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Hardware acceleration consists of offloading computational work to devices such as 
graphics processing units (GPUs) to produce overall speed-up. Algorithms and numerical 
methods must be constructed to suit the available hardware in order to effectively 
produce speed-up. In this work a numerical method is presented which can effectively 
use hardware acceleration to simulate incompressible turbulent fluid flow. The method is 
an unstructured overset method where unstructured meshes are attached to individual 
bodies and connected throughout the flow domain to produce a single domain solution 
through an overset assembly process. The unstructured overset method shown in Horne 
and Mahesh [1] and Horne and Mahesh [2] was found capable of scaling to O(105) 
computational cores for O(105) moving bodies in turbulent flow fields while producing 
accurate flow results. This highly scalable method is modified and extended to effectively 
utilize on-node hardware acceleration. Overset assembly algorithms which use hardware 
acceleration are presented based on successful accelerated algorithms in real-time ray 
tracing and computational geometry. Timing results for core overset assembly operations 
are presented showing a maximum O(100x) speedup when using hardware acceleration. 
A novel method for turbulent fluid flow is presented which utilizes over-decomposition 
of the flow domain to produce task-parallelism allowing asynchronous calculation of the 
different steps of the method while also providing overlap between data transfer and 
computation. A mixed precision solver is utilized which provides a balance between 
optimal performance and numerical accuracy. A cost effective and accurate artificial 
compressibility pressure regularization is used which has minimal memory complexity 
and minimizes computational cost while maintaining accuracy. A primal-dual Laplacian 
operator is introduced which produces accurate results on skewed meshes. Results for 
canonical flow cases with overset meshes are shown illustrating the method’s accuracy 
and numerical properties. Substantial speed-up is demonstrated for the numerical method 
reaching upwards of 50 times as fast as the non-accelerated method for high cell loadings.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Accurately and quickly simulating rigid moving bodies in turbulent fluid flows is of great interest to many industrial 
applications, such as rotorcraft, wind energy applications, and marine propulsors. One potential path to accelerate such 
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simulations is the use of hardware acceleration where expensive computational tasks are offloaded to devices such as 
graphics processing units (GPUs) to produce substantive performance gains. Over the past decade hardware acceleration 
has proven to be a potent tool in fluid simulations capable of producing order-of-magnitude performance gains over pure 
central processing unit (CPU) calculations [3–7].

Algorithms and methods which are effective on CPU devices are not necessarily effective on a GPU. A GPU contains 
many computational cores and has overall higher latency when compared to a CPU. Float precision plays an important role 
on GPUs where peak floating-point-operations-per-second (FLOPS) can range from O(100) TFLOPS (109 FLOPS) when using 
half precision to O(1) TFLOPS when using double precision as is the case for a NVIDIA V100 GPU. Memory access is an 
important consideration when using a GPU. Regular, strided, memory access can produce orders of magnitude improved 
computational throughput relative to random memory access. Additional to these considerations, data transfer to the GPU 
memory is relatively slow and is a common bottleneck in computational performance. Algorithms must be sufficiently 
parallel, account for the heightened latency, efficiently use float precision, and overlap calculations with GPU data transfer 
to be performant.

The goal of this work is to produce an unstructured overset numerical method that efficiently utilizes GPUs to simulate 
incompressible turbulent fluid flows to produce substantive speed-up relative to pure CPU implementations. The method to 
be presented is based on the work found in Horne and Mahesh [1] and Horne and Mahesh [2] in which an unstructured 
overset method capable of simulating O(105) moving bodies in turbulent fluid flow on O(105) computational cores was 
presented. Strong-scaling was demonstrated in this work up to 492,000 computational cores for simulations of 100,000 
moving spheres in a turbulent flow field. This highly scalable method is modified and extended in this work to use on-node 
hardware acceleration.

In the method, unstructured overset meshes are attached to each individual moving body. The arbitrary, overlapping 
meshes are connected through an overset assembly process producing a single cohesive flow solution over the domain. For 
arbitrary motion it is automatic and dynamic with time as the bodies move throughout the domain. For the motion of 
the fluid a kinetic energy preserving, finite volume method is utilized with a supercell interpolant for flow reconstructions 
between overlapping meshes. The 6 degrees-of-freedom (6-DOF) motion of the rigid bodies is found by directly integrating 
fluid and forces and torques on the surfaces of bodies using Newton’s and Euler’s motion laws. To effectively accelerate the 
method, GPU algorithms must be produced for both the overset assembly process and finite volume numerical method.

Utilizing GPUs to accelerate overset assembly is not a new idea. Chandar et al. [8] produced overset assembly algorithms 
capable of providing a peak 60x speed-up relative to a serial CPU algorithm for donor searching. The work used a gradient 
search approach which locates donor cells by marching across all potential donor cells via cell-face couplings. Potential 
donor cells were found by a coarse axis-aligned bounding box (AABB) overlap calculation. Cutting was conducted implicitly 
by finding potential donors for every cell on a given overset mesh. Cells which overlap solid boundaries according to AABB 
overlap and could not find any suitable donors were removed from the calculation. The work did not consider mesh motion 
while performing GPU accelerated assembly. Only a single GPU and single processor was considered and multiple GPUs per 
node with multiple nodes, as is common on modern computing hardware, was considered a future extension. Additionally, 
the assembly was only demonstrated for a single overset mesh and a relatively limited number of cells.

More recently, Crabill et al. [9] presented an overset assembly method for curved meshes which utilizes GPUs. A parallel 
direct cutting algorithm was shown which has each cell calculate a signed distance to nearby boundaries to determine 
which cells lie within solid bodies. Donor searches were performed using an alternating digital tree structure (ADT) [10]. 
In the work, ADT were constructed on CPUs and then transferred to the GPUs. Searches within the ADT were done using a 
stack system to avoid recursion. Rigid body motion was assumed such that the tree only had to be constructed once and 
then updated through the use of translation and rotation matrices. A substantive 16x speedup was demonstrated for the 
assembly compared to a pure CPU overset assembly calculation for a moving overset case using K80 GPUs compared to 4 
computational cores on a modern Intel processor.

Numerical methods to simulate incompressible flow have been developed that can effectively utilize GPUs [3–7,11]. Arti-
ficial compressibility (AC) methods are an example that have grown in recent popularity [12–18]. These methods introduce 
the time derivative of pressure to the mass equation to regularize the incompressible fluid equation system. They have 
the advantage of not requiring the solution of an expensive Poisson equation while meeting or exceeding the time accu-
racy of other methods. AC methods achieve this while producing linear systems with lower condition numbers which are 
more amenable to lower precision or mixed precision solutions and allow practical calculation using relatively simple linear 
solvers [14,15].

Previous work has applied AC methods to overset calculations, e.g. Tang et al. [19]. Generally expensive dual time step-
ping strategies have been employed and hardware acceleration has not been considered. In this work the predictor-corrector 
overset method presented in Horne and Mahesh [2] is modified by the addition of the material derivative of pressure to the 
pressure equation. The pressure and velocity are solved at the same time level each time step removing the splitting time 
error that is common to predictor-corrector methods. The method retains the time order of accuracy of the previous method 
while also producing linear systems with lower condition numbers. A mixed precision solver is used for both velocity and 
pressure to effectively use GPUs while retaining adequate numerical precision. Over-decomposition is used to introduce ad-
ditional concurrency over multiple GPUs where velocity and pressure iterations can be conducted simultaneously with GPU 
data transfer, halo data exchanges, and overset boundary reconstructions. A primal-dual Laplacian operator is used in place 
of the two-point-flux-approximation (TPFA) in the original work to produce more accurate flow fields on skewed meshes.
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Fig. 1. Example overset meshes colored by partition numbering before and after overset assembly respectively.

GPU accelerated overset assembly is performed using modifications to modern algorithms found in realtime raytracing 
and collision detection. These algorithms were designed from their core to be heavily parallel and performant on GPUs. 
Linear bounding volume hierarchies (LBVH) are extensively used for geometry searches and to simultaneously determine 
coarse geometry overlap across multiple GPUs [20,21]. This binary tree structure avoids the issues of point search structures, 
such as ADT, by robustly finding all volumes that can potentially intersect a given object through the use of bounding 
volumes. It is quickly constructed on a GPU in parallel using a space-filling curve based on Morton codes. Searches of the 
LBVH are performed using a stack strategy that avoids recursion while benefiting from the LBVH structure. To determine 
fine geometric overlap, the widely successful Gilbert-Johnson-Keerthi (GJK) algorithm is used [22,23]. This algorithm uses 
the concept of a Minkowski distance to exactly determine if two convex, arbitrary polyhedron overlap. Since most of all 
geometry calculations involve convex polyhedrons in this work, this is a highly robust calculation to the limits of the float 
precision used.

Sec. 2 shows details of the accelerated overset assembly. Sec. 3 gives details of the numerical method. Illustrative re-
sults are shown in each section to demonstrate different features of the various algorithms and method. Validation and 
peformance of the method is shown in Sec. 4. Conclusions of the work are then drawn in Sec. 5.

2. Accelerated overset assembly

Fig. 1 depicts an example overset case of two objects before and after the overset assembly procedure. A partitioned 
mesh is attached to each object and to a background flow domain. To perform overset assembly in parallel, overlapping 
mesh partitions throughout the domain must establish communication patterns to exchange geometry and flow information. 
Computational cells that lie outside the flow domain, such as cells within the objects or the channel walls, must be removed 
from the simulation. It is also generally desirable to reduce mesh overlap as much as possible while still maintaining 
complete coverage of the flow domain to reduce computational cost. Both of these tasks are achieved by setting a masking 
variable which turns on or off the flow solution throughout the flow domain through a process commonly referred to 
as “cutting” [24]. Cells which border masked cells or which lie on the outer edges of overset meshes must be provided 
boundary conditions through flow reconstruction from overlapping meshes. This requires a detailed geometrical cell partner 
search across all overlapping mesh partitions.

To develop a hardware accelerated overset assembly method we begin with the work shown in Horne and Mahesh [1]
which outlines a series of algorithms that perform the full overset assembly process in parallel. In the work multiple 
unstructured mesh partitions are assigned to available computational cores. A Cartesian processor mesh is used to determine 
communication patterns between the cores. As depicted in Fig. 2, explicit volumes, such as spheres, object-oriented boxes 
(OOB) and more, are used to cut redundant cells. Fine detail cutting is done on any remaining cells that intersect solid 
boundaries using K-Dimensional tree (K-D tree) searches and signed distance calculations. A ‘Forest-Fire’ flood-fill algorithm 
is then used to cut any cells which lie deep within solid boundaries. The reader is invited to read the work for more details 
on any of these assembly steps.

To introduce hardware acceleration into an established code, algorithms amenable to acceleration must first be identified. 
In the timings reported in the work the two most expensive operations were shown to be the cutting and reconstruction 
partner pairing algorithms. The communication pattern operations mainly consisted of Message-Passing-Interface (MPI) re-
lated algorithms with little opportunity to introduce hardware acceleration. Due to both of these considerations the cutting 
and reconstruction partner pairing operations are selected to be accelerated.

At their core both of these assembly steps consist of the same operation: given an object, all overlapping objects in a 
given group of objects must be found. For instance, in the cutting process one must find all of the cells that overlap with 
3
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Fig. 2. Cutting examples depicting explicit cutting volumes and implicit cutting using flood-fill respectively. Explicit cutting volumes are shown as shaded 
volumes and include sphere, cylinder, and OOB cuts around the objects shown in dark blue (�). Fine detail cutting is then depicted for two touching 
spheres taken from Horne and Mahesh [1]. Cells which are found to overlap are depicted in blue (�) and flood-fill starting cells are shown in red (�). The 
last figure shows the final result of the fine detail cut. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 3. BVH example for four objects. Note the correspondence between AABB line styling shown in the top figure with the nodes shown in the bottom 
figure. To determine overlap a calculation checks AABB overlap starting at the top of the tree and only continues down a branch if the corresponding AABB 
overlaps. This is done until all leaf nodes containing objects which overlap are found.

a solid boundary or a explicit volume. For cell reconstruction one must find all overlapping cells to a given reconstruction 
cell or face. Performant GPU accelerated algorithms to perform this operation are commonly found in real-time ray tracing 
and collision detection [21,23,25].

In real-time ray tracing one seeks to find all triangles along the surfaces of objects that intersect the path of a given 
ray. This calculation must be fast enough that the scene can be manipulated in real time. It is not computationally feasible 
to achieve this by performing an expensive and detailed overlap calculation for each triangle and ray as this would involve 
O(Nray Ntri) expensive calculations where both the number of rays, Nray , and the number of triangles, Ntri , are large. Instead 
algorithms extensively use binary tree structures such as bounding volume hierarchies (BVH) to yield O(log(N)) cheap 
operations for each ray with significantly less expensive detailed calculations.

BVH are binary tree structures that use simple bounding volumes of different sizes to determine the splits in the tree as 
shown in Fig. 3. At the top of the tree the bounding volume encompasses the entire collection of objects. At the bottom of 
the tree the volumes encompass individual objects commonly referred to as leaf nodes. To determine overlap tree traversal 
starts at the top. At each branching node a relatively cheap intersection calculation is performed with each relevant bound-
ing volume. If intersection is found with a branch’s bounding volume the algorithm will continue to traverse the branch. 
Detailed overlap calculations are only performed at the bottom of tree with objects attached to leaf nodes.

For real-time ray tracing BVH construction must be done on a GPU efficiently as objects move in a scene. One algorithm 
to achieve this was shown in Karras [21]. To construct a BVH on a GPU, a bottom up approach is used where the leaves of 
4
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Fig. 4. BVH data structure psuedo code and corresponding structure. As shown, the main data structure consists of 3 arrays: internal BVH nodes, leaf BVH 
nodes, and objects.

the tree are first defined and the branches are determined after. To determine the ordering of the leaves at the bottom of the 
tree, a space-filling curve based on Morton codes is used. This ensures that objects that share branches in the constructed 
tree are close in space such that the BVH is well balanced and efficient. All of these operations are done in parallel on a 
GPU yielding high performance relative to a pure CPU equivalent. Additionally, tree traversal is done for many searches in 
parallel and optimized to minimize thread divergence and other potential performance losses.

This algorithm is utilized to construct a BVH for cutting and reconstruction partner pairing. The data structure for the 
BVH is depicted in Fig. 4. In each BVH there are three arrays: an array of internal BVH nodes, an array of leaf BVH nodes, 
and an array of objects. The object class shown in the figure contains vertices for a given object. The node class in the figure 
is used to store the branch splits in the tree. Each node contains pointers to a left and right node which could either be 
another branch or a leaf. AABB over the left and right entries are included in the node class for tree traversal. The leaves of 
the tree consist of an array of nodes that each point to an object. Since the tree is a binary tree, exactly 2Nobj − 1 nodes 
are required, where Nobj is the number of objects in the BVH. The main task to construct the BVH is to correctly arrange 
the node and object arrays, and to ensure the left and right pointers at each node are defined.

To begin construction, the data structure must be allocated and relevant geometry must be transferred to GPUs. In 
general, memory transfer and dynamic memory allocation/deallocation is expensive on GPUs. To avoid unnecessary dynamic 
memory allocation, two empty tree structures are allocated at the beginning of each simulation on each GPU within a node 
and only expanded when necessary during a calculation. One BVH is set to contain the cells in the mesh partition, which 
will be largely static during the simulation, and the other is for dynamic BVH evaluations. The initial size of both is assumed 
to be Nobj = Ncell/Ngpu where Ncell is the number of cells on a partition and Ngpu is the number of GPUs on the node. To 
utilize multiple GPUs on a node a given mesh partition is re-partitioned N gpu times. Since most of the geometrical overlap 
calculations will be done over all cells in a mesh partition this is a reasonable estimate as to the final size of the tree.

Geometry is passed to the allocated structures as a polyhedron soup consisting of a list of vertices and connectivity lists 
which outline how the vertices are connected to the various shapes. All GPU related data transfer in this work is chosen to 
be done asynchronously such that GPU and CPU can perform computation at the same time. After data has transferred, the 
connectivity lists and vertices are used to fill the allocated object array in parallel on each GPU where one GPU thread is 
used for each object.

To arrange the leaves of the tree, a space filling Morton curve is constructed as depicted for the example in Fig. 5. To 
construct the curve a Morton code must first be calculated for each object. A Morton code is calculated by interweaving 
the bits from the coordinates of each shape’s centroid resulting in a single integer value for each object. If the objects are 
arranged by increasing Morton code the result is a space filling curve where objects close in the array are close in space. 
Morton codes are calculated in parallel on GPUs for each object. To allow lower float precision, scaling is used where each 
coordinate is first normalized by the size of a mesh’s partition. The objects are then sorted according to their Morton codes 
using a Radix sort, which has been shown to be performant on GPUs [26]. Rigid body motion is assumed for the cells 
within each mesh partition such that the Morton curve does not need to be updated with time. This means that past the 
initialization of a simulation, only the object vertices and AABB need to be updated. The BVH node connections and leaf 
arrangements remain static with time allowing for significant time savings.

Once the BVH leaves are arranged according to the Morton curve, the internal branches of the BVH can be considered 
to contain a linear range over sections of the arranged objects as shown in Fig. 5. For instance the head branch contains 
the entire range of objects. The range is split and the two resulting ranges of objects constitute the left and right branches 
attached to the head branch. This process repeats until the range is 1 object constituting a leaf node in the BVH. To 
determine where the splits occur at each branch a binary search is conducted using the algorithms shown in Karras [21]
5
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Fig. 5. Morton curve construction and connectivity algorithm for example BVH. Morton codes are calculated using bit weaving for each object’s centroid, 
as depicted for the Morton code m using coordinate (x, y, z). Each object is sorted according to the resulting Morton code giving the curve depicted with 
arrays in the top figure. To build connections, threads, indicated here as arrows in the bottom figure, start at bottom and only continue up tree if given 
thread is second thread to reach node. Ranges of object indices are shown next to each node showing the resulting index range of the binary search 
algorithm.

and Garanzha et al. [27]. The search consists of finding a split such that the highest differing bit of the Morton codes of one 
branch will be 0 and 1 in the other branch. This corresponds to splitting the objects by an axis aligned plane in 3D. The 
partitioning and internal connection of the BVH is done in parallel where GPU threads are assigned to each level. To finalize 
building the BVH a bottom up algorithm is used starting at the leaves of the BVH. Threads move up the tree filling in the 
AABB and connections at each node. Atomic operations are used to ensure that only the second thread that arrives at each 
node fills the details of the node to avoid the possibility of a data race condition.

To utilize the tree and search for overlap, a stack searching strategy is used to avoid recursion. Each object is assigned 
a GPU thread for the search. Each GPU thread has an initially empty stack of pointers to BVH node objects and an empty 
array that will be filled with the indices of overlapping objects in the BVH. To begin the search, a pointer to the head branch 
of the BVH is first added to the stack. Then, each thread loops through all entries in its stack checking for AABB overlap 
between the object and the nodes. New stack entries are dynamically added to the end of the stack from the branches at 
each node. Each time a leaf node is encountered, the corresponding object index in the BVH is added to the thread’s object 
index array. Each thread exits the search when their search stack is empty. The found overlapping object indices are placed 
within a combined array. This combined array indicates the locations of objects in the BVH which have AABB that overlaps 
each object involved in the search.

AABB overlap is not a good indicator of general object overlap for general cells within unstructured meshes. A finer detail 
overlap calculation is necessary to ensure that the cutting and reconstruction operations are robust and accurate. The GJK 
algorithm is a performant option that has successfully been used for this purpose in real-time collision detection [23,22]. 
The core of the algorithm is built around the concept of a Minkowski difference as depicted in Fig. 6. Given two sets of 
vertices from two polyhedrons, a Minkowski difference is the set of vertices formed by subtracting each member of one set 
of vertices by each member of the other set. A new shape can be formed as the convect hull over the new set of vertices. If 
the two original polyhedrons are convex and the coordinate (0,0,0) lies within the constructed shape, the two polyhedrons 
are guaranteed to overlap.

One could directly calculate the Minkowski difference between each object pairing in an overlap calculation but it would 
be an expensive O(N1N2) calculation where Ni is the number of vertices in the ith object. Instead the GJK algorithm consists 
of dynamically constructing a polytope within the Minkowski difference which attempts to encompass the coordinate (0,0,0) 
at each iteration as depicted in Fig. 6. The algorithm begins by selecting one point within the Minkowski difference. New 
points are added each iteration creating a line, then a triangle, and finally a tetrahedron. All points are selected using the 
support of the Minkowski difference in opposing directions to the previously selected point. If the polytope is ever found 
to contain (0,0,0) the algorithm returns that the objects overlap. If at any point it is determined that (0,0,0) cannot be 
contained by the polytope the iterations cease and the algorithm returns that the objects do not overlap.
6
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Fig. 6. Minkowski difference and GJK algorithm for two example shapes. The resulting Minkowski difference is shown to the right of the two shapes. The 
iterations of the GJK algorithm are then shown where first a point is created, then a line and then finally a triangle which contains the (0,0,0) coordinate.

In this work detailed overlap is only calculated using computational cells and polygonal faces of which the majority are 
convex such that the GJK algorithm is accurate. In its application to this work, the algorithm is found to need 3-5 iterations 
to determine overlap for the majority of overlap calculations such that it is highly efficient. Resulting object pairs from a 
BVH search are each assigned a GPU thread which performs a GJK calculation returning a boolean of object overlap. An 
array of booleans is returned from the algorithm for each pairing. The array of booleans and object pair indices are then 
returned from each GPU on a node to the CPU host during overset assembly.

To outline the accelerated overset assembly process: An arbitrary number of unstructured mesh partitions are assigned 
to computational cores and communication patterns are determined using the same algorithms shown in Horne and Ma-
hesh [1]. Each partition is over-partitioned to yield Ngpu partitions for each original partition, where Ngpu is the number of 
GPUs on a node. The smaller partitions are assigned cyclically to GPUs on each node and BVHs are constructed or updated 
as described before. Cells within explicit volumes are then strategically removed, as depicted in the work, except that now 
the explicit volumes are passed to GPUs and one GPU thread per cell is used to determine if the cell overlaps the given 
volume. Fine detail cutting is then conducted on the remaining cells that exactly overlap the faces of boundaries as found 
using the outlined BVH and the GJK algorithms. Cells inside boundaries which neighbor overlapping cells from this calcu-
lation are then marked to initialize a flood-fill algorithm. The flood-fill calculation is performed, removing all cells deeper 
within boundaries. Finally reconstruction partner pairings are found using the BVH and GJK algorithms along the edges of 
overset meshes and cut cell regions.

3. Numerical method

The motion of the fluid in this work is modeled using the incompressible Navier-Stokes equations. Mesh movement is 
incorporated using an Arbitrary Lagrangian-Eulerian (ALE) formulation given as

∫
�

∂ui

∂t
dV +

∫
∂�

(ui(un − un
mesh)dA) = −

∫
�

1

ρ

∂ p

∂xi
dV +

∫
∂�

ν
∂ui

∂n
dA,

∫
∂�

undA = 0,

(1)

where the equations are integrated over a volume �, with faces ∂� which have normals n. ui is the fluid velocity in the 
ith Cartesian direction, un is the fluid velocity normal to the faces of the volume, un

mesh is the velocity of the mesh normal 
to the faces of the control volume, p is the pressure, t is time, and ρ is the fluid density.

In Horne and Mahesh [2] Eqn. (1) was solved using a kinetic energy preserving, collocated, cell-centered, finite volume 
method with a pressure projection time stepping scheme. It was demonstrated to provide accurate results ranging from 
canonical flow cases to freely moving bodies in a turbulent fluid flow. The goal of this section is to modify this method to 
effectively use GPUs as well as provide some additional benefits to the original scheme.
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3.1. Pressure formulation

Projection time stepping schemes introduce a computationally expensive pressure Poisson equation which upon dis-
cretization produces matrices that have condition numbers of O(1/δx2). The generally high condition numbers of these 
matrices greatly limits the potential use of low precision or mixed precision solvers which will perform well on GPUs. 
Heavy synchronization of the GPU and CPU is required to solve this system where velocity must be solved followed by pres-
sure with synchronizations every linear solver iteration for each. This is wasteful since it would cause CPUs to consistently 
wait for GPUs to process data to perform halo updates and then GPUs would wait for halo transfers and so on. Ideally CPUs 
and GPUs would do useful work at the same time requiring a more asynchronous method.

To modify the projection method we begin by rewriting Eqn. (1) in matrix form yielding[
a g
d 0

][
u
p

]
=

[
f
0

]
(2)

where a is the Navier-Stokes operator, g is the pressure gradient operator, d is the velocity divergence operator, and f is 
any external force applied to the fluid. To efficiently solve this system using iterative methods a regularization is generally 
introduced by the inclusion of a pressure equation in the diagonal of the continuity equation. For the instance of projection 
methods the Laplacian of pressure, α�p is introduced. In artificial compressibility methods the time derivative of pressure 
is introduced, ε ∂ p

∂t . Different regularizations introduce different errors into the system. For the case of projection meth-
ods, a well documented artificial boundary condition on pressure is introduced, which negatively affects the accuracy of 
pressure [28]. For artificial compressibility methods, an artificial pressure wave speed is introduced which can produce er-
roneous compressible flow features inhibiting accuracy. A combination of different regularizations could potentially be used 
to provide a balance between introduced error and overall computational cost. This strategy is used in this work.

We start from a standard Crank-Nicolson projection scheme given as

u∗ − un

δt
+ 1/2C∗ − 1/2V ∗ = −1/2Cn + 1/2V n

∇·u∗ = δt�pn+1

un+1 − u∗

δ
t = −∇pn+1

(3)

where u∗ is the predicted velocity field, un is the velocity field at the nth time level, C is the discretized convective term, 
V is the discretized viscous term, ∇p is the discretized pressure gradient, and δt is the fixed time step.

Adding the first and third equation results in

un+1 − un

δt
+ 1/2C∗ − 1/2V ∗ = −1/2Cn + 1/2V n − ∇pn+1

∇·u∗ = δt�(pn+1)

(4)

To modify this system the material time derivative of pressure is introduced into the second equation and all predicted 
terms are taken at the n + 1 time level yielding

un+1 − un

δt
+ 1/2Cn+1 − 1/2V n+1 = −1/2Cn + 1/2V n − ∇pn+1

ε
dp

dt
+ ∇·un+1 = δt�(pn+1)

(5)

where ε is related to the artificial pressure wave speed yet to be defined. This removes the splitting error, but introduces a 
new error through the addition of the material derivative of pressure. The inclusion of the pressure Laplacian is important 
for a collocated finite volume method to remove odd-even decoupling in pressure and aids in the erroneous compressible 
waves that may be generated by this system. In general we seek to ensure that ε dp

dt is small and convergent while producing 
a linear system that can be efficiently solved using GPUs. This is achieved by finding a suitable definition of ε .

Past work has evaluated suitable definitions of ε [14,13]. Generally the smaller ε is, the more incompressible the flow 
field is at the cost of increased computational cost. In Shen [29] the following related formulation was analyzed

un+1 − un

δt
+ Cn+1 − V n+1 = −∇pn+1

ε
pn+1 − pn

δt
+ ∇·un+1 = 0

(6)

where it was mathematically demonstrated to yield O(δt) time accuracy for all flow quantities if ε = δt . It has also been 
noted that this system produces a linear system with condition numbers that are O(δt/δx2), or O(v−1 δx−1) if δt is taken 
scale
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within the Courant-Friedrichs-Lewy (CFL) condition regime where vscale is a relevant CFL velocity scale [14]. These condition 
numbers are substantially smaller than those produced by a projection method making the system much more amenable to 
lower precision and mixed precision iterative solvers. Due to these findings ε is set to be ε = δt .

Placing ε = δt into the mass equation from Eqn. (5) yields

O (δt) + ∇·un+1 = δt�(pn+1) (7)

since pn+1 − pn = O (δt). This introduces an additional O(δt) error to the pressure equation over the standard projection 
method with the benefit of removing the splitting error. The standard projection method shown in Eqn. (3) has been shown 
to have at best O(δt1/2) accuracy for pressure for general meshes, largely due to the application of the boundary conditions 
∂ p
∂n = 0 [28]. The proposed method alleviates this issue by instead taking

−∂ pn+1

∂n
= n·(un+1 − un

δt
+ Cn+1 − V n+1). (8)

With this change, the removal of the splitting error, and the addition of the O(δt) term in the pressure equation, the overall 
accuracy is anticipated to be comparable to what is found in an incremental projection pressure scheme, like the one used 
in the original overset method. It also produces linear systems which can be solved on GPUs more effectively due to its 
lower condition number linear system and potential for asynchronous velocity and pressure iterations.

3.2. Discretization & reconstruction

In Horne and Mahesh [2] a collocated, cell-centered, finite volume discretization was used which emphasizes kinetic 
energy conservation. A supercell interpolant was used for reconstructions along overset boundaries and a penalty method 
was introduced to enforce pressure continuity across overlapping meshes. The discretization shown in the work is modified 
here to solve the equation system presented in the previous section on overlapping overset meshes and to provide additional 
accuracy for general unstructured meshes.

In the original work the convective, viscous, and pressure Laplacian terms were discretized as

C =
n f∑
f =1

ucv + unbr

2
(un − u f )A f

V =
n f∑
f =1

ν
unbr − ucv

d f
A f

∫
�pdV =

n f∑
f =1

pnbr − pcv

d f
A f

(9)

where ucv is the velocity for a computational control volume (cv), unbr is a neighboring cv’s velocity across a face con-
nection, pcv/pnbr is the corresponding cv pressure, un is the convective face velocity, A f is the face area, u f is the mesh 
velocity at the face, and d f is the normal distance between the cv and its neighbor.

The convective term was selected to be a central average for its benefits to kinetic energy. This same convective operator 
is used here. The viscous term and pressure Laplacian terms depicted in Eq. (9) use a two point flux approximation (TFPA) to 
estimate the normal gradient between cvs for the Laplacian operator. While being functionally simple the TFPA can introduce 
significant errors into Laplacian solutions for general skewed unstructured meshes. In order to be accurate, a computational 
mesh must satisfy a K-orthogonality condition where the normal vector of a face between two control volumes must closely 
align with a vector between the centroids of the neighboring control volumes. In this work a primal-dual discretization is 
used to augment the TFPA in all Laplacian operators to avert this error.

Fig. 7 depicts an example computational stencil using TFPA and the proposed primal-dual discretization. Flow values 
are stored in primal volumes as was done before. Dual volumes are constructed around each node where each cv attached 
to a given node constitutes a new node of the dual volume. To reconstruct values and gradients at faces a least squares 
reconstruction is performed at each node of the face using its corresponding dual. To evaluate a flux across the face, the 
reconstructed values and gradients at the nodes are integrated assuming a linear basis function across the face. For a 
2nd order approximation this corresponds to taking an average of each reconstructed dual volume’s value and gradient 
at the face’s centroid. Note that it is not necessary to store values at the nodes. This procedure is directly converted into 
reconstruction weights on primal values to get reconstruction values at each face.

In Eqn. (9) the TFPA could potentially be directly replaced with a normal gradient calculated entirely using the dual re-
construction, removing the K-orthogonality requirement. Unfortunately, the resulting linear system would be non-symmetric, 
not diagonally dominant, and possibly non-positive definite resulting in poor convergence using traditional iterative tech-
niques unless sophisticated, and likely expensive, preconditioners are employed. Instead the TFPA is corrected using
9
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Fig. 7. Computational stencil for the original TFPA and proposed primal-dual discretization respectively. Dual volumes (- -) are constructed around each 
node of a given control volume to improve the accuracy of Laplacian operators.

Fig. 8. Example unstructured control volume pairing depicting correction vectors.

∂ p

∂n
= p2 − p1

d f
+ ∂ ppd

∂x
·(n f − n12) (10)

where p1,2 are flow values in two neighboring control volumes, n f is the face normal between the control volumes, ∂ ppd
∂n

is the dual reconstructed normal gradient, and n1,2 is a normal vector between the two control volumes as depicted for an 
example in Fig. 8. Using this correction the TFPA is exactly recovered for meshes without any skew. As more and more skew 
is introduced the primal-dual reconstruction is increasingly produced.

The pressure gradient was calculated in the original method using a least squares reduction procedure to minimize ∑
f (∇p·n f − ∂ p

∂n )2. This has been shown in previous work to produce good kinetic energy preservation properties [30]. To 
maintain this same property, the same least squares calculation is used in this work by substituting the normal gradient 
given by Eqn. (10) directly into the least squares reduction.

To reconstruct flow values between overset meshes the supercell interpolant introduced in the original method is used 
here. Flow reconstructions are chosen to be directly injected into the linear equations for all flow values. The original method 
used a penalty method to enforce pressure continuity between overset meshes. This was shown to produce accurate pressure 
fields while producing a linear system that was symmetric and positive definite which is much more readily solvable using 
traditional iterative solvers than injecting the reconstruction into the pressure equation.

While the linear system itself is straightforward to solve, the construction of the penalty weights in the linear system 
is non-trivial requiring each control volume in a given overset reconstruction stencil to receive reconstruction weights from 
every other control volume in the stencil. Additionally, care must be taken in the construction of meshes and in the selection 
of the penalty weight to ensure that the divergence of the velocity field is well behaved near overset boundaries. The intro-
duction of ε dp

dt into the continuity equation alleviates this issue by producing a simpler linear system when using injected 
overset reconstructions that can be solved using iterative solvers without any modification. Since no penalty is introduced 
into the pressure equation, no additional errors are introduced to the velocity divergence near overset boundaries.

3.3. GPU implementation

Memory bandwidth is a common performance bottleneck when offloading computational work to GPUs. Generally it is 
desirable to maximize the arithmetic intensity defined as the number of FLOPs per Bytes of memory access. To maximize 
10
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Fig. 9. Over-decomposition partitions and GPU assignment for example processor partition.

this quantity, memory transfer between the CPU and GPU and GPU memory access should be minimized. To achieve the 
latter, memory re-use and cache memory should be extensively used. When memory transfers are required, such as is the 
case for a distributed calculation over multiple nodes, they should be overlapped with useful work to provide additional 
concurrency.

Based on these considerations an over-decomposition strategy is used where each processor’s partition is partitioned 
once more as depicted in Fig. 9. The number of new partitions is allowed to match or exceed the number of GPUs on 
a node. The work of each new partition is assigned to a work queue that works asynchronously to all other partitions. 
Each work queue is assigned to available GPUs on a node hierarchically where the partition is first decomposed for each 
GPU node and then again if further concurrency is desired. The CPU performs overset reconstructions and halo updates 
asynchronously to the various work queues. This strategy greatly enhances concurrency by allowing many fine-grained data 
transfers and calculations to occur simultaneously such that neither the host or device wait for large data transfers while 
performing calculations. The only synchronization point within a given iteration is a single reduction of the L2 norm of the 
residual to ensure convergence to a specified tolerance.

The decomposed partition data, including geometry and flow solution, is allocated on and transferred to each GPU at 
the beginning of a simulation. To minimize memory transfer only halo information for the partition is transferred between 
the CPU and GPU during a calculation. The full transfer of the flow solution to the main memory is only done for post-
processing. This was found in timing experiments to be critical towards minimizing data transfer to yield high performance.

To further improve performance a mixed precision linear solver is used to solve the linear equation system resultant from 
Eqn. (5). Here the iterative refinement algorithm is used as shown in Algorithm 1 where the inner red-black SOR iteration 
is conducted at single precision with a double precision update outer loop. This strategy has been found in previous work 
to produce a double precision result while the majority of the computational cost is taken as single precision [31]. Cache 
memory on the GPUs are used to form the linear system and perform the linear solve enhancing memory bandwidth 
throughput.

Algorithm 1 Iterative Refinement.
1: while ||r|| > tol do
2: r = Ax − b (Double precision)
3: for j = 1, 2, ..., niter do
4: Perform cycle of Red-Black SOR to solve Ae = r (Single precision)

5: x = x + e (Double precision)
6: Calculate ||r|| (Double precision)

4. Validation & performance

4.1. Overset assembly

Overset assembly is performed on randomly arranged cubical particles in a triply periodic box, as depicted in Fig. 10, 
to evaluate the overall acceleration from GPUs. The overall cost of 100 different configurations is evaluated and compared 
between the pure CPU assembly of Horne and Mahesh [1] and the current work. A cell loading of approximately 40,000 
computational cells per processor is selected. 4 nodes each containing 4 NVIDIA V100 GPUs and 1 Intel Xeon gold 6126 
processor with 24 cores are used. One MPI rank per core is used for both the pure CPU timings and the current method 
on GPUs. As shown in the figure, an overall speed-up of around 15x is found for overset assembly using the current work 
on GPUs. Notably the most expensive operations, cutting and interpolation partner searching, are heavily accelerated. This 
is expected due to the use of targeted, highly efficient computational kernels for these two operations on the GPUs.
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Fig. 10. Randomly arranged cuboid particles in a triply periodic box. In addition to the location of the particles, the type of volume cut and mesh overlap 
are randomly varied.

Fig. 11. Overset assembly operation speed-up relative to the original overset method of randomly arranged cuboid particles in a triply periodic box with 
increasing cell loading.

The acceleration of the overset assembly operations at differing cell loadings for the case is shown in Fig. 11. Substantial 
improvements in the timings of the two core overset assembly operations are found producing speedup relative to the pure 
CPU assembly ranging from O(10) to O(100). It is shown that generally higher speedups are obtained at higher cell loadings. 
This is an expected result since higher cell loadings more fully utilize the GPU resources. This suggests that assembly of large 
cases with fewer nodes may be feasible through the use of hardware acceleration allowing for substantially less resource 
use.

It should be noted that the speed-up and timings will be case dependent. The case presented here was selected to 
capture a breadth of cutting techniques and mesh configurations to reveal a bulk measure of acceleration. Additionally, 
the comparison between the GPU and pure CPU results is not direct in that the CPU version uses substantially different 
algorithms. It is anticipated that a non-trivial portion of the speed-up is due to the new algorithms presented here rather 
than just through the use of GPUs. To perform a completely direct comparison a fully threaded CPU form of the presented 
overset algorithms would have to be constructed. This would entail substantial changes to the pure CPU version which is 
outside the scope of this work.

4.2. Numerical method

4.2.1. Taylor-Green vortex
A simulation of an empty overset patch in a Taylor-Green vortex is used to assess the numerical character of the current 

method. This case has been used in past work to assess the numerical accuracy and kinetic energy properties of methods 
[30,2]. An overlapping overset patch is placed in a triply periodic domain rotated along all three Euler x-y-z angle axes at 
25 degrees as shown in Fig. 12.

The exact solution of the case is taken as

u = −cos(2πx)sin(2π y) f , v = sin(2πx)cos(2π y) f , w = 0,

p = 0.25(cos(4πx) + cos(4π y)) f 2, f = e−8π2νt,
(11)
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Fig. 12. Taylor-Green vortex domain and mesh arrangement. The length of the domain is selected to be Lx,y,z = 1.0. The empty overset patch is chosen to 
be half the size of the domain. The mesh overlap is fixed at approximately 30% overlap.

Fig. 13. L2 error of velocity, u, and pressure, p, throughout both meshes averaged from t = 0.0 − 0.5 for the Taylor-Green problem. Solid lines with symbols 
indicate simulation results, dashed lines indicate 2nd order accuracy.

where u, v , and w are the Cartesian velocity components, p is the pressure, and f is the viscous time dependency of the 
result. To evaluate the order of accuracy of the method, the exact solution is compared to results from the method for 
varying both meshes over a fixed time interval taken as t = 0.5. The CFL is kept constant over all simulations to limit the 
influence of temporal accuracy on the result. Second order accuracy is found for all evaluated flow quantities as depicted 
in Fig. 13. Additionally, both the velocity and pressure are found to be several orders of magnitude more accurate than a 
previous result of the same case when using a predictor-corrector method [2].

Limiting numerical diffusion is key to accurately simulating turbulent flows. If the numerical diffusion is comparable to 
the viscosity, or modeled eddy viscosity as would be the case of large-eddy simulation, the energy cascade can be heavily 
attenuated resulting in incorrect flow statistics. To evaluate the numerical diffusion and the energy properties of the method 
the total kinetic energy in the flow domain is evaluated over long time intervals and compared to the exact solution derived 
from Eq. (11). A uniform mesh resolution of dx = 0.0125 is selected for both meshes. The meshes are arranged the same 
as shown in Fig. 12. As discussed in Mahesh et al. [30], the method is only expected to preserve the kinetic energy in the 
absence of temporal errors. To limit temporal error, the time step is adjusted until the solution has converged within 1% for 
each Reynolds number through numerical experiments before each simulation.

The resulting kinetic energy is shown in Fig. 14. As can be readily seen, the method is found to be capable of accurately 
capturing the evolution of kinetic energy for all Reynolds numbers evaluated. This includes Re = 1e9 where there is nearly 
no viscous diffusion in the result. This is critical result in that it suggests the method will be capable of accurately simulating 
high Re number flows without introducing erroneous diffusion. It additionally shows that any additional errors produced at 
overset boundaries or within the method are bounded such that such flows are feasible for long integration times.
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Fig. 14. Total kinetic energy throughout domain normalized by the initial kinetic energy K e0. Symbols are from the analytic solution given by Eq. (11), lines 
are the results from the simulations.

Fig. 15. Re=3700 flow over a sphere domain and meshes. All units non-dimensionalized by the sphere diameter D .

4.2.2. Re=3700 flow over a sphere
Flow over a sphere at Re=3700 is simulated to further evaluate to evaluate the speedup and the accuracy of the method 

for a 3-dimensional turbulent case. The domain and meshes are depicted in Fig. 15. The domain size is selected to match 
previous work of the case ([32]). Hexahedral unstructured meshes are used for both the overset sphere mesh and the 
background mesh.

First the performance of the method is evaluated for increasing cell loadings with differing numbers of GPUs. 1 node 
containing 4 NVIDIA V100 GPUs and 1 Intel Xeon gold 6126 processor with 24 cores is used. Both meshes are uniformly 
refined. Timings over 100 time steps are taken using 1 MPI rank per core and a differing number of GPUs. Each result is 
compared to the timings of a pure MPI, non-threaded CPU result using the same method and the original method from 
Horne and Mahesh [2]. The results are depicted in Fig. 16. The speedup is found to range from 8x-56x compared to the 
original method depending on the number of GPUs available on a node and the cell loadings. The timings are found to scale 
with increasing number of GPUs within a node with the best scaling occurring at the higher cell loadings. It is generally 
found that the GPUs provide the most benefit at the higher cell loadings.
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Fig. 16. Turbulent flow over sphere speedup relative to the original overset method and a pure, non-threaded, CPU version of the new method.

The speedup values reported here are anticipated to be case and hardware dependent. A significantly more challenging 
case could potentially alter the convergence of the method resulting in less speedup. Faster, more modern processors will 
produce more throughput resulting in less speedup when compared to the same NVIDIA V100 GPUs. Additionally, while a 
pure CPU version of the new method is shown, it is non-threaded and as such uses different algorithms for the steps of the 
method. This means the comparison is not exactly direct. The change to the method itself is already seen in the result to 
produce roughly a 2x speedup over the original method. It is likely that a change in the algorithms and further optimization 
of the pure CPU version would further improve the speedup relative to the original method such that the overall GPU 
speedup would lessen.

A simulation is performed of the case using a Ncv = 12, 000, 000 cell loading to evaluate ability of the method to produce 
accurate turbulent flow fields. The mesh spacing is chosen to be dx = 0.015D , where D is the sphere diameter and the near 
wake spacing is chosen to be D = 0.014D . The resolution at the edge of the overset patch is selected to closely match 
that of the background mesh minimizing potential reconstruction errors. The time step is selected to be dt = 5e − 4. Flow 
statistics are collected after t/(D/Uinf ) = 175 non-dimensional time units and are collected until t/(D/Uinf ) = 300, where 
uinf is the inflow velocity.

An instantaneous flow field is shown in Fig. 17. The vortical structures of the result qualitatively match previous work 
on the case with notably no vortex distortion due to the presence of the overset reconstruction boundaries. Flow averages 
are additionally shown. Good agreement is found between the average streamwise velocity behind the sphere and previous 
simulation results. The coefficient of pressure, C p is found to agree around the surface of the sphere to an experimental 
result. The drag force and wake cavity length are also in good agreement with previous experimental studies as outlined in 
the table.

Cd Lw St

Simulation 0.392 2.2D 0.22
Rodriguez et al., 2011 0.394 2.2D 0.215
Experiments 0.39, Schlichting and Gersten [33] – 0.225, Kim and Durbin [34]

Fig. 18 depicts power spectra calculated from streamwise velocity data collected from a probe located 5D behind and 
1.5D upwards from the center of the sphere. The shedding frequency is found to produce a Strouhal number of St = 0.22 in 
good agreement with previous results illustrating the method’s time accuracy. The slope of the spectra is found to roughly 
follow a −5/3 slope, as has been found for probes in this section of the wake by other work [32].

The method overall is found to produce accurate results for this case, achieving a 1%-5% match to experiments and previ-
ous studies for all quantities reported. This is despite the presence of overset reconstruction boundaries and the introduction 
of the material derivative of pressure into the continuity equation. It was able to do this while being significantly faster than 
the method presented in [2] which would have taken roughly 35x as much time using the same number of nodes.
15



W.J. Horne and K. Mahesh Journal of Computational Physics 444 (2021) 110574
Fig. 17. Instantaneous streamwise velocity contours is first shown for Re=3700 flow over a sphere. The average streamwise velocity from the back of the 
sphere compared to a previous simulation result into the wake is shown. Finally the variation of the coefficient of pressure C p around the sphere with 
angle θ is shown compared to experimental data.

Fig. 18. Power spectra, E , of the streamwise velocity from a probe located at x = 5D, y = 1.5D behind sphere calculated using the Lomb-Scargle power 
spectral density estimate. The solid line indicates the simulation result. The dashed line indicates a -5/3 slope.

4.2.3. Freely falling sphere
A freely falling sphere in a quiescent fluid is simulated to investigate the acceleration of the method for a dynamically 

moving case. Such cases have been used in previous work to assess the accuracy and effectiveness of methods to simulate 
bodies moving with full 6-DOF [2,35]. Trajectories of substantially different character are found depending on the Galileo 
number, Ga, and the density ratio of the sphere to the fluid, m∗ [36,37]. The flow domain is depicted in Fig. 19. The domain 
dimensions are selected to match those used successfully to simulate the case in previous studies [2]. The Galileo number 
is chosen to be Ga = 291, and density ratio, m∗ = 7.8.
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Fig. 19. Flow domain for sphere freely falling in quiescent fluid.

Fig. 20. Timings for 100 time steps of a sphere freely dropping in quiescent fluid at different cell loadings per core.

Timings are assessed over 100 time steps for different mesh refinement levels comparing the original overset method 
to the accelerated solver at differing processor cell loadings. Two computational nodes are used with 2 V100 GPUs per 
node, each with an Intel Xeon gold 6126 24 core processor. One MPI rank is used per available core. The resulting timings 
are shown in Fig. 20. The speedup is found to range from 12x to 20x over the cell loadings evaluated. This is despite the 
dynamic memory requirements due to the changing mesh connectivity. The speedup is found to be improved at lower cell 
loadings compared to the timing results found for the static flow over a sphere case. This is likely due to bottlenecks in 
the original method regarding dynamic matrix assembly, dynamic overset assembly, and mesh movement, all of which have 
been accelerated in the current method.

5. Conclusions

The unstructured overset method presented in this work was created from its core to effectively utilize GPU hardware 
acceleration. Performant algorithms from real-time ray-tracing and collision detection such as LBVH and the GJK algorithm 
are modified and extensively used to assemble arbitrarily overlapping overset meshes into a single cohesive result. Speedups 
of core kernels up to O(100x) are found relative to a previous benchmark overset method illustrating the effectiveness of 
hardware acceleration for assembly.

A novel over-decomposition strategy is used to enhance concurrency during the fluid flow solve. Halo updates, overset 
reconstructions, velocity iterations, and pressure iterations are able to be performed asynchronously across an arbitrary 
number of GPUs within a node. A novel numerical method was introduced to solve the motion of the fluid that produces 
low condition number linear systems while maintaining desired accuracy. This method enabled the use of an effective 
mixed-precision linear solver that maximizes memory bandwidth using GPU cache memory. Overall, this strategy is found 
to be able to produce substantive speedup, ranging from 15x to 50x, relative to a pure MPI implementation using modern 
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heterogeneous computing resources for high cell loadings. This is achieved while also having good kinetic energy properties 
and producing time accurate flow results for a turbulent flow case.

Overall when compared to the original pure CPU overset method larger simulations of turbulent flow cases are clearly 
feasible. This is shown in the overall high speedups found using the method over all cases presented in this work. Addi-
tionally, less resources can be used for current simulations where substantially less computational nodes can match the 
performance of current pure CPU calculations.
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