥(p2/Rz), -+~ v/(y—1)(02/T2). 82 and T, are the rms and mean temperature behind

the shock wave respectively. The three curves are normalized with p; /P and asymptote to

0.29, 0.67 and 1.54 respectively (y = 1.4).

expect the generated sound waves to interact with the subsequent shock waves. If
this happens, Figure B.9 suggests that these acoustic waves can generate significant
levels of turbulence through the interaction. We do not mean to suggest that our
homogeneous analysis is directly applicable to flows involving shock cells, which are
quite inhomogeneous. However, our results suggest that acoustic wave/ shock wave

interaction may be a significant generator of turbulence in these flows.
B.3.4 Thermodynamic fluctuations

Interaction with the shock wave is seen to significantly increase sound levels.
Figure B.10 shows the intensity (p2/P.) of the far-field pressure fluctuations nor-
malized with the intensity of pressure fluctuations upstream of the shock. Note
that the intensity drops, although pressure fluctuations actually amplify across the
shock wave. The rise across the shock wave of the far-field sound pressure level
(SPL) and the level of acoustic intensity (AIL) in decibels is shown in Figure B.11.

175



Appendix B: Acoustic waves/shock interaction Section B.3.3: Thermodynamic fluctuations

25

] L T L ' L T L L] I T T T T ' L L) | B

20 e
L. - .
- //// -
[ _ i
- 15—— /// -
[an] o Pre i
) L. .
| - - i
- 7 .

A 10 P
C P g
© C P .
- / -
L e ]
Sk I
. / .
L/ 4
O 1 1 i 1 l L 1 1 1 l 1 L L 1 I I 1 1 l-
1 2 3 4 5

M

FIGURE B.11: The level of far-field sound behind the shock wave compared to the incident

sound level. ——-- Sound pressure level,

Level of acoustic intensity.

We define,
2

2
_ 2 - P’/ Ra
SPL = 10log [p 2} ,  AIL =10log [prz/Rrar] (B.9)

T
where the subscript r denotes reference values. The rise in the level of sound across
the shock wave is independent of the reference values. The increase in sound pres-
sure level varies from 5 to 20 decibels while the rise in acoustic intensity varies from
2 to 10 decibels over the range of Mach numbers shown. Figure B.10 also shows
the nature of the thermodynamic fluctuations in the far-field. The density and
temperature fluctuations are normalized such that the three curves would collapse
if the fluctuations were isentropic. We see that the isentropic relations hold until
a Mach number of 1.5, beyond which the entropy fluctuations that are generated
at the shock wave become significant relative to the acoustic fluctuations. The in-
creasing importance of the entropy fluctuations in the far-field is due to two factors:
increased production of entropy fluctuations at the shock wave and the decrease
with Mach number of the far-field intensity of pressure fluctuations. Asymptoti-
cally, (s2/Cp)/(p2/P2) equals 1.47 (y = 1.4) where s, is the rms entropy behind the

shock wave and C), is the specific heat at constant pressure.
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B.3.5 Asymptotic behavior

Another feature that distinguishes the interaction of sound waves with a shock
wave is the asymptotic behavior with respect to Mach number. Linear analysis
shows that for incident acoustic waves, quantities such as the ratio of fluctuating
kinetic energy, pressure and temperature fluctuations across the shock wave are not
bounded but increase as M?. This is easily seen from equations (B.5) and (B.6).
The constants (eg. K ) in the equations have finite values in the limit of infinite
Mach number and hence the intensities of velocity, density and pressure fluctua-
tions are bounded for finite intensity of incident pressure fluctuations. However, for
a given intensity of pressure fluctuations the incident kinetic energy decreases as
1/M? causing the amplification of kinetic energy to vary as M? for strong shocks.
Similarly, since the mean pressure and temperature ratio varies as M? for strong
shocks, the ratio of pressure and temperature fluctuations are not bounded. Un-
boundedness of kinetic energy amplification is peculiar to the acoustic wave/shock
interaction problem; it is not present when vortical fluctuations interact with the
shock wave. We show in Figure B.12 the kinetic energy amplification normalized
by M?. Note that the amplification ratios asymptote to finite values when properly
scaled with M?2.

B.4. Discussion

B.4.1 Evaluation of linear analysis

The inviscid linear analysis of Moore (1954) is extended to study the interaction
of a three-dimensional isotropic field of acoustic waves with a normal shock wave.
The objective of this study is to isolate the effect of acoustic waves on the evolution
of a turbulent flow as it interacts with a shock wave. As the level of compressibility
of a turbulent flow increases, the effects associated with the acoustic component
will become important. Understanding the interaction of acoustic waves with a
shock wave is therefore of fundamental importance. The interaction is likely to be

especially important in unbounded turbulent flows.

Our use of linear analysis is prompted by its success in past investigations. In
the interaction of a single unsteady disturbance with a shock wave, there appear to
be four important factors that could cause deviation from linear behavior: proximity
of the incident angle to the critical angle, the amplitude of the disturbance being

non-negligible relative to the strength of the shock wave, the mean Mach number
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being close to unity and finally, viscous effects. Proximity to the critical angle
seems to be the most important factor. Our computations of of single acoustic
waves interacting with a shock wave disagree with linear analysis around 25 degrees
of the critical angle; very good agreement is seen outside this range. Fortunately, in
the interaction of a spectrum of waves with a shock wave, the incident waves around
the critical angle make only partial contribution to the overall energy. With regard
to the amplitude of incident disturbances, results of computations are encouraging.
Our computations show good agreement with linear analysis away from the critical
angle for disturbance amplitudes varying from 0.14% to 14%. Zang et al (1984) show
that linear analysis yields good prediction away from the critical angle for acoustic
disturbance amplitudes as large as 25%. Meadows et al (1994) reach a similar
conclusion in their study of the one-dimensional interaction of an acoustic wave with
a shock wave. Their comparison of linear analysis to a non-linear Riemann analysis

yielded indistinguishable results (to plotting accuracy) for disturbance amplitudes
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less than 10%. An effect of increasing disturbance amplitude for a fixed shock
strength has been documented by Honkan and Andreopoulous (1992) and Lee et
al (1992) in the interaction of isotropic turbulence with a normal shock. Both
studies reported a decrease in the amplification of kinetic energy as the disturbance
amplitude was increased. Honkan and Andreopoulous’ experimental study had a
shock of mean Mach number 1.24 while Lee et al’s numerical results were for a shock

wave of mean Mach number 1.2.

B.4.2 Combined interaction of vortical and acoustic fluctua-
tions

The linearity of the analysis permits the use of superposition to predict the
combined interaction of vortical and acoustic fluctuations with a shock wave. Since
sound and vorticity travel at different speeds, the correlation between them can
be assumed negligible upstream and in the far-field behind the shock wave. The

amplification of kinetic energy across the shock wave can therefore be expressed as,

¢ __dtd (B.10)

2
g (42)o + (43 )o
where , the subscript ‘0’ represents conditions upstream of the shock and the sub-
scripts w and @ represent the vortical and dilatational components respectively.
The amplification ratio in the mixed problem may be expressed in terms of the

amplification ratios of vortical and acoustic fluctuations as:

2

gg = (1= X)fu+Xfo (B.11)
where, fo = q2/(%)o, fo = q3/(q3), and X = (¢3),/q2 . X is the ratio of acoustic,
to total kinetic energy upstream of the shock wave. Note that as X varies from 0
to 1, ¢*/q? varies from f, to fs. Available experiments on the shock/turbulence
interaction are in the range of Mach numbers for which the kinetic energy of
the acoustic component decreases across the shock wave. Our results suggest that
the presence of acoustic waves in these experiments will decrease the amplification
of kinetic energy. As noted by Jacquin et al (1993), wind-tunnel experiments on
the shock/turbulence interaction report lower amplification ratios than shock-tube
experiments. They suggest that boundary-layer induced oscillation of the shock
wave in the wind-tunnel experiments might be responsible (through an unknown

mechanism) for this observation. Our results suggest the alternative scenario that
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the lower kinetic energy amplification is a consequence of a significant amount of
acoustic waves in the turbulence ahead of the shock wave. A likely source of these
sound waves are the shock waves that are generated at the edges of the grid that
generates turbulence in the tunnel. Further data is needed to support or discard

this scenario.

According to linear analysis (equation B.18), when compressible isentropic tur-
bulence interacts with a shock wave, the evolution of kinetic energy lies between
two limits - the pure solenoidal and pure dilatational limits. This behavior is iden-
tical to the response of homogenous turbulence to one-dimensional compression. As
shown by Cambon et al, the evolution of kinetic energy when compressible homo-
geneous turbulence is subjected to one-dimensional compression lies between the
solenoidal and the dilatational limits. However an important difference between
the shock/turbulence interaction problem and the homogeneous compression prob-
lem is the behavior of the turbulence in the dilatational limit. For homogeneous
turbulence, Cambon et al show that the dilatational limit is characterized by loss of
acoustic communication which forces the pressure-strain correlation to zero thereby
yielding significantly higher amplification of ¢? as compared to solenoidal turbu-
lence. The compressibility-induced decrease in kinetic energy across the shock wave
that is seen in the acoustic wave/shock wave interaction for 1.25 < M < 1.8 is
not observed. This is due to the fundamentally different nature of the pressure

fluctuations in the two problems.

The difference between the one-dimensional compression of solenoidal turbu-
lence and Ribner’s (1954,1987) analysis of solenoidal fluctuations interacting with
a shock wave were pointed out by Lee et al (1993) and underscored by Jacquin et
al (1993). Results of the two problems agree for small Mach numbers; for large
Mach numbers significantly larger amplification is seen in the homogeneous prob-
lem. Jacquin et al also compare the compression of homogeneous compressible tur-
bulence to Ribner’s analysis and note that the difference between the two problems
is greater than pointed out by Lee et al. A comparison of the compression of dilata-
tional fluctuations to the interaction of solenoidal fluctuations with a shock wave
is not appropriate; comparison should be made to the interaction of dilatational
fluctuations with the shock wave. Such comparison would reveal disagreement in
the dilatational limit over the entire range of Mach nunibers. While the homoge-

neous problem can approximate the evolution of kinetic energy in the interaction

180



Appendix B: Acoustic waves/shock interaction Section B.4.3: Comparison to DNS

of solenoidal fluctuations with a shock wave of moderate strength, it is quite inap-

propriate as the incident turbulence becomes increasingly compressible.
B.4.3 Comparison to computation

The analysis explains recent observations (Hannapel and Friedrich, 1994) on
the interaction of compressible turbulence with a normal shock. Hannapel and
Friedrich numerically computed the interaction of low Reynolds number isotropic
turbulence (R) ~ 4 upstream of the shock wave) with a normal shock of mean
Mach number 2. The fluctuating Mach number was 0.1 at the inflow and the kinetic
energy was equally distributed between the vortical and acoustic modes. (X = 0.5
in our notation.) They compared this interaction with that of essentially solenoidal
turbulence (X = 0) of the same fluctuating Mach number. The ‘compressible’ case
displayed increased amplification of vorticity, decreased amplification of velocity
components transverse to the shock, decreased reduction of Taylor microscale and
decreased amplification of density, temperature and pressure fluctuations across the

shock wave.

The computation may suffer from lack of sufficient resolution of the shock
front. As a result we do not attempt quantitative comparison. We show that the
computation follows the trends predicted by the linear analysis and quote the linear
analysis predictions for reference. The higher amplification of the transverse compo-
nents of vorticity in the compressible case is explained by the generation of vorticity
through the acoustic wave/shock wave interaction. Using an expression similar to
equation (B.18), the increase in the amplification of vorticity may be shown to
be 3g9(002/w02), where gg = wo?/ 602 in the acoustic wave/shock wave interaction
problem. Similarly, linear analysis predicts the decrease in transverse velocity and
reduction in Taylor microscale. For the interaction of vortical fluctuations with a
shock wave, Ribner’s analysis yields u?/u% = 1.64 and v?/v§ = 1.66 across a shock
wave of Mach number 2. For dilatational fluctuations, our analysis yields values of
1.69 and 0.9 respectively. Using an expression similar to equation (B.18), we get
u?/u? = 1.67 and v?/v} = 1.28; i.e., the amplification of u? is essentially unchanged

while the amplification of the transverse velocity drops.

Linear analysis yields values of 0.53 and 0.77 for A1/(A1), and A2/(A2), re-
spectively ()\; represents the Taylor microscale in the ¢ direction) for the vortical
problem. Corresponding values for the compressible problem are 0.66 and 0.94

respectively. The reduced amplification of thermodynamic fluctuations in the com-
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pressible problem (an order lower) is a consequence of the fact that in pure vortical
turbulence, the absolute level of incident thermodynamic fluctuations is much lower
(zero in the linear limit). The level of thermodynamic fluctuations behind the shock
wave, however scale with the incident kinetic energy as a result of which the ampli-

fication of thermodynamic fluctuations will be large (undefined in linear analysis).
B.5. Summary

Inviscid linear analysis was used to study the evolution of fluctuating kinetic
energy, sound level and thermodynamic fluctuations in the interaction of an isotropic
field of acoustic waves with a normal shock wave. The analysis was an extension of
Moore’s (1954) study of the interaction of a shock wave with a single acoustic wave.
Moore’s analysis was evaluated by comparison to numerical computation. Good
agreement was seen for angles away from the critical angles. A possible reason
for disagreement around the critical angles was proposed. Linear approximation
was noted to be inconsistent in this regime; requirement of the transonic small

disturbance equations was suggested.

The interaction of an isotropic acoustic field with the shock was noted to be
significantly different from that of vortical fluctuations. The kinetic energy of the
acoustic fluctuations decreased across the shock wave for Mach numbers between
1.25 and 1.8. For Mach numbers exceeding 3, the kinetic energy amplified by levels
that significantly exceeded those found in the interaction of vortical fluctuations
with the shock. These trends were explained by decomposing the velocity field into
acoustic and vortical components and examining their dependence on the Mach
number. Upon interacting with the shock wave, the acoustic waves generated vor-
tical fluctuations whose contribution to the far-field kinetic energy increased with
increasing Mach number. The level of sound increased across the shock wave. The
rise in the sound pressure level across the shock varied from 5 to 20 decibels for
Mach number varying from 1.5 to 5. The fluctuations behind the shock wave were
nearly isentropic for Mach number less than 1.5 beyond which the generation of

entropy fluctuations became significant.

Finally the analysis was used to describe the combined interaction of isotropic

vortical and acoustic fluctuations with a normal shock wave.
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B.6 Details of Moore’s analysié

The solution dowstream of the shock wave is given below. The subscript 2

refers to conditions behind the shock wave.

For 0 < ¢, <'(/)clor'¢'c'u<'¢'l <m,

ip_2_~ azy + Py + ast
o= Ryt

1 p2 K [azs+By+agt ~ m_ﬂrm‘”z —ly
= s +Qf "

m M
1 uy =ﬁf(az2 +fy+a2t) +§f(%ﬁ‘zz —ly>
2 1

m+1/M
L.@:ﬁf arz + By + azt +ff —ff-jr_w?”ly .
)\2 A1

The z, axis is stationary in a frame of reference that moves with speed U
yielding, z; = (V — U)t at the mean position of the shock wave. Of the two
terms that contribute to the velocity, density and temperature, the unsteady term
corresponds to the acoustic wave while the steady term corresponds to the vorticity
and entropy waves. The coeflicients K , é, é,fI and T in the above equations are
functions of the Mach number of the shock and the angle of incidence and are given

below.

If 1o < 1 < teu, the solution is a bit more complex and is given by:

1 pa(n,§) ¢ 7
yviy -l SOLINCHIRSNOLOICRY)

1—-r

A1

(m+IZM$2_ly) _ <m+l{M$2__ly)

1 u _ _ sz Ly
——3':‘7 = F(I)Q(l)(n’ é) + F(z)Q(Z)(T’,g) + G(])f( 1—r Al )

_ milM .y
+ G(Z)g( Lor A] )
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m_+1L _
1w zg9 — ly
;{3"3 = Huay®y(1,€) + Hzy®ay(n, €) + I(x)f( = /\1 )

~ Til"—irmxz —ly
+ I(z)g N .

Analogous to the propagating regime, IZ'(,,), é(a), @(a), I-I(,,) and T(a) are functions
of the Mach number of the shock and the angle of incidence and are given below.
Also, n and £ are related to z;,y and ¢ by:

1= —3lea = (V = U}

1
£ = X:(a:tz + By + cVi).

n is thus proportional to the distance behind the shock while {=constant represents
an oblique plane moving at constant velocity. The functions g, ®(1) and ®(3) are

defined as: -
50

TS T —¢

1
®a) =~ _oof( )de

1 [ T—7
Pz = W/-oof(r)ﬂz'*'(T"’?)z dr

Since a homogenous acoustic field may be represented as a superposition of plane

waves, we consider f(z) = e'® for which g, ®(;) and ®(,) are given by:

9(6) =1 eif, (p(l) = e—"leif, Q(g) =1 e—neif

Note that if the incident wave is a plane wave, the above equations take on a

simple form. The coefficients in the solution are determined as follows.

2 1 v-1 -1\ 2
=——= - (1-1=2p2), B, =(22
B 7+1M2(1 2 ) : (‘/+1)7M2

-2 . C__(l_—-l__)
R A
D 2yM? D M-
1= —'—T], 2= T

TM? - TM? — 157
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l=sinyYy; m=cosy; n=tanh
2 1 az\’ y-1 n(l—r)
=" (1-—=—) 2) —(1- . — )
=iy (3) —an(e ) - T+ 7
For0§¢1<¢‘c10r¢cu<¢157f,

=P

O Rl i) il e

L=-—
VM 1+X_:r;r_1,.(1+%>
~ ~ m
= V4D
Ir.m(L+7M)+ ,

(14 L 14 n2(1—7r)2/(1+4+ -L.)2
miz _ lv(2+m12w B P P + n¥( i)l/( + =hr)
A (L4 ) 4ni(l-r) 1-X1(1-r)
1 /\2 1 dz A2
= —_— —_— —_—— ] =_.l..__..
@ 1—r[,\1(m+M) V]’ p=-l5
=_ a6 = = a
—_—— :—_—_K
F 7VKoz, H o7 B
m ~ 141/Mm
—T_F_ — ) - = G
G=L-F BI<L+7M) By; I my
For 9. < 91 < ¢y, the coefficients are as follows.
_ m+1/M V2 a4, [a*+ 12—Vl
=iTvia-mpjd *T atTne F=-h d‘\/1—V2(1—r)2/ag
1-r1[ 1 m 1
==t (5 2)
1-rl1-B; 2d(1—r)
hy =1~ ; hy = ——n 71
2 r  o? : lo(1+ L2r)
7 _hth" ,,—rxz'i'%fhg' ~ =hh1+(,ylM+LD)f)h2
= h3 + h2 ! @ =BT R R
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4 o? 2rdo(1 —r) V2

hy = ————; 5 = —
v+11+4 02’ I(14+02%) a2

i T m D2 7 = ~ m Dz ~
Fay=hy (L(l) + :YTI + -D—l) ~hsLy;  Flay=hs (L(1) + W + B;) + haL(y)

hy D,
H(l) = (L(l) + W + D_) + o’h5L(2)

m Dz h4
H(z) = —chsg (L(l) + W + "D—‘) + L(z)

~ ~ m ~ ~
K(l) = Dy (L(l) + W) + Ds; K(Z) = DlL(z)

Ql =(C L(1)+—- +Cz—'I£—1—' Q(z)=CIE(2)—@
(1) M v ~

~ ~ ~ ~ m ~ ~ ~
Gy = L) — Fuy — By (Lm + _H) =By Gu =Ll -B)-Fg

~ 1+ 57 ~ =~ 1+dg
= Iy = m .
Iy =72 )Gm’ ® = 0= fe
The expression for H (1) in Moore’s paper contains a typographical error; f(l) +

M + 5 —1 should be replaced by L(l) +smw+ 5 ——1 Also, the plots of the constants
when 1/)c1 < 91 < ey do not agree w1th the formulae. After repeating Moore’s

analysis, we conclude that the formulae are correct.
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Appendix C

Generation of Inflow Turbulence

Spatial simulation of turbulent flows requires specification of ‘turbulent’ fluc-
tuations at the inflow plane of the computational domain. This appendix describes
how inflow turbulence was specified in our calculations. Previous workers ( e.g. Lee,
Lele and Moin, 1992; Le and Moin, 1994) have developed methods for this purpose.
Their methods differ in detail but are conceptually similar. A field of random num-
bers subject to certain constraints on the second-order statistics is convected into
the domain of the spatial computation. To ensure that the turbulent signal at the
inflow is not periodic in time, the field of random numbers is continuously ‘jittered’.
The method used in our simulations is an extension of that proposed by Lee, Lele
and Moin. As opposed to introducing random numbers at the inflow, a separate
temporal calculation is conducted. A single developed field from the temporal sim-
ulation is then used to generate inflow turbulence. Section C.1 describes the details
of the method. The spatial simulation of isotropic turbulence is then considered in

Section C.2. Finally, the shear flow computations are discussed in Section C.3.
C.1 Details of the method

The spatial simulation of isotropic turbulence is used to describe the procedure
for specifying inflow ‘turbulence’. It will be seen that the procedure may easily be

extended to other turbulent flows.

In the spatial simulation of decaying turbulence, the mean flow at the inflow
plane is spatially uniform and given by:

U=U;; p=- p=L (C.1)

Turbulent fluctuations in velocity, pressure and density are superposed onto

the above mean flow. These turbulent fluctuations are obtained as follows. A tem-

poral simulation with periodic streamwise boundary conditions is first performed.

The spanwise boundary conditions in the temporal calculation match those in the

spatial simulation (periodic for isotropic turbulence). The mean flow in the tem-

poral simulation is identical to that at the inflow of the spatial computation. The
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initial fluctuations are similar to those used by Lee, Lele and Moin (1992); i.e., the
velocity field is isotropic and solenoidal with E(k) ~ (k/ko)* e~2(k/k0)* while the

thermodynamic fluctuations are set to zero.

The temporal simulation is then advanced in time. Consider the turbulence
time scale defined as, 7, = A/urms Where, A and uyps = \/ﬁ are the Taylor mi-
croscale and r.m.s. velocity respectively. The velocity derivative skewness, defined
as Sq = ul?/ [(3_1;3)2]3/ ? is known (Tavoularis, Bennett and Corrsin, 1978; Er-
lebacher et al., 1992) to have a typical value between -0.4 and -0.6 in developed
isotropic turbulence. As the temporal simulation is advanced in time, skewness
varies from its initial value of 0 (due to the choice of initial conditions) to its de-
veloped value. This variation occurs on the order of one turbulence time scale; 1.e.,
t/7¢ ~ 1. An instantaneous realization of the temporal simulation is taken after
the skewness reaches its developed value. This instantaneous field is then used to

specify turbulence at the inflow of the spatial calculation.

This is done as follows. Fluctuations in velocity, density and pressure are
extracted from the turbulent field. The fluctuations are then Fourier transformed
in all three directions; 1i.e., if f denotes fluctuations in a variable, its Fourier
transform fis obtained as

-~ 1

f(k1,k2,k3) = NN Z f(z,y,z) e ikizthaytkaz) (C.2)
piVylVy

z,Y,2

Taylor’s hypothesis is then invoked to convect this turbulent field into the spatial
domain. The streamwise distance z in equation C.2 is therefore expressed as r =
zo + Uit, where z4 is taken as 0 without loss of generality. Substituting for z and

inverse Fourier transforming yields f(t,y, z); i.e.,

f(t,y,z) — Z f(kl,kZ,kS) ei(k1U1t+k2y+ksz). (03)
klak2)k3

The above signal may be added onto the mean flow at the inflow. However, f as
given by equations C.3 is periodic in time with (L )iomporai/U1 being the period.
This periodicity may be eliminated if desired, by ‘jittering’ the signal in Fourier
space. Alternatively, the signal could be convected without jittering and statis-
tics collected over one period. Ensemble averaging could then be used to improve

statistical convergence.
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The turbulent signal at the inflow is jittered as follows. The Fourier coeflicient
f is first expressed in terms of its amplitude and phase as |ﬂ° e'®e where the
subscript ‘o’ denotes ‘old’. The amplitude and phase of the signal are then jittered

as follows,

~ ~ 14 dampCam
|fla = |f|o—"—'u§ n = ¢o(1 + 0‘pcp)- (C.4)
T+ /3

The variables aamp and o are random numbers that vary between -1 and +1; camp
and c;, are constants that denote the percentage variation. The factor, /1 +¢Z,,,/3

in the denominator of |]’”\|n ensures that the r.m.s. level of the signal is maintained.

This is easily seen as follows.

Denoting the factor 4/1 4 cZ,,,/3 by 1/K, we have from equation C.4,
Fo =K |flo (1 + QampCamp) €®o(1+ecs), (C.5)

The amplitude of the jittered signal is given by the relation,

~ o~ -~

|J?|i = fofa = K? |f|<2> (1+ aampcamp)z- (C.6)

The variable aapp is obtained from a random number generator that has a uni-
form probability distribution between -1 and +1; i.e., P(aamp) = 1/2 (so that
fjll P(ctamp) daamp = 1). The r.m.s. level of the jittered signal is therefore given
by,

+1 K2 - +1
/ |fn|2 P(aamp) dovamp = BN |f0|2 / 1+ aampcamp)z ddamp

-1 -1

2
=k |RP 1+ 2], )

To ensure that (fn)rms = (fo)rms, We require,

2

K2(1+Ca.mp)=1 = K= 1

2
Vi+ -5

Equation C.3 is used to inverse Fourier transform the jittered Fourier coefficients

: (C.8)

thereby yielding the turbulent signal at the inflow. The variables camp and ¢, are
typically chosen as 0.2. The random numbers &amp and o are a function of k

and time. The time dependence is introduced by varying a,mp and «,, at different
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instants for different wavenumbers. Each Fourier mode is jittered at one random
instant every Ny timesteps where N; is specified. This ensures temporal smoothness;

i.e., it avoids large levels of high frequency contribution (Lee, Moin and Lele 1992).
C.2. The spatial simulation of decaying turbulence

The procedure described above is applied to compute the spatial decay of
isotropic turbulence. The governing equations are the three-dimensional compress-
ible unsteady Navier Stokes equations. As mentioned in Chapter 4, the sixth order
Padé scheme is used to compute spatial derivatives while the third order Runge
Kutta scheme is used for time advancement. Periodic boundary conditions are
specified in the y and z directions. The flow is supersonic and hence all flow vari-
ables are specified at the inflow boundary. No boundary conditions are needed at

the exit boundary; the governing equations are used to advance the solution there.

The turbulent fluctuations at the inflow boundary are specified as discussed
above. A temporal simulation of isotropic turbulence is first conducted. The rel-
evant dimensional and non-dimensional parameters (refer Chapter 4 for notation)
at the start of the simulation are listed in Table C.1.

L, L, L, N, Ny N, Re R M, CFL
3r 3r 3 81 81 81 750 30 0.17 0.4

TABLE C.1: Parameters in the temporal simulation of isotropic turbulence.

The solution is advanced for three turbulence timescales. Figures C.1 and C.2
illustrate the temporal evolution of ¢? and the velocity derivative skewness. Note
that the plotted skewness is the average of all three velocity derivative skewnesses.
Kinetic energy decays by almost a factor of 5. The skewness attains its developed

value after about one turbulence timescale.

The instantaneous flow field at ¢/7; = 2 is used to generate inflow turbulence
for the spatial simulation. Note that after two eddy turnover times, Ry and M, are
about 15 and 0.11 respectively. The fidelity of the temporal solution is illustrated
in Figures C.3 and C.4 where the one-dimensional spectra, E;;(k3) and two-point
correlations, Qf¢,q(r) = f'(X)f'(x + req )/ f'(x)f'(x) of the velocity field are plot-

ted. Both, the resolution as well as size of the computational domain are seen to

be adequate.
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FIGURE C.1: The evolution of kinetic energy in the temporal decay of isotropic turbulence.
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FIGURE C.2: Velocity derivative skewness in the temporal decay of isotropic turbulence.
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FIGURE C.3: One-dimensional energy spectra from the temporal simulation at t/7; = 2.
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The relevant parameters of the spatial simulation are listed in Table C.2.

L, L, L, N, N, N, Re Uy Camp Cp
37 3r 3r 81 81 81 750 1.5 0.25 0.25

TABLE C.2: Parameters in the spatial simulation of decaying turbulence.

The flow is initialized with uniform mean flow on which fluctuations obtained
from the temporal simulation are superposed. The spatial calculation is then ad-
vanced for two flow-through timescales, (L, /U;) to allow initial transients to exit
the domain. Statistics are then gathered by averaging over time and the homoge-
neous directions (y and z). The streamwise evolution of ¢? and velocity derivative
skewness is illustrated in Figures C.5 and C.6. The mean velocity is used to convert
streamwise distance into time which is then normalized by the turbulence timescale,
A/trms at the inflow. After a brief transient (about 0.2 eddy turnover times), the
skewness reaches a plateau. By comparison, the inflow fluctuations of Lee, Lele and
Moin (1992) require about 0.6 turnover times to evolve into ‘realistic’ turbulence.
The use of a developed turbulent field at the inflow is thus seen to considerably

reduce the evolution length.

The transient at the inflow is a function of the amount of jitter as well as the
level of compressibility (M;). Strictly speaking, the solencidal and dilatational parts
of the inflow turbulence should be convected at different speeds. However, this is not
done, in order to keep the computational cost low. The inflow turbulence therefore
rapidly adjusts near the inflow boundary. This transition length will increase as the

level of dilatational fluctuations in the inflow turbulence increases.
C.3 The spatial simulation of a shear flow

The procedure discussed above is used to specify inflow turbulence in the spatial
simulation of a turbulent shear flow interacting with a shock wave. Since the flow at
the inflow boundary is supersonic, all flow variables are specified there. The mean

flow at the inflow boundary is the same as in equation 4.1; i.e.,

Usr(y) = Uo + Sy + Ly /2), I—,l(y)=$, T = ; Ui (y)

oo (©9
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FIGURE C.5: The evolution of kinetic energy in the spatial simulation of isotropic turbulence.

01]]lllllllroTllIIlllllllllIII

T

llll'llr]ll'

JIIIIllJlII]lllllll[lll]llll—

05
_o-s_lllIlllllljllllllllLlllllllIIIT
0 0.2 0.4 0.6 0.8 1.0 1.2
X Urms
U A
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Fluctuations in velocity, density and pressure are superposed on the mean flow.
These fluctuations are obtained from a separate temporal simulation of the shear
flow. Details of the temporal simulation are described in Section C.3.1. Use of the

temporal simulation to specify inflow turbulence is then discussed briefly in Section
C.3.2.

C.3.1 Temporal simulation of the shear flow

The governing equations are the compressible Navier Stokes equations. The
computational mesh is uniform in all three directions. The sixth order Padé scheme
and third order Runge Kutta scheme are used for spatial and temporal discretization
respectively. Periodic boundary conditions are imposed in the z and z directions
while ‘sponge regions’ are used to approximate non-reflecting boundary conditions
at the y boundaries. Details of the sponge are provided in Section 4.8.2. Essentially,
a ‘cooling’ term of the form —o(U — Uyes.) is added to the right-hand side of
the governing equations over a region of width dsponge near the top and bottom
boundaries alone. The coefficient o is defined to vary smoothly from 0 in the
interior to a finite value at the boundary; i.e., if ypor = —Ly/2 + bsponge and Yiop =
Ly /2 — 8sponge denote the start of the sponge near the bottom and top boundary
respectively, then

n
Y — Ybot/to
Obot/top — A, (———l bot/t pl) . (C].O)

bsponge
The exponent n is set to 3 in our calculations. Values used for the parameters A,
and dsponge are listed in Table C.3. Typically, about 15 points are used in each of
the two sponge regions. The reference state, Uy is the mean flow specified in the
initial conditions. The solution in the sponge region is thus forced towards the mean
flow. As a result, in addition to giving the y boundaries a non-reflecting character,

the sponge regions ensure that the mean shear rate is essentially unchanged.

The initial mean flow is the same as that specified at the inflow of the spatial

simulations; z.e.,

U@ =Uo+ SGH LD, )= A=Pr (1)

‘Turbulent’ fluctuations are then superposed onto the above mean flow. The fluctu-

ating velocity field is specified to be isotropic and solenocidal. Initial fluctuations in
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the thermodynamic variables are set to zero. The procedure used by Rogallo (1981)

is used to generate the initial velocity field whose spectrum is specified to be,

E(k) = 16\/%%0; (k—ko)4 e2(

The variable uy determines the rms level of the signal. ky; denotes the wavenumber

)" (C.12)

»
3=

corresponding to the peak of the spectrum and represents the dominant lengthscale
of the turbulence. To ensure consistency with the sponge regions, the above velocity
fluctuations are only specified over part of the domain in the y direction. The
velocity fluctuations (denoted by u!) are multiplied by a smooth function that varies
from one in the interior to zero at the y boundaries. The instantaneous initial

velocity field is therefore given by

— {tanh[b(y + Ly/2 — 6)] + tanh[b(y — Ly/2 + 8)] }u'-

u; =U; + ) (0'13)

where the variables b and é are set to equal 10 and .75 respectively.

The initial conditions require specification of the following variables: Uy, S, M,
ko,up and Re. The following non-dimensional parameters are taken into consider-

ation in choosing the above variables (refer to figure C.7):

(ég) G-l 1
U eddy_ U2+U1_U1+Sl/2

(Ap) _ J\fz/Uzz——MZ/U]2 _ 1+2U]/Sl

P Jeaay MEIUF+M2/UE  (Uy/81) + (Uy/S1) +1/2
Tturbulence — )‘/urms

Tmean flow 1/5

[ [

VJulul ulul

M, =Y_"ili Vit
5 U

_ ﬁurmsAl
7
Figure C.7 shows a sketch of an eddy in the initial turbulent field. The eddy

is characterized by lengthscale ! in the y direction. In the following discussion,

R

we assume | = 27w /ky. Also, subscripts 1 and 2 are used to denote the bottom
and top of the eddy. With reference to figure C.7, the parameter, (AU/U Jeady
represents the fractional change in mean velocity across the eddy. (AU/U),,q, is
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P2 U -U; + 81

P1
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Eddy !

FIGURE C.7: Schematic of the mean gradients over an eddy in the turbulent shear flow.

required to be small if Taylor’s hypothesis is to be applied to the above flow to
generate inflow turbulence. Note that increasing U; and decreasing S decreases
the value of (AU/U),44,- Similarly, the parameter, (Ap/p).q4, represents the frac-
tional change in mean density across the eddy. It is readily seen from equation
C.11 that (Ap/p)eqqy is directly related to the fractional change in mean velocity.
In turbulence at low M;, the mean density gradient can influence the flow either
through the inertial terms (inviscid mechanism), or through the associated gradient
in Reynolds number across the eddy. The ‘strength’ of the turbulence with respect
to the mean flow is represented by the parameter SA/u;ps - the ratio of turbulence
to mean timescale. The linear ‘rapid’ limit is approached as SA/ups increases. Cor-
respondingly, the effect of mean strain diminishes as SA/u;ps decreases. Finally, the
fluctuation Mach number M, represents the extent to which compressibility might

be significant in the flow.

The temporal simulation corresponding to the Mach 1.2 case is considered
below. The relevant physical and computational parameters are first tabulated.
Results are then presented and statistics of the turbulence specified at the inflow

are documented.

The initial field is first generated. Two point correlations of the initial velocity
field are checked to ensure that they decay to zero. The initial field is then advanced
in time at a CFL number of 0.3. About 13000 timesteps are needed to advance
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(Ls, Ly, L)

Uo

M

ko

CFL

As
(Ap/ P)eddy
(My)centerline

(67, 5, 57)

2
1.2
5
0.3
)
0.24
0.06

(Nz, Ny, N)
S

Urms

Re
‘Ssponge / L ¥

(AU/ U)eddy
S/ trms

(RA)centerline

(121,121,121)

0.2
0.13
2250
0.12
0.12
0.62

13

TABLE C.3: Parameters in the temporal simulation of the shear flow.

to a non-dimensional time of St = 5.7. Figure C.8 shows the temporal evolution of

turbulent kinetic energy at the centerline (y = 0). Note that statistics are computed

by averaging over z and z. After decaying initially, u'? and w'? are seen to grow
y ging g

with time. Kinetic energy is seen to develop the ordering, urms > Wrms > vrms that

is typical of incompressible two-dimensional shear flows (Townsend, 1976).
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FIGURE C.8: Temporal evolution of turbulence intensities and kinetic energy at the center-
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FIGURE C.9: Evolution of u'iu'j /g* at the centerline.
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Also, the non-dimensional shear stresses, W/ q? (figure C.9) develop values
typically observed in incompressible shear flows such as the boundary layer and
homogeneous shear flow (Moin, 1988). The intensity of temperature and density
fluctuations at the centerline is seen to increase with time over the extent of the
computation (figure C.10). As seen from figure C.10, pyms/p is very nearly equal
to Trms /—T. Also, the intensity of pressure fluctuations is noticeably smaller than
that of density and temperature. Note that if the thermodynamic fluctuations
were isentropic, then prms/YP = prms/P = Trms/(7 — 1)T. On the other hand, if the
thermodynamic fluctuations were entropic in nature, then in the linear limit, p'/p =
—T'/T and p' = 0. The correlation coefficient between density and temperature
fluctuations is plotted in figure C.11. The coefficient is seen to be very nearly equal
to -1 for times exceeding St = 0.3. When combined with the relative intensities
of the thermodynamic fluctuations, this suggests that the thermodynamic field is

essentially composed of entropy fluctuations.

The thermodynamic field is strongly correlated with the velocity field. Figure
C.12 shows the evolution of the velocity-temperature correlation at the centerline.
Ry is seen to be strongly positive while R,/ is strongly negative. The sign of

R, is opposite to that observed in adiabatic compressible boundary layers
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FIGURE C.10: Evolution of thermodynamic fluctuations at the centerline.
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layers, where experiments and Morkovin’s hypothesis show that Ry,7v ~ —1. It is
easily shown that the reason for this difference is that U and T both increase with

y in our flow as compared to the adiabatic boundary layer, where T decreases with
y.

Since as seen above, the thermodynamic field is dominated by entropy fluc-
tuations, the linearized equations governing the evolution of velocity and entropy
fluctuations in the shear flow are examined below. These equations will be seen to
predict the sign of the velocity temperature correlation observed in the simulations.

The linearized continuity, momentum and energy equations are given by

%’; +U‘;’; v'j—z — 8. (C.14a)
36_’:'+U%’:;' =_v'%%_%g—1:. (C.14)
661; Ug_': = -%.aa% (C.14c)

%"" 4 U‘Z_i' _ _v':_z, (C.14d)

Using p'/p = —T'/T and the equation of state yields the following equation for the
temperature fluctuations:

or' BT' ,dT .
The equation for temperature fluctuations may be combined with the momentum

equations to obtain the following equations for the velocity-temperature correlation.

O rvlor o 2L | o —T’ o (C.16a)
ot oz dy Oy
—— , -~ v
0 negative neglect
guITI + U_.a_ulTl ulvlg _vITId_U._ + T '0’ _ _TI ap (0.16b)
ot Ox dy dy p Oz
W A\ - o N - - A — >
0 positive positive neglect

The ‘production’ terms in the above equations show the dependence of the sign
of the velocity-temperature correlation on the mean gradients. Note that terms

associated with p' and 6’ are assumed small as suggested by the computations.
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values at the centerline.

An instantaneous field from the computation is used to generate inflow turbu-
lence in the spatial simulation with the Mach 1.2 shock wave. The field at St = 4.58
is chosen for this purpose. Statistics from this instantaneous realization are pre-
sented in detail below. Figure C.12 shows profiles of the mean flow at St = 4.58.
Note that the mean pressure is very nearly uniform. The maximum deviation of
the mean pressure from its value at the centerline is 0.06%. Although not plotted,
the mean vertical component of velocity was checked and seen to be 4 orders lower
than U.

Profiles of turbulent kinetic energy are shown in figure C.13. As expected,
kinetic energy levels near the boundary are negligible due to the sponge regions.
The profile of u? suggests that the transverse inhomogeneity introduced at the
outer edge of the turbulent region extends until about y/Ag = £12. As a result, we
focus on the ‘core region’ extending from —12 < y/Ag < 12. Subsequent plots only
show this core region. The kinetic energy is seen to be inhomogeneous over this
region; figure C.13 shows that kinetic energy decreases with increasing y. This trend
is consistent with the Reynolds number decreasing with increasing y. Although
kinetic energy decreases with y, the non-dimensional Reynolds stresses ulu/, / q° are

nearly uniform as shown in figure C.14.
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Profiles of the thermodynamic fluctuations and their correlation with the ve-
locity field are shown in figures C.15 and C.16 respectively. As previously observed
at the centerline, the intensity of pressure fluctuations is noticeably smaller than
that of density and temperature. Also, prms/p is very nearly equal to Tyms/T. The
intensities of density and temperature are seen to decrease with increasing y. While
variaton of Reynolds number across the mean streamlines might partially be re-

sponsible, it can be shown that the observed trend is consistent with the variation
of dp/dy with y.

As seen from equations C.14, the primary source of thermodynamic fluctuations
is the stirring of the mean gradients by the turbulent velocity field. As a result,
a mixing length argument is used to explain the observed profiles of density and
temperature. Denoting the mixing length by 7, we have p' = —ndp/dy. Using
equation C.11 to express p in terms of U, yields the following expression:

5 = 2175, (C.17)
which shows that the intensity of density fluctuations decreases with increasing y
if n is independent of y. Similar to _u—iu_;/ q?, the velocity temperature correlation is
nearly uniform across streamlines. Also, the correlation coefficient between density

and temperature fluctuations is nearly -1 on all streamlines in the core region.

The fidelity of the solution is examined in figures C.17 and C.18 respectively.
One-dimensional spectra (in the z direction) of density and velocity fluctuations
(computed with respect to the instantaneous mean) at the centerline are plotted
in figure C.17. The spectra show about 8 decades of decay, indicating adequate
resolution. Although not shown, spectra on the other streamlines were also exam-
ined and found acceptable. In particular the spectra on the lower streamlines were
examined on account of their higher Reynolds number. About 6 decades of decay

was observed.

Since mean shear increases the turbulence lengthscales, the turbulent eddies
could outgrow the computational domain at large times. Since the streamwise
lengthscale is the largest, two-point correlations of the density and velocity field
in the streamwise direction are examined to check for adequacy of the domain
size. The correlations computed at the centerline are plotted in figure C.18. The
magnitude of the correlation is seen to drop to acceptably small levels inside the

domain indicating that the domain size is adequate.
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C.3.2 Spatial simulation of the shear flow

As mentioned above, the instantaneous field at St = 4.58 is used to generate
inflow turbulence in the spatial simulation. The procedure is similar to that dis-
cussed in Section C.2. The only significant differences are that the fluctuations are
only Fourier transformed in z and 2z and that the convection velocity is the mean
velocity at the center of the domain. Use of a constant convection velocity is needed
to ensure that the correlation of the turbulence in the y direction is preserved. How-
ever, since turbulent fluctuations are (over small distances) convected by the local
mean velocity, this will set up streamwise gradients at the inflow. The magnitude of
these gradients is determined by the extent to which the mean velocity is uniform
over a typical eddy lengthscale in the y direction; i.e., the parameter (AU/U)qqq,
is required to be small to reduce transients due to the mean shear. The relevant
statistics of the turbulence upstream of the shock wave are documented in Chapter
5 and are not repeated here. Similar to spatially decaying turbulence (section C.2),
the inflow disturbances develop statistics similar to the temporal simulation after a

small transient.
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Appendix D

Influence of Entropy Fluctuations on
Shock / Turbulence Interaction:

Direct Numerical Simulation

Chapter Three used linear analysis to quantify the role of entropy fluctuations
on the evolution of a turbulent flow across a shock wave. This appendix considers
direct numerical simulation of the problem: i.e., the interaction of a normal shock
wave with isotropic turbulence. The appendix is organized as follows. An introduc-
tion to the computation is first provided in Section D.1. Section D.2 discusses the
relevant numerical details; emphasis is placed upon the inflow and outflow boundary

conditions. Results from the simulations are then presented in Section D.3.
D.1 Introduction

A schematic of the computed flow is shown in Figure D.1. Note that the mean
flow upstream of the shock wave is spatially uniform. Also, the shock wave is
stationary in the mean. The coordinate system is chosen such that z denotes the
streamwise or shock-normal direction, while y and z denote the directions transverse
to the mean shock wave. The turbulence upstream of the shock wave is isotropic.
The role of upstream entropy fluctuations is examined by performing two different
simulations for the same mean Mach number of the shock. In one computation, the
upstream turbulence is essentially composed of vortical fluctuations while in the
second computation, the upstream turbulence comprises of vorticity and entropy
fluctuations that approximately satisfy Morkovin’s hypothesis. Contrasting the two

calculations allows the role of entropy fluctuations to be studied.

The governing equations are the unsteady, three-dimensional, compressible

Navier Stokes equations in the following conservative, non-dimensional form:

0 0

—ai = ~ 5 () (D.1a)
0 0 . T
9t (pui) = —3:1:]- (puiuj + pbi;) + Oz, (D.1b)
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FIGURE D.1: Schematic of the numerical simulation.

o8 _ 0 1O, 0
Bt = g (B Pl = 5 5 4Ti) (D.1c)

The viscous stress tensor and heat flux vector are given by

L _ B [Oui  Ouy _2_61“"5..
Tij = Re\Oz; Oz; 30z A

. oT
%= " RePr Oz; (D-2)

The variable F; denotes the total energy, defined as, E, = p/(v — 1) + pu;u;/2.
Note that the mean sound speed, density and dynamic viscosity at the inflow of the
domain are used to non-dimensionalize velocity, density and viscosity respectively.
The reference lengthscale, L, is arbitrary and is related to the other reference vari-
ables by, Re = p,c.L,/p,. The fluid is assumed to be an ideal gas with 1.4 as the
ratio of specific heats. Dynamic viscosity is related to temperature by a power law

with 0.76 being the exponent, and the Prandtl number is assigned a constant value

of 0.7.

The computational mesh is uniform in the directions transverse to the shock
wave. A non-uniform mesh is used in the streamwise direction, such that points
are clustered in the vicinity of the shock. The following analytical mapping is used

for this purpose. Using the variable s to denote a uniform mesh from 0 to L, the
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non-uniform mesh is given by

r—d hb(s—3c/2 hbc/2
G
- = = D3
Lz (r—d ( )
r+\ =

) 1 [cosh b(1—3¢/2) cosh bc/Z]
Typical values for b,r,d and c are 12, 1.95, 0.04 and 0.281 respectively.

cosh b(1—c/2) cosh 3bc/2

A combination of the sixth order Pade scheme (Lele, 1992b) and the sixth order
ENO scheme (Shu & Osher 1988, 1989) is used to compute spatial derivatives. The
shock-capturing scheme (ENO) is applied only in the streamwise (shock-normal)
direction in the vicinity of the shock wave. The sixth order Pade scheme is therefore
used to compute all spatial derivatives except the streamwise inviscid fluxes around
the shock: the ENO scheme is used to compute those terms. Time advancement
is performed using the compact-storage, third order Runge Kutta scheme (Wray,
1986). Since the turbulence is statistically homogeneous transverse to the shock
wave, periodic boundary conditions are imposed in those directions. Turbulent
fluctuations are superposed onto the mean field at the inflow boundary while non-
reflecting boundary conditions are specified at the exit through use of a ‘sponge’

zone. Details of the inflow and outflow boundary conditions are provided below.

D.2.1 Inflow turbulence

Since flow upstream of the shock wave is supersonic, all flow variables are
specified at the inflow boundary. Turbulent fluctuations in velocity, density and
pressure are superposed on the uniform mean flow. These turbulent fluctuations
are obtained from a single realization of a separate temporal simulation of decaying
turbulence. The temporal simulation (which has periodic boundary conditions in
all three directions) is advanced in time until the flow field is developed i.e., the
velocity derivative skewness S, = W/ [—(_Z—::T_V]:*/ ? attains (Tavoularis, Bennett &
Corrsin, 1978; Erlebacher et al., 1992) a value between -0.4 and -0.6. Typically this
happens after a time, t ~ A\/uyms. Taylor’s hypothesis is then invoked, to convect
a single realization of the developed field into the inflow of the spatial simulation.

Details of this procedure are described in Appendix C.

The simulations with the shock wave compare two different cases at each Mach
number. The two cases differ in the nature of turbulence upstream of the shock

wave. While upstream turbulence in one case, (case A) is essentially composed of
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vortical fluctuations, a combination of vorticity and entropy fluctuations is present
in the other (case B). The upstream entropy field in the second case is required to
approximately satisfy the weak form of Morkovin’s hypothesis i.e., equation 3.1 is
satisfied in the r.m.s. sense. To further ensure that the inflow spectra and r.m.s
levels of velocity in both cases are essentially the same, the inflow turbulence in

both cases is obtained from the same temporal calculation.

This is done as follows. A temporal simulation of isotropic turbulence is con-
ducted where the initial velocity field has the spectrum E(k) ~ k*e=2¥* /¥ and zero
thermodynamic fluctuations. This simulation is advanced until velocity deriva-
tive skewness reaches its developed value. An instantaneous developed flow field
is then taken. The thermodynamic fluctuations in this field are nearly isentropic.
To generate a realistic flow field of vorticity and entropy fluctuations, the following
procedure is carried out. Pressure fluctuations in the stored flow field are set to zero
while density fluctuations that satisfy p'/p = (v — 1)MZ,.¢ u'/Uspar. are specified
(the subscript spat. denotes spatial). This modified field is then advanced in time.
Statistics from the simulation are compared to a parallel simulation where the field

without the above modifications is advanced for the same length of time.

As expected from Kovasznay’s (1953) modal decomposition, the entropy fluc-
tuations that are introduced do not significantly influence the velocity field. After
a brief acoustic transient (! ~ M;A/urms), the decay rate of kinetic energy and
velocity derivative skewness match that obtained in the simulation without entropy
fluctuations. However as expected, the entropy fluctuations decay with time and
exhibit increasing deviation from Morkovin’s hypothesis. To ensure that the weak
formulation of the hypothesis is approximately satisfied by the upstream turbu-
lence, an instantaneous realization is taken immediately after the acoustic transient
and used to specify inflow turbulence for case B. A realization at exactly the same
instant of time is taken from the temporal simulation without entropy fluctuations

and used to specify inflow turbulence in case A.

Consider for example, the temporal simulation used to generate inflow tur-
bulence in the simulation of a Mach 1.29 shock wave interacting with a turbu-
lent flow. The initial velocity field is chosen to have fluctuation Mach number
M; = \/q—2/E = 0.22 and microscale Reynolds number Ry = u;nsA/7 = 39.5. A
uniform mesh of 812 points is used on a domain of length 27 in all three directions.

The solution is advanced for a period of time, t = 1.587;, where 7; is a turbulence
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time-scale, defined as the ratio of A to uypms at t = 0. As shown in figure D.3, the
velocity derivative skewness has attained a value of —0.48 by this time. Also, M;

and R) have dropped to 0.16 and 22.8 respectively.

The solution at the end of the run is then modified to introduce entropy fluctua-
tions as described above. The resulting field is then advanced in time. The temporal
evolution of the velocity derivative skewness is compared in figure D.3 to a parallel
simulation, where the stored field without any modifications is advanced for the
same period of time. After a brief acoustic transient, the skewness is observed to
have the same value as the simulation without entropy fluctuations. The temporal
evolution of the r.m.s values of the terms in Morkovin’s hypothesis in the simulation
with entropy fluctuations are shown in figure D.4. The deviation from Morkovin’s
hypothesis is seen to increase with time. At the end of the simulation the weak form
of the hypothesis is approximately satisfied; prms/p, Tyms/T and (y— 1)M52pat Urms/U
have values of 0.043, 0.043 and 0.044 respectively. By comparison, pyms/7P is 0.01.
Also, M;, Ry and 6rms/wrms have values of 0.14, 20.6 and 0.085 respectively; i.e.,

the solution is dominated by vorticity and entropy fluctuations that approximately
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satisfy Morkovin’s hypothesis.

The solution at the end of the two runs shown in figures D.3 and D.4 is used to
specify inflow turbulence in the spatial simulation involving the shock wave. The
fidelity of the temporal simulation is checked by examining energy spectra and two-
point correlations of the flow field. One-dimensional spectra of the velocity field
show very good agreement between the two cases. The spectra show about five
decades of drop-off indicating adequate resolution. Also, two point correlations of
the velocity and density field drop off to zero indicating adequate size of computa-

tional domain.

D.2.2 Outflow boundary condition

Approximately non-reflecting boundary conditions are specified at the sub-
sonic outflow boundary. The boundary conditions comprise of a ‘sponge layer’
in the streamwise direction, followed by a characteristics-based boundary condi-
tion (Poinsot & Lele, 1992) at the outflow plane. Boundary conditions involving a
sponge layer have been used in the past in a variety of problems: e.g. Givoli (1991),
Israeli & Orszag (1981), Colonius, Moin & Lele (1995). The boundary conditions
with a sponge were shown (Colonius et al.) to yield significantly better results than

boundary conditions without the sponge layer.

Accordingly, a ‘cooling term’ of the form, —o(U — U,,¢) is added to the right-
hand side of the governing equations over the sponge layer alone. U,es denotes
the vector of reference variables towards which the solution in the sponge layer is
forced. It is obtained from the Rankine-Hugoniot equations for a laminar shock.

The coefficient o(z) is a polynomial function; i.e.

(z — z5)"

O'(CII) = As'(L—sz)n

(21)
where, £, and L, denotes the start of the sponge and the length of the domain
respectively. Typical values of A,, n and (L, — ,)/L, used in our simulations are
5, 3 and 0.14 respectively.

The performance of the outflow boundary conditions is illustrated by comput-
ing the interaction of a Mach 1.29 shock wave with a plane vorticity-entropy wave,
that is incident at 45° from upstream. The ability of the boundary conditions to
handle the downstream propagating waves (as predicted by linear analysis) is thus

tested. The mean flow parameters, streamwise domain and grid are the same as the
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corresponding turbulent simulation. The extent of the domain in y is set to equal
one wavelength of the incident disturbance. A mesh of 231 by 16 points is used to

discretize the flow.

The disturbance at the inflow boundary is given by the real part of equation
3.2, where the variables k,1;, A4, and A. are set to equal 5, 45°, 0.05 and 0.05
respectively. The computation is initialized by a numerically computed steady
laminar shock. The disturbance field is then introduced at the inflow boundary.
Results are then gathered over each period of the inflow disturbance after one
domain flow-through time. The results from successive periods are compared to
check if initial transients persist. After a time Ujt/L, = 3.5, the transient effects

are found negligible and the results have converged.

To evaluate the outflow boundary conditions, the same flow is computed on a
domain twice as long behind the shock wave. 1100 points are used in the streamwise
direction. The resulting resolution is greater than that in the shorter domain. Re-
sults from the two simulations are then compared to each other and linear analysis.

Figure D.5 shows the streamwise evolution of kinetic energy, vorticity and
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Case 1.29A Case 1.29B
M, 1.29 1.29
Rx 19.1 19.1
M; 0.14 0.14
V@ /Uy 0.11 0.11
Prms/PT 0.012 0.042
Tems /Ty 0.0042 0.041
Prms/YP1 0.011 0.010
(N, Ny, N.) (231, 81, 81) | (231, 81, 81)

TABLE D.1: Parameters of the numerical simulations.

density fluctuations in the two computations. Only the ‘useful region’ (L; — z,) of
the shorter domain is shown. Good agreement between the two computations is ob-
served, indicating that the non-reflecting nature of the outflow region is acceptable.
Some influence of the sponge region (maximum value about 3.5%) on the statistics

of v'% and p7 is observed immediately upstream of the sponge.

Comparison of the spatial evolution of the statistics to inviscid linear analysis
is not performed, due to significant viscous decay in the computation. However, the
amplification of statistics immediately across the shock wave is compared to that
from analysis. Such comparison shows that the error (computed with respect to
analysis) in ;’—5, UT, w'? and ;’—2 is 0.8%,1.6%, 0.8% and 0.5% respectively. Note that
in computing shock/turbulence interaction, the fraction of incident waves that lie in
the propagating regime pose the primary challenge to outflow boundary conditions.
Performance of the outflow boundary for the incidence angle of 45°, suggests that

the boundary conditions are quite adequate for the turbulent simulations.

D.2.3 Simulations performed

The relevant parameters of the turbulent simulations are tabulated in Table
D.1. The quoted values of all quantities are those at the inflow. Essentially, the
simulations consider the interaction of low Reynolds number turbulence with a Mach

1.29 shock wave. Note that one of the compression-corner experiments (freestream
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Mach number 2.9, wedge angle 8°) of Smits and Muck (1987) yields a normal Mach

number of 1.29 if one assumes that the entire flow is turned across a single shock.

D.3 Results

Turbulence statistics are computed by averaging over time and the y— and z—
directions. As shown in figure D.6, the mean flow exhibits behavior similar to that
observed by Lee et al. (1992). The ratios of mean velocity, temperature and pressure
across the shock wave are very nearly equal to their corresponding laminar values.
An overshoot in pressure and temperature is observed immediately downstream of
the shock wave. The mean velocity exhibits a corresponding undershoot, following
which, it remains practically constant. However, mean pressure and temperature
exhibit a small positive gradient behind the shock wave. The presence of upstream
entropy fluctuations has no noticeable effect on the mean flow on both sides of the
shock' wave. Entropy fluctuations do however, influence the apparent thickness of
the shock wave as inferred from the mean flow profiles. The ‘mean shock thickness’
is larger in the presence of entropy fluctuations; i.e., the mean gradients in the
vicinity of the shock are smaller. Given that the ‘mean shock thickness’ reflects the
amplitude of shock oscillation, this indicates an increase in shock motion when the

upstream fluctuations satisfy the SRA.

D.3.1 Turbulence kinetic energy

The presence of upstream entropy fluctuations has a noticeable effect on the
evolution of turbulence kinetic energy across the shock wave. Figure D.7 shows the
streamwise evolution of turbulence kinetic energy in cases 1.29A and 1.29B. Note
that v'2 = w2 behind the shock wave due to axisymmetry. The intermittency asso-
ciated with shock oscillation is seen to cause high fluctuation levels in the vicinity
of the shock (Debieve & Lacharme, 1986; Lee et al., 1992) The width of this inter-
mittent region (denoted by inter.) nearly equals the ‘mean shock thickness’. Using
the mean velocity profile to determine its value, kointer. is approximately 0.3 and
0.4 in cases 1.29A and 1.29B respectively. We focus our attention on the evolution

of kinetic energy outside of this intermittent region in the following paragraphs.

As shown in figure D.7, kinetic energy levels behind the shock wave are no-
ticeably higher in case 1.29B. The streamwise component is affected more than the
transverse components. Comparison of the peak in the profile of u'? (at koz = 14)

reveals 20% higher levels in case 1.29B. Comparison of v'? at the same location
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shows the level of enhancement to be a modest 7%. As shown in figure D.8, this
enhancement in the presence of entropy fluctuations is in agreement with linear
analysis. Note that unambiguous quantitative comparison of kinetic energy be-
tween analysis and simulation is made difficult by viscous decay in the simulations.
Also, the intermittency associated with shock oscillation is not reproduced by the
analysis. If the peak levels of kinetic energy behind the shock wave in the simulation
and analysis are compared, the linear analysis predictions are seen to be higher -
consistent with viscous decay in the simulations. As seen from figure D.8, the am-
plification of u'? as predicted by linear analysis, is 1.47 and 1.95 in the absence and
presence of entropy fluctuations (that satisfy SRA) respectively. The corresponding
values for v'> are predicted to be 1.22 and 1.32 respectively. Thus linear analysis
predicts a 33% enhancement in the amplification of u'? while amplification of o2 is

predicted to increase by about 8%.

D.3.2 Vorticity fluctuations

All components of vorticity are affected by the upstream presence of entropy
fluctuations. As shown in figure D.9, levels of vorticity fluctuations behind the
shock wave are higher in case 1.29B. The amplification of ;? is seen to increase by
8.7% when entropy fluctuations are present upstream of the shock. This increase is
qualitatively predicted by linear analysis. The increase in amplification predicted
by analysis is much higher - about 19.4%. The primary reason for this difference
between analysis and DNS is believed to be the strict imposition of the SRA up-
stream of the shock in the analysis. The upstream fluctuations in the simulation
only approximately satisfy the SRA due to the absence of mean temperature gra-
dients. Further support for this reasoning, is provided by the fact that vorticity
amplification in case 1.29A is within 6.3% of analysis while the deviation in case

1.29B is about 16.2%.

DNS shows that, while the transverse components of vorticity monotonically
decay behind the shock, the streamwise component increases downstream of the
shock wave after remaining practically constant across it. In fact, the peak level of
L? behind the shock wave in case 1.29B is about 7.1% greater than its upstream
value. As noted by Lee et al. (1992), this behavior is nonlinear in nature; it is
caused by the stretching of vorticity fluctuations by the fluctuating strain rate. In
the presence of upstream entropy fluctuations, it is likely that non-linear baroclinic

effects might provide additional contribution.
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D.3.3 Thermodynamic fluctuations and
Morkovin’s hypothesis

The thermodynamic fluctuations behind weak shock waves were noted by Lee
et al. (1994) to be nearly isentropic. The thermodynamic field in case 1.29A follows
this trend; i.e. prms/7P, Prms/P and Tyms/(y — 1)T are nearly equal over the entire
domain. However, upstream entropy fluctuations were not present in Lee et al.’s
computations. As might be expected, the downstream thermodynamic field is not
isentropic when upstream entropy fluctuations are present. Figure D.10 shows the
streamwise evolution of the pressure, density and temperature fluctuations in case
1.29B. The quantity (7 — 1)M?u,ps/U is also shown. This allows the weak form
of Morkovin’s hypothesis to be evaluated across the shock. The corresponding
predictions made by linear analysis are shown in figure D.11. Good qualitative
agreement is observed between analysis and simulation. The intensity of pressure
fluctuations in the near field is seen to be comparable to those of density and
temperature. However, pressure fluctuations decay behind the shock wave, thereby

causing their far field intensity to be smaller.
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Considerable deviation from Morkovin’s hypothesis is observed in the near
field behind the shock. The extent of deviation in the far field is seen to be smaller.
Also, the first part of the hypothesis (prms/P = Trms/T) is seen to be a better
approximation in the far field than the second part, which relates the density and
velocity fluctuations. Note that the notion of far field in the simulation is not
as precise as that in the analysis. Linear analysis suggests (figure D.11) that the
far field values are attained at approximately koz = 17. If Morkovin’s hypothesis
is evaluated at this location in the computation, it shows behavior comparable
to analysis. However, the validity of the weak form of the hypothesis is seen to
increase with distance downstream of this location. Interestingly, although the rms
levels of the terms in the hypothesis approach each other, the correlation coefficient
between u' and T does not approach -1. It decreases in magnitude across the shock,
and decreases further in magnitude downstream; e.g., the correlation coefficient at
kox = 20 is -0.54. The exact cause for this trend which is not predicted by analysis,
is not known. Perhaps, it is best considered a transient aspect of the return to

isotropy problem behind the Mach 1.29 shock wave.

D.4 Summary

Direct numerical simulation was used to study the influence of entropy fluc-
tuations on the evolution of isotropic turbulence across a Mach 1.29 shock wave.
The observed results are in qualitative agreement with the linear analysis of Chap-
ter 3. The presence of upstream entropy fluctuations was observed to increase
the amplification of turbulence kinetic energy and vorticity across the shock wave.
The computed enhancement was lower than that predicted by linear analysis, pre-
sumably due to the imposition of the strict form of Morkovin’s hypothesis in the
analysis. The turbulence was observed to remain axisymmetric over the length of
the domain behind the shock wave. Upstream entropy fluctuations were observed
to increase the nonlinear rise in the level of streamwise vorticity fluctuations behind
the shock wave. Morkovin’s hypothesis was seen to be invalid immediately behind

the shock. However, the validity of the hypothesis is seen to increase with distance
behind the shock.
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