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ABSTRACT

The deforming and curved fluid geometries that
arise in turbulent fluid-structure interaction (FSI)
problems present unique challenges to LES/DNS. This
paper addresses these challenges in the context of
a canonical turbulent FSI problem: response of an
incompressible viscoelastic wall in an incompressible
turbulent channel. Sequential coupling approaches inhibit
the parallel scaling of two-way coupled solvers. The
development of a parallel two-way coupling approach
using Steklov-Poincare operator for finite-volume fluid
and finite-element solid discretization is discussed in the
context of the same FSI problem. Its multiple-program
multiple-data implementation is presented. Some
preliminary results of the two-way coupled problem are
presented. Several factors affect the vibration of, and
sound radiated by an elastic plate excited by turbulent
flow. The effect of plate boundary conditions, plate
material, and Reynolds number is studied for a plate
embedded in the bottom wall of a turbulent channel
using one-way coupled DNS. DNS/LES simulations with
millions and billions of elements can generate terabytes of
unsteady volumetric data. A data-intensive methodology
developed to uncover the spectral and spatial features of
turbulent fluid sources that excite a plate embedded in
the bottom wall of a turbulent channel is discussed. Its
application on a 100 TB channel ‘big’ dataset is presented.

INTRODUCTION

Turbulent fluid-structure interactions, i.e., the interaction
of a turbulent flow with a flexible structure, arise in
several marine engineering problems. This interaction is
three-dimensional and unsteady. Large Eddy Simulation
(LES) and Direct Numerical Simulation (DNS) based
methods are hence attractive approaches. Our in-house
LES/DNS solver MPCUGLES has been extensively used
to study turbulent flows in several stationary complex
geometries, for e.g., Mahesh et al. (2004); Jang et al.
(2012); Kumar and Mahesh (2017). The deforming and

curved fluid geometry in turbulent FSI problems presents
unique challenges to LES numerics.

The motion performed to adapt the mesh to the
changing fluid-solid interface can yield non-planar faces
that need to be rectified. For e.g., consider the mesh
motion in figure 1a. A corner node of the hexahedral
element is moved to account for the deforming geometry.
This movement transforms the initially planar face (in
red) into a non-planar face, and the new element is no
longer a hexahedron. We rectify this issue by discretizing
the domain with quadratic hexahedral elements instead.
The application of the same mesh motion on a quadratic
hexahedral element is shown in figure 1b, and note that
the transformed element remains a quadratic hexahedron.
Another advantage of the quadratic hexahedron is that it
allows for a better representation of curved boundaries
that might arise from the small scale solid deformation
compared to linear elements. The numerical schemes
used for LES need to be non-dissipative. Otherwise,
the high-frequency fluctuations will have low energy
content (Mittal and Moin, 1997), and the results might
not display proper Reynolds number sensitivity. To
ensure simulation stability at high Reynolds number with
non-dissipative schemes, discrete energy conservation
should be enforced. One way to do this in the
finite-volume context is to use the equal weight
face-interpolation scheme in the convection term (Mahesh
et al., 2004). This scheme is second-order on uniform
meshes and its accuracy reduces on non-uniform meshes.
Therefore, finite-volume LES grids usually have small (<
2%) stretching factor in non-uniform regions to minimize
this error. Another feature of finite-volume LES grids is
small mesh skewness. In FSI problems, these aspects of
the mesh are hard to control because the mesh deforms
at every timestep, and therefore, special strategies are
necessary to handle situations with large non-uniformity
and skewness. This paper discusses some recently
developed extensions to the MPCUGLES algorithm to
address these issues in the context of a canonical turbulent
FSI problem: response of an incompressible viscoelastic
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wall in an incompressible turbulent channel.

(a)

(b)

Figure 1: (a) Example mesh motion that transforms
the initially planar face (shaded in red) of the linear
hexahedron, becoming non-planar. (b) Same mesh motion
of figure (a) on a quadratic hexahedron.

Most existing two-way coupling algorithms for finite
volume fluid and finite element solid discretization require
sequential execution of the fluid and solid solvers, i.e.,
the two solvers need to be executed one after another
and not simultaneously. For e.g., Farhat et al. (1995);
Piperno et al. (1995); Piperno and Farhat (2001); Farhat
et al. (2006); Degroote et al. (2009); one exception is
the vectorial fixed-point algorithm of Mehl et al. (2016).
For large scale problems, the sequential execution can
become a bottleneck inhibiting the parallel scaling of
the coupled solver. Instead, for good parallel scaling,
a two-coupling algorithm that allows for simultaneous
execution of the two solvers is desired. This paper
discusses the development of one such parallel two-way
coupling algorithm in the context of the same turbulent
FSI problem: response of an incompressible viscoelastic
wall in an incompressible turbulent channel. The
algorithm couples the finite volume fluid and finite
element solid solvers using a scheme based on the
Steklov-Poincare operator (Quarteroni and Valli, 1991).
Given a boundary value problem, this operator maps
the Dirichlet boundary data to the equivalent Neumann
boundary data for which the interior solution remains
unchanged. Steklov-Poincare based approaches have
been developed and previously thought to be possible only
for finite element discretization in both fluid and solid
domains (Deparis et al., 2006). Ours is the first attempt
to extend its applicability to different discretization in the
fluid and the solid domain.

The considered turbulent FSI problem has a peculiar
solvability requirement. The fluid is incompressible

and the fluid subproblem is formulated using only
Dirichlet/periodic boundary conditions. Therefore, the
pressure in the fluid domain is determinable only up to
a constant. This constant is an additional unknown in
the problem and needs to be constrained by physically
determined equations. Otherwise, the computed solid
response would practically be useless. It turns out that
the incompressibility condition in the viscoelastic solid
supplies these additional constraints. These constraints
are: i) the integrated flux of the velocity at the fluid-solid
interface should discretely be zero, and ii) the integrated
pressure within the fluid and solid should discretely sum
to zero. Without enforcing these constraints, the coupled
problem cannot be solved. Our method can incorporate
these constraints while retaining the parallel coupling
aspect. We are not aware of any existing parallel coupling
strategies that could incorporate such constraints with
finite volume fluid and finite element solid solvers.

Table 1: MPCUGLES-SOLID.

Unified implementation

Continuous Galerkin
FEM

Mixed FEM

Problems Comp. elasticity:
Dynamic

Incomp. viscoelasticity: Dynamic

Comp. elasticity:
Eigenvalue

Incomp. viscoelasticity:
Eigenvalue

Comp. elasticity: Static Incomp. viscoelasticity: Static

Poisson: Steady

Unknowns
storage

Node (d) (Node (d),Elements (p))

Elements Quad2d-4node (Quad2d-9node,Tri2d-global-disc)

Quad2d-9node

Hex3d-8node (Hex3d-27node,Tet3d-global-disc)

Hex3d-27node

Matrix
prob.

Keffd = f Keffd + Gp = bd

GTd = bp

Part. soft. ParMETIS ParMETIS

LA
solver:

CG Flexible GMRES

in-house Flexible GMRES

LA
solver:

Krylov subspace
(Belos)

Krylov subspace (Belos)

TPL Sparse LU
(SuperLU_DIST)

Prec.: Scaled thickness prec. Stokes upper tridiagonal

in-house Sylvester, Elman, Kay & Wathen

Prec.: AMG (MueLu) ILU (Ifpack2)

TPL IChol (Ifpack2)

Eig.
solver:
TPL

LOBPCG-AMG
(Anasazi)

Block Krylov Schur (Anasazi)

I/O: Raw PnetCDF PnetCDF

I/O: Vis. Exodus Exodus

The small length and time scales of the turbulent
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fluid stresses can yield unsteady solid deformation of
comparable length and time scales, especially for a soft
solid material. The solid sub-domain solver should be
able to handle the large number of degrees of freedom
required to resolve this small-scale deformation. Different
solid materials require different numerical methods for
their efficient solution. A compressible solid material, for
e.g., steel and aluminum, requires the continuous Galerkin
finite element method (FEM) which stores unknowns at
the nodes, whereas, an incompressible solid material,
for e.g., polydimethylsiloxane requires the mixed FEM
which stores unknowns at both nodes and inside
elements. Without data structures that enable unified
implementation of both these methods, code development
would be inefficient. Our in-house parallel code
MPCUGLES-SOLID (Anantharamu and Mahesh, 2021)
provides a unified implementation of both continuous
Galerkin FEM and mixed FEM through specially
designed data structures. The code can solve static,
dynamic, and eigenvalue problems. For interprocessor
communication, it uses message-passing modules which
have been tested up to 100,000 processors. For efficient
solution of massively large problems, the solver provides
several linear algebra solver and preconditioner options
through both in-house implementations and third-party
libraries such as Trilinos (Trilinos Project Team)
and SUPERLU_DIST (Li and Demmel, 2003). Table 1
summarizes the key features of MPCUGLES-SOLID.

The vibration and sound radiated by a plate excited
by turbulent wall-pressure fluctuations depends on several
factors including plate boundary condition, plate material,
and Reynolds number. Most previous theoretical
and numerical studies (Hwang and Maidanik, 1990;
Blake, 2017; Hambric et al., 2004; Esmailzadeh et al.,
2009; De Rosa and Franco, 2008) to understand this
dependence used wall-pressure models (Corcos, 1964;
Chase, 1980, 1987; Smol’Iakov and Tkachenko, 1991;
Mellen, 1994; Goody, 2004; Bull, 1967). Advances in
high-performance computing now allow us to directly
compute the unsteady turbulent wall-pressure fluctuations
at moderate Reynolds numbers using DNS. We use these
time-domain DNS wall-pressure fluctuations to study this
dependence instead. This study assumes the coupling
to be one-way, i.e., the turbulent flow affects the plate
and not vice versa. For vibrations of small amplitude,
one-way coupling is widely accepted to be sufficient.
By small, we mean the displacement and the velocity
to be smaller than the viscous units. All previously
mentioned wall-pressure model-based studies use the
one-way coupled approximation.

Turbulent simulations using DNS/LES yield unsteady
and three-dimensional velocity and pressure fields.
Advances in parallel I/O now allow us to store and
process terabytes of this data to answer some fundamental

questions in a reasonable amount of time. We
discuss our one such ‘big data’ effort in the context
of turbulent FSI. A methodology (Anantharamu and
Mahesh, 2021) to identify the frequency-dependent
wall-normal distribution of turbulent sources that excite
a plate at the bottom wall of a channel is presented and
applied to a 100 TB channel DNS dataset.

The paper is organized as follows. Section Fluid
DNS/LES methodology discusses the MPCUGLES
extensions to curved and deforming gometries.
An implementation within MPCUGLES-SOLID to
simulate incompressible viscoelastic materials is
discussed in section Viscoelastic implementation in
MPCUGLES-SOLID. In section Two-way coupling, we
present some results of the two-way coupled problem
using the sequential fixed-point iteration and discuss the
development of the proposed two-way parallel coupling
method based on the Steklov-Poincare operator. New
findings on the effect of plate boundary condition, plate
material and Reynolds number on turbulent wall-pressure
induced plate vibration and far-field sound radiation is
discussed in section one-way coupled plate excitation.
Section One-way coupled plate excitation source analysis
discusses the analysis of plate excitation sources using the
channel DNS dataset. The paper is summarized in section
Summary.

FLUID DNS/LES METHODOLOGY

Method
The incompressible Navier-Stokes equations in the

Arbitrary Lagrangian Eulerian (ALE) frame of reference
are:

du(xg(t), t)

dt
− vg ·∇u + ∇ ·

(
uuT

)
=

−∇p+ ν∇2u + ` in Ω(t),

∇ · u = 0 in Ω(t).

(1)

Here, u is the fluid velocity vector, p is the fluid pressure,
ν is the kinematic viscosity, ` is the body force vector,
xg(t) is the mesh trajectory, vg is the mesh velocity,
and Ω(t) is the deforming curved geometry. For LES,
the velocity and pressure are interpreted to be their
filtered counterparts, and the term ν∇2u is replaced
by (∇ · [(ν + νT )∇u]), where νT is the subgrid-scale
viscosity computed using the subgrid-scale model.

To construct a spatially second-order, non-dissipative,
energy conserving scheme, we map the curved and
deforming geometry at each timestep to a uniform
structured grid using quadratic hexahedral finite elements.
At each time t, this mapping denoted by ϕ relates each
coordinate vector X in the uniform structured grid domain
Ω̂ to a coordinate vector x in the discrete current domain
Ωh(t), i.e., x = ϕ(X, t). Figure 2 shows a schematic of
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the mapping. Note that we refer to the uniform structured
grid domain as the ‘reference domain’ and the discrete
current domain as just the ‘current domain’. To construct
the mapping, the coordinate vector of each node in the
reference domain is first assigned and then interpolated
to the interior of the reference domain elements using
quadratic shape functions. The node coordinate of node
‘ino’ at time t is denoted by ϕino(t), and inside each
element we have

ϕ(X, t) =
∑
nodes

ϕino(t)Nino(X), (2)

where Nino(X) is the quadratic shape function
corresponding to node ‘ino’. In FSI problems, a mesh
motion algorithm is required to set ϕino(t) from the
coordinates of the fluid-solid interface. We use the
Laplacian extension approach of Nobile (2001). In
problems where the deformation of the fluid geometry
is known apriori, the node coordinates can simply be
prescribed.

Figure 2: Schematic of the mapping ϕ.

The method is derived as follows. Integrate equation 1
over each quadratic hexahedral element ‘cv’ in the current
domain to obtain,

d

dt

∫
Ωcv(t)

u(xg(t), t) dΩ +

∫
Ωcv(t)

∇ ·
(
u(u− vg)T

)
dΩ =

−
∫

Ωcv(t)
∇p dΩ +

∫
Ωcv(t)

ν∇2u dΩ +

∫
Ωcv(t)

` dΩ,∫
Ωcv(t)

∇ · u dΩ = 0.

(3)

In the above equation, a manipulation (Donea et al., 2017)
is performed to pull the spatial integral inside the temporal
integral in the first term. A requirement to discretely
preserve the freestream condition under arbitrary mesh
motion is to solve the Discrete Geometric Conservation
Law (DGCL) (Thomas and Lombard, 1979) in addition
to the above governing equations. The DGCL equation is

d

dt

∫
Ωcv(t)

1 dΩ =

∫
Ωcv(t)

∇ · vg dΩ. (4)

Transform the integrals in equations 3 and 4 to the

equivalent integrals in the reference domain.∫
Ω̂cv

∂

∂t
(UJ) dΩ̂ +

∫
Ω̂cv

∇X ·
(
U
[
JF−1(U−Vg)

]T)
dΩ̂ =

−
∫

Ω̂cv

∇X ·
(
PJF−T

)
dΩ̂+∫

Ω̂cv

ν∇X ·
([

(∇XU)F−1
]
JF−T

)
dΩ̂ +

∫
Ω̂cv

JL dΩ̂,∫
Ω̂cv

∇X ·
(
JF−1U

)
dΩ̂ = 0,∫

Ω̂cv

∂J

∂t
dΩ̂ =

∫
Ω̂cv

∇X ·
(
JF−1Vg

)
dΩ̂.

(5)

Here, Ω̂cv is the corresponding quadratic hexahedral
element in the reference domain. The uppercase variables
U, P,Vg,L relate to their lowercase counterparts via the
mapping ϕ, for e.g., U(X, t) = u(ϕ(X, t), t). ∇

X

denotes the gradient along coordinate directions in the
reference domain. F is the Jacobian matrix of ϕ. Its
(i, j)th component, Fij , is ∂ϕi/∂Xj . J is the determinant
of the Jacobian matrix, i.e., J = det(F).

A predictor-corrector method is used to integrate
equation 5 in time. In the predictor step, the DGCL
equation and the momentum equations without the
pressure gradient term are advanced in time using the
explicit Adams-Bashforth scheme.∫

Ω̂cv

J̃n+1 − J̃n

∆t
dΩ̂ =

∑
faces of cv

(
3

2
GVELnface −

1

2
GVELn−1

face

)
Âface,

∫
Ω̂cv

ÛJ̃n+1 −UnJ̃n

∆t
dΩ̂ =

∑
faces of cv

(
3

2

[
−NLnface + VISCnface

]
−

1

2

[
−NLn−1

face + VISCn−1
face

])
Âface+∫

Ω̂cv

(
3

2
JnLn −

1

2
Jn−1Ln−1

)
dΩ̂.

(6)

Here, the fluxes GVELnface, NLnface, and VISCn
face are

defined to be

GVELnface =

(∫
face

(
JnFn

−1
Vn

g

)
·NdΓ̂

)
/Âface

NLnface =

(∫
face

Un
( [
JnFn

−1 (
Un −Vn

g

)]
·N
)

dΓ̂

)
/Âface

VISCnface =

(∫
face

ν
[
JnFn

−1
(
Fn
−T

[∇XUn]T
)]
·NdΓ̂

)
/Âface

(7)

In the corrector step, a Poisson equation for the pressure
is solved and the predicted velocity is corrected to be
divergence-free.

−
∑

faces of cv

GPn+1
face Âface =

−
1

∆t

∑
faces of cv

∫
face

(
Jn+1Fn+1−1

Û
)
·N dΓ̂,

∫
Ω̂cv

Un+1Jn+1 − ÛJn+1

∆t
dΩ̂ =

−
∫

Ω̂cv

∇X ·
(
Pn+1Jn+1Fn+1−T

)
dΩ̂.

(8)
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where GPn+1
face is the flux of the pressure gradient at the

face, and it is defined as

GPnface =

(∫
face

[
JnFn

−1
(
Fn
−T
∇XP

n
)]
·NdΓ̂

)
/Âface (9)

A variable storage similar to Mahesh et al. (2004) is
used. The variables J̃n, Un, and Pn are stored at the
centroid of each reference quadratic hexahedral element.
A face-averaged normal velocity V nN,face defined as[∫

face

(
JnF−1nUn

)
·N dΓ̂

]
/Âface is stored at each face and

advanced separately. Using this storage, the individual
terms in equations 6 and 8 are approximated as follows.
The unsteady terms in the DGCL, predictor and corrector
equations are approximated using the cell-centroid values
as ∫

Ω̂cv

J̃n+1 − J̃n

∆t
dΩ̂ ≈

J̃n+1
cv − J̃ncv

∆t
|Ω̂cv|,∫

Ω̂cv

ÛJ̃n+1 −UnJ̃n

∆t
dΩ̂ ≈

ÛcvJ̃
n+1
cv −Un

cvJ̃
n
cv

∆t
|Ω̂cv|, and

∫
Ω̂cv

Un+1Jn+1 − ÛJn+1

∆t
dΩ̂ ≈

Un+1
cv − Ûcv

∆t
|Ωn+1

cv |,

(10)

where |Ω̂cv| and |Ωn+1
cv | are the volumes of the quadratic

hexahedral element in the reference and current domain
at timestep n + 1, respectively. GVELnface is computed
exactly using Gauss quadrature. The fluxes NLnface,
VISCn

face, and GPnface are approximated as

NLnface ≈
1

2
(Un

cv + Un
nbr)
(
V nN,face − GVELnface

)
,

VISCnface ≈νface

(
[Fn]−T

face [DXUn]Tface

)
·

[∫
face J

nFn
−T

NdΓ̂
]

Âface
,

GPnface ≈
[
[Fn]−T

face [DXP
n]face

]
·

[∫
face J

nFn
−T

NdΓ̂
]

Âface
.

(11)

Here, [D
X
Un]face and [D

X
Pn]face are the second-order

accurate approximation to the derivatives of velocity
and pressure, respectively, at the face-centroids. These
are constructed using the cell-centered values. V nN,face
is the approximation to the face-normal velocity which
is time-advanced separately. The face-averaged normal[∫

face J
nFn

−T
NdΓ̂

]
/Âface is computed exactly using Gauss

quadrature. In equation 8, the flux of the predicted
velocity is approximated as∫

face

(
Jn+1Fn+1−1

Û
)
·N dΓ̂ ≈

V̂N,faceÂface,

(12)

where V̂N,face is defined as(
Ûcv + Ûnbr

)
2

·

[∫
face J

nFn
−T

NdΓ̂
]

Âface
,

and the volume integral of pressure gradient is

reconstructed as∫
Ω̂cv

∇X ·
(
Pn+1Jn+1Fn+1−T

)
dΩ̂ ≈

|Ωn+1
cv |

Fn+1
cv

Jn+1
cv

∑
faces of icv

Nface

2
GPn+1

face .

(13)

Finally, the face-averaged normal velocity is advanced as
V n+1

N,face = V̂N,face −∆tGPnface

Brief remarks follow. The method is spatially
second-order accurate, irrespective of mesh skewness,
and non-uniformity. The convective discretization is
non-dissipative, conserves kinetic energy discretely, and
ensures freestream preservation on curved meshes. The
cell-centered pressure gradient reconstruction scheme in
equation 13 is novel. Tests on a Poisson problem showed
that this scheme is second-order accurate irrespective
of the boundary condition, while the commonly
used Green-Gauss reconstruction scheme can become
first-order in the presence of Dirichlet/Neumann boundary
conditions.

Preconditioning
The pressure Poisson equation consumes bulk of the

solver time, and therefore, an efficient preconditioner for
its iterative solution is crucial for good parallel scaling.
This need is amplified for FSI problems because the
pressure Poisson equation is solved multiple times within
a timestep. With the above discretization of the pressure
gradient flux, the obtained 27-point stencil Poisson matrix
can be non-symmetric. Hence, existing state-of-the-art
techniques such as the multigrid preconditioned conjugate
gradient (CG) solver cannot be directly used for its
solution. We propose to use flexible GMRES (Saad,
2003) as the solver and a few multigrid preconditioned
CG iterations on the symmetric 7-pt stencil Poisson
matrix as the preconditioner. The CG iterations in
the preconditioner are performed until an approximate
solution with a larger residual is obtained.

For Dirichlet/periodic boundary conditions on the
velocity, the pressure Poisson equation has a non-zero null
vector – the vector of ones. This null vector should be
incorporated in the following manner within the flexible
GMRES iterations; otherwise, the iterations were found
to stagnate. At the beginning of each iteration, the
matrix-vector product should be projected orthogonal to
the null-vector, and the preconditioner should be applied
on this projected vector instead of applying it directly on
the matrix-vector product.

To check the optimality of this solution procedure, we
solve a 2D periodic Poisson problem on a sinusoidally
perturbed mesh for different mesh resolutions, and
tabulate the number of GMRES iterations. The
right-hand side of the Poisson problem is set by assuming
the exact solution to be cos(2πx1)cos(2πx2). The

5



node-coordinates of the perturbed mesh are set using the
mapping

x1(X) = X1 − α sin(2πX2),

x2(X) = X2 − α sin(2πX1),
(14)

and the reference domain is chosen to be a unit square.
Figure 3 shows the computed solution with 32 elements
along each direction. The number of GMRES iterations
for each mesh resolution is tabulated in the second column
of table 2. Note that for the preconditioner, we use the
CG and the multigrid implementations within the Belos
and MueLu package of Trilinos (Trilinos Project Team),
respectively. The tolerances used on the preconditioner
and GMRES iterations are 10−2 and 10−8, respectively.
The GMRES iteration count is found to increase only
moderately with problem size, and therefore, the solution
procedure is optimal. The number of preconditioner CG
iterations are shown in the third column of the same table.
These iterations also increase moderately with problem,
and therefore, the preconditioner cost is also reasonable.

-0.5 -8e-3 0.48-9.9e-01 9.7e-01
φ

Figure 3: Poisson test case with 32 elements along each
direction.

Table 2: Pressure Poisson iteration count

N Solver iterations Preconditioner iterations

32 18 2.2

64 23 2.3

128 26 3.3

256 26 5.5

512 25 8.6

In deforming geometries, the pressure Poisson
coefficients change at each timestep. The cost of
recomputing the multigrid auxillary data at each timestep
is high. To reduce this cost, we instead recompute this
auxiliary data every Np,t timesteps. For a good choice

ofNp,t, the number of GMRES iterations was found to be
similar to that obtained by recomputing the preconditioner
at each timestep. The value ofNP,t is problem-dependent;
for e.g., for the Taylor-Green test case discussed in the
below subsection, we set Np,t to 100.

Validation

-0.5 0 0.5-1 1
ux

(a) Streamwise velocity for the Taylor-Green problem on a
deforming mesh at time Tg/2.

-0.25 0 0.25-0.5 0.5
p

(b) Pressure for the Taylor-Green problem on a deforming mesh
at time Tg/2.

Mesh u1 u2 p

N error order error order error order

32 7.9e−3 – 7.9e−3 – 2.4e−2 –

64 2.2e−3 1.84 2.2e−3 1.83 6.6e−3 1.87

128 5.7e−4 1.96 5.7e−4 1.95 1.7e−3 1.96

256 1.4e−4 1.99 1.4e−4 1.99 4.3e−4 1.99

512 3.6e−5 2.00 3.6e−5 2.00 1.1e−4 2.00

Table 3: History of convergence of the cell-centered
velocity and pressure for the Taylor-Green problem on a
deforming mesh at Reynolds number 100.
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Figure 5: Evolution of discrete kinetic energy for the
Taylor-Green problem on a deforming mesh at different
Reynolds number. Symbols ◦, �, �, 4, and O denote the
analytical decay at Reynolds numbers 1, 10, 102, 104, and
∞, respectively. Lines denote the computed decay at the
corresponding Reynolds number.

The spatial accuracy and discrete energy conservation
aspects of our method are demonstrated by solving
the periodic Taylor-Green problem on a deforming
mesh. The Reynolds numbers considered are
1, 10, 102, 104, and∞. The mesh motion is assumed
to be

ϕ1(X, t) = X1 − α sin(2πX2) cos

(
2π

Tg
t

)
,

ϕ2(X, t) = X2 − α sin(2πX1) cos

(
2π

Tg
t

)
,

ϕ3(X, t) = X3,

(15)

where α is the amplitude and Tg is the time period
of the oscillation. We choose α = 0.1, and Tg =
1. α = 0.1 ensures the presence of extremely
skewed elements. For Tg = 1, the grid velocity and
the flow velocity are of the same order of magnitude.
Figures 4a and 4b and show the streamwise velocity
and pressure fields computed with 32 elements in each
direction at time Tg/2 for Reynolds number 100. The
solution is very accurate even though the control volumes
become extremely skewed, especially at the corners.
Table 3 tabulates the maximum error in the computed
cell-centered velocity and pressure with increasing mesh
resolution for Reynolds number 100. The error is
measured at the end of time t = 0.025, and the timestep
for each mesh is set to a very small value to isolate only
the spatial discretization error. Both cell-centered velocity
and pressure converge with second-order accuracy. Figure
5 shows the evolution of discrete kinetic energy with time
for all the Reynolds numbers using 32 elements in each
direction. The simulation results agree with the analytical
results for all Reynolds numbers. The Re = ∞ case
is stable because our method enforces discrete energy

conservation. Formulations that do not enforce such
energy conservation, for e.g., interpolating uiuj instead
of just ui in the convective-term discretization, can yield
unstable solutions for the Re = ∞ case (Mahesh et al.,
2004).

To demonstrate the freestream preservation aspect of
our method, we consider a deforming mesh and advance a
constant velocity field with periodic boundary conditions.
The deforming mesh considered is (Persson et al., 2009)

ϕ1(X, t) = X̂1(X) + 2 sin

(
πX̂1(X)

10

)
sin

(
πX̂2(X)

7.5

)
sin(2πt),

ϕ2(X, t) = X̂2(X) +
3

2
sin

(
πX̂1(X)

10

)
sin

(
πX̂2(X)

7.5

)
sin(4πt).

ϕ3(X, t) = X3,

where X̂1(X), and X̂2(X) are defined as

X̂1(X) = 20X1,

X̂2(X) =
15

2

(
tanh (γ (2X2 − 1))

tanh (γ)
+ 1

)
.

The constant velocity field used is u1 = 1, u2 =
0.5, and u3 = 0, and the timestep is set to 1 × 10−3.
Figure 6 shows the deformed mesh at time t = 0.15 and
the x-component of the computed velocity. Its value is one
(upto machine precision) in all the control volumes. The
error in computed x-component velocity, y-component
velocity, and pressure with mesh refinement are tabulated
in columns 2-4 of table 4. All three errors are of order
machine precision, and therefore, the method preserves a
uniform freestream condition. Also shown in columns 5-7
of table 6 is the error without using the DGCL advanced
determinant of the Jacobian in the unsteady term of the
momentum equation. Instead, the determinant of jacobian
matrix computed from the geometry is used. The error
is of order 10−2 and appears to stagnate with mesh
refinement.

1 1
u1

Figure 6: Freestream preservation test case at time t =
0.15.
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Mesh Error Error without DGCL

N u1 u2 p u1 u2 p

8 3.3e−14 1.6e−14 0 4.4e−2 7.3e−3 6.7e−2

16 3.9e−14 2.0e−14 0 4.4e−2 9.5e−2 1.3e−1

32 5.0e−14 2.5e−14 0 4.7e−2 1.2e−2 5.3e−2

64 4.4e−14 2.2e−14 0 4.7e−2 1.1e−2 1.4e−2

Table 4: History of convergence for the freestream
preservation problem.

Turbulent channel with a deforming bottom wall

In this test case, we demonstrate the method’s ability
to handle large mesh deformation in a wall-bounded
turbulent flow. A turbulent channel flow with a prescribed
bottom wall motion is simulated at a friction Reynolds
number of 180. The channel dimension is 2π × 2 × π.
The mesh motion is prescribed to be

ϕ1(X, t) =2πX1,

ϕ2(X, t) =
1

2
(2− η(X1, X3, t))

tanh(γ(2X2 − 1))

tanh(γ)

+
1

2
(2 + η(X1, X3, t))

ϕ3(X, t) =πX3.

(16)

where the bottom wall deformation η(X1, X3, t) is
prescribed as

η(X1, X3, t) = α sin(4πX1) sin(2πX3) sin(2πt/Tg),

and the reference domain is chosen to be the unit
cube. Here, α, Tg , and γ are set to 0.6, 4, and
2.07, respectively. In the streamwise, wall-normal and
spanwise directions, 341, 128, and 207 elements are
respectively used. The mesh spacing is uniform in the
streamwise and spanwise directions, and is non-uniform
with a hyperbolic tangent stretching function in the
wall-normal direction. Figure 7a shows an instantaneous
contour of the streamwise velocity. The recirculation
created by the downward moving bottom wall generates
regions of large negative velocity in the troughs. Figure
7b shows the corresponding mesh.

0 8 16-10 22
u1

(a)

0 8 16-1.000e+01 2.200e+01
velXno

(b)

Figure 7: (a) Instantaneous contour of the streamwise
component of velocity in the turbulent channel. (b)
Instantaneous mesh of the turbulent channel

VISCOELASTIC IMPLEMENTATION IN
MPCUGLES-SOLID

The dynamic equations for a linear incompressible
viscoelastic solid are:

ρs
∂2ui

∂t2
=
∂σij

∂xj
+ li,

∂uk

∂xk
= 0,

where ui is the solid displacement, ρs is the solid density,
and σij is the stress given by σij = τij − pδij , where
p is the solid pressure, and τij is the viscoelastic stress
modeled using a Prony series as (Zienkiewicz and Taylor,
2005).

τij (x, t) = 2µ̄
(
µoεij (u(x, t)) +

n∑
k=1

µk

∫ t

−∞
e−(t−τ)/λk

∂εij (u (x, τ))

∂τ
dτ
)
.

(17)

Here, µ̄ is the zero-time shear modulus which relates to
the zero-time Young’s modulus and the Poisson’s ratio
(which is equal to 0.5) through the relation, µ̄ = Ē/(2(1+
ν)). {λk}nk=1 are the relaxation times, and {µk}∞k=0 are
the dimensionless viscoelastic parameters that satisfy the
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relations,
n∑
k=0

µk = 1, and µk ≥ 0.

Extension of the below implementation to other
viscoelastic stress models is straightforward.

The above equations are spatially discretized
using the mixed finite element method (Hughes
et al., 2000). The displacements and pressure are
approximated using the continuous piecewise quadratic
Lagrange local polynomials, and discontinuous linear
global polynomials, respectively. We note that the
approximation of pressure with global polynomials is
crucial; local polynomials can reduce the accuracy
(Arnold et al., 2001). The displacement unknowns are
stored at the nodes, while the pressure unknowns are
stored at points within the element. This discretization
yields the below saddle-point matrix problem for the new
timestep displacement dn+1 and pressure pn+1.[

4

∆t2
M +

(
µ0 +

n∑
k=1

µk∆qk

)
K

]
dn+1 + Gpn+1 =

fn+1 + M

[
4

∆t2
dn +

4

∆t
vn + an

]
+

n∑
k=1

(
−e−∆t/λkqnk + ∆qkKdn

)
,

GTdn+1 = gn+1,

(18)

where M is the mass matrix, K is the stiffness matrix
constructed with the zero-time shear modulus µ, G
and GT are the gradient and divergence matrices,
respectively, ∆qk is a viscoelastic parameter given by
λk/(∆t)

(
1− e−∆t/λk

)
, where ∆t is the timestep, fn+1 is

the force vector, gn+1 is the contribution to divergence
from the boundary conditions, and an is the previous
timestep acceleration. The new timestep velocity,
acceleration and viscoelastic stresses are updated as

vn+1 =
2

∆t

(
dn+1 − dn

)
− vn,

an+1 =
4

∆t2

(
dn+1 − dn

)
−

4

∆t
vn − an, and

qn+1
k = e−∆t/λkqnk + ∆qkK(dn+1 − dn).

For a large scale solution of the above system of
equations, a good parallel preconditioner is crucial,
especially for soft materials. It turns out that black-box
preconditioners provided by the Trilinos Ifpack2 package
are not effective for parallel solution. For e.g., using the
incomplete LU factorization on four processors increases
the number of GMRES iterations by a factor of 10
compared to that on a single processor. Therefore, we
implemented the Silvester-Kay-Wathen preconditioner
(Silvester et al., 2001) given by

P =

Keff G

0

(
µ∆tM−1

p + 1
∆t

[
1

h1h2h3
GTG

]−1
)−1

 .

Here, Keff =
[

4
∆t2 M + (µ0 +

∑n
k=1 µk∆qk) K

]
, Mp

is the mass matrix constructed using the pressure basis
functions, h1, h2, andh3 are the characteristic mesh sizes
along each dimension. This preconditioner along with our
in-house implementation of flexible GMRES was found to
be the most effective choice.

Validation

(a)

(b)

Figure 8: a) Incompressible cantilever beam deformation.
b) Tip deflection’s absolute error with mesh refinement.
N is the number of element along each direction.

Static, dynamic, and eigenvalue problems are solved
to validate the implementation. Figure 8a shows the
static deformation of a cantilever beam under plain strain.
Figure 8b shows the error in tip deflection with mesh
refinement. The tip displacements converge with the
expected third-order accuracy. This problem validates the
two-dimensional stiffness and gradient matrices.

The three-dimensional stiffness, gradient and mass
matrices are validated by computing a few smallest
eigenvalues of an incompressible clamped elastic square
plate using three-dimensional solid elements. The
incompressible eigenvalue problem is[

K G

GT 0

][
vd

j

vp
j

]
= ωj

2

[
M 0

0 0

][
vd

j

vp
j

]
.
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Here, ωj are the natural frequencies, vu
j is the natural

modes’ displacement degrees of freedom and vp
j is

the natural modes’ pressure degrees of freedom. The
above eigenvalue problem is an indefinite generalized
eigenvalue problem. Therefore, the above problem is
first converted to a standard eigenvalue problem by
premultiplying with the inverse of the left-hand side
matrix. The resulting eigenvalue problem is then solved
using the Block Krylov Schur algorithm available in
Trilinos Anasazi package (Trilinos Project Team). Table
5 shows the first two natural frequencies and the reference
values for comparison. The computed results agree well
with the reference results.

Mode Computed Reference (Leissa, 1969)

1 36.17 36

2 73.67 73.41

Table 5: Natural frequencies (ωj
√

ρh
D L

2) of a clamped
incompressible elastic square plate.

0 0.2 0.4 0.6 0.8 1 1.2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Theory

Simulation

Figure 9

The time integration and the inelastic stress
contribution are validated by simulating the free vibration
of a clamped viscoelastic square plate. The displacement
is initialized to the first mode shape of the plate. The
initial velocity is set to zero. A single term Prony series
is assumed. The viscoelastic parameters µ0, µ1, and
λ1 are set to 0.15, 0.85, and 0.1, respectively. For the
prescribed initial condition, the response will only be
along the first mode, i.e., d(t) = d1(t)vd

1 , where d1(t)
is the component, and vd

1 is the first mode. Figure 9
compares d1(t) computed from the numerical solution
to the analytical solution. The numerical solution agrees
with the analytical solution.

TWO-WAY COUPLING

Problem

Lf
2

Ls
2

Lf
1, L

s
1

Lf
3, L

s
3

Figure 10: Schematic of the problem in the undeformed
configuration.

Figure 10 shows the schematic of the considered
two-way coupled FSI problem in the undeformed
configuration, i.e., at time t = 0. The blue and red boxes
denote the fluid and solid domains, respectively. The fluid
domain is a channel, and the solid domain is a compliant
wall situated at the bottom of the channel. The dimension
of the fluid and solid domains are Lf

1 × Lf
2 × Lf

3 and
Ls

1 × Ls
2 × Ls

3, respectively. The fluid within the channel
is assumed to be incompressible, and the compliant
wall is assumed to be composed of an incompressible
viscoelastic material, for e.g., polydimethylsiloxane.

Governing equations
The governing equations in the fluid domain are the

incompressible Navier-Stokes equations solved in the
ALE frame of reference.
∂uf(ϕf(X, t), t)

∂t

∣∣∣∣(
ϕ−1

f (x,t),t
) − vg ·∇uf +∇ ·

(
ufu

T
f

)
=

−∇pf +
1

Re
∇2uf + `f in Ωf(t), and

∇ · uf = 0 in Ωf(t).

(19)

Here, uf and pf are the fluid velocity and pressure,
respectively, Ωf(t) is the current fluid domain at time t, `f

is the body force,ϕf(X, t) is the ALE mapping, and vg =
∂ϕf(X, t)/∂t is the grid velocity. Re = ρfUfLf/µf is the
Reynolds number, where ρf, Uf, and Lf are the reference
fluid density, velocity, length scale, respectively, and µf
is the dynamic viscosity. In the solid domain, we solve
a modified form of the dynamic linear incompressible
elasticity equations in the Lagrangian frame of reference.
The modification enforces the incompressibility of the
solid in the current domain instead of the reference
domain, and accordingly modifies the contribution of
pressure to the total stress. It is important to note that
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without these modifications, the coupled problem is not
solvable. The modified solid equations are:

ρs

ρf

∂2ds

∂t2
= −∇X ·

(
PsJsF

−T
s

)
+∇X · T s + Ls in Ω0

s , and

∇X ·
(
JsF
−1
s Us

)
= 0 in Ω0

s .

(20)

where T s is defined by a linear viscoelastic relation
(equation 17). In addition, the sum of the mass flux
integral at the fluid and solid Dirichlet boundaries should
be equal to zero. This ensures that the coupled problem is
solvable. For uniqueness of the fluid and solid pressures,
we require that the integral of pressure in the combined
fluid-solid domain should be zero.

The conditions that couple the fluid and solid solutions
are: i) Geometric adherence condition on the fluid ALE
mapping and the solid displacement. ii) Continuity of
velocity at the fluid-solid interface. iii) Continuity of the
normal component of stress at the fluid-solid interface. iv)
A condition on the fluid and solid pressure averages. v) A
condition on the flux of the common fluid-solid interface
velocity. The equation below describes these conditions.

(i)ϕf(X, t) = X + ds(X, t),

(ii)uΓf(ϕf(X, t), t) = UΓs(X, t),

(iii)σf(ϕf(X, t), t)Jf(X, t)F
−T
f (X, t)Nf(X)+

Ps(X, t)Ns(X) = 0,

(iv) pf(t)|Ωf(t)|+ ps(t)|Ωs(t)| = 0,

(v)

∫
Γfs(t)

uΓf · nf dΓ = 0.

(21)

Here, X is a point on the undeformed fluid-solid interface
Γ0

fs. σf(x, t) is the fluid Cauchy stress tensor. Ff is
∇

X
ϕf, and Jf is det(Ff). Nf and Ns are unit normals

to Γ0
fs pointing outward to the fluid and solid domain,

respectively. |Ωf (t)| and |Ωs(t) are the time-dependent
volumes of the fluid and solid domain, respectively.

Two-way coupled simulation with sequential fixed
point iteration

Below, we present some preliminary results of the
two-way coupled problem using a modified sequential
fixed-point coupling algorithm. Some details of this
algorithm are given below. The boundary conditions of
the fluid subproblem are: Periodic boundary condition
along the streamwise and spanwise directions. Dirichlet
velocity boundary condition on the top and bottom wall.
The top wall is stationary. The Dirichlet data for the
bottom wall is supplied by the coupling algorithm. The
boundary conditions of the solid subproblem are: all
sides except the fluid-solid interface are clamped. Stress
boundary condition is used on the fluid-solid interface
and the coupling algorithm provides the stress data. The
coupling algorithm is as follows. At each timestep, the
fluid and solid solutions are coupled via the fixed-point

interface problem below:

Find dn+1
Γ , pn+1

f , such that

dn+1
Γ = Sn+1

N→D(Fn+1
D→N (dn+1

Γ , pn+1
f ))

pn+1
f |Ωn+1

f |+ pn+1
s |Ωn+1

s | = 0.

(22)

Here, dn+1
Γ is the fluid-solid interface displacement at

timestep n + 1. Sn+1
N→D denotes the solid subproblem at

timestep n+ 1. The subscript N → D means that it takes
the Neumann data (normal-component of stresses) as the
input at the fluid-solid interface boundary and returns the
Dirichlet data (displacement) on the same boundary as the
output. Similarly, Fn+1

D→N denotes the fluid subproblem
at timestep n + 1. The subscript D → N means
that it takes the Dirichlet data (displacement/velocity) as
input at the fluid-solid interface boundary and returns
the Neumann data (normal-component of stresses) on
the same boundary as the output. In the usual version
of the sequential fixed-point iteration (Mehl et al.,
2016), the average fluid-pressure is not an unknown in
the interface problem. Having it as an unknown is
essential here because the fluid pressure is determinable
only up to an additive constant (since we use only
periodic and Dirichlet boundary conditions for the fluid
subproblem). Arbitrarily setting this average (to say zero)
would arbitrarily change the average pressure load on the
compliant wall which can deform it aphysically. The
iterative algorithm to find the solution to the interface
problem is:

For k = 0, . . .

dk+1
Γ = dkΓ + ωk(Sn+1

N→D(Fn+1
D→N (dk+1

Γ , pkf ))− dk)

pk+1
f |Ω∗f |+ pks |Ω∗s | = 0

If ‖dk+1
Γ − dkΓ‖2 ≤ ε, then exit for loop

(23)

Here, Ω∗f and Ω∗s are the predicted fluid and solid
domain at timestep n + 1, respectively. ωk is the
dynamic relaxation factor. It is determined using
the Aitken’s method (Küttler and Wall, 2008). The
fluid (Fn+1

D→N ) and solid subproblems (Sn+1
N→D) are

solved using MPCUGLES and MPCUGLES-SOLID,
respectively. Here, ε is the convergence tolerance of the
interface displacement.

The parameters of the problem are as follows. The
friction Reynolds number is 180. The dimensions of the
fluid domain are Lf1 = 2πδ, Lf2 = 2δ, and Lf3 = πδ. For
the solid domain, the dimensions are Ls1 = 2πδ, Ls2 =
0.1δ, and Ls3 = πδ. For the compliant wall, the density,
Young’s modulus, and Poisson’s ratio are set to 100ρf ,
105ρfufτ

2, and 0.5, respectively. Along the streamwise
and spanwise direction, 120 and 82 uniform elements
are used, respectively, for both the fluid and solid. In
the wall-normal direction, 82 elements with hyperbolic
tangent stretching are used in the fluid and 5 uniform
elements are used in the solid. The resulting streamwise
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grid resolution is ∆x+
1

f
= ∆x+

1

s
= 9.42. The spanwise

resolution is ∆x+
3

f
= ∆x+

3

s
= 6.9. The wall-normal

resolution in the fluid is ∆y+
w
f

= 0.56. The timestep
is chosen to be 10−5δ/ufτ . A total of 144 processors
are used. Both the fluid and the solid subproblems are
partitioned into 144 processors. Note that the fluid and
solid meshes match at the fluid-solid interface. This
simplifies the transfer of the fluid loads to the solid and
the transfer of the solid displacements to the fluid. The
fluid problem is first run with a rigid bottom wall until
it reaches a statistically stationary state. The two-way
coupling is then turned on and the coupled problem is
solved.

Figure 11 shows an instantaneous visualization of
the two-way coupled problem. On the compliant wall,
away from the clamped boundaries, we observe streaky
deformation. The maximum wall-normal displacement
and velocity are of the order 10−3δν and 10−3ufτ ,
respectively. Even though the deformation is small, it
affects the flow discharge. This might indicate that the
deformation has a non-negligible impact on the fluid flow.

1.7 3.4 5.10 6.7×10−6

‖ds‖2

5.2 10.3 15.5-1.6×10−4 21
uxf

Figure 11: Instantaneous visualization. Velocity and
displacement are normalized with ufτ and δ, respectively.
The solid displacements are amplified by a factor of
2× 104.

The proposed method
Notice that in the sequential fixed-point coupling

algorithm, the fluid and solid solvers have to be executed
one after the other. The proposed method allows for
simultaneous execution of the two solvers. The boundary
conditions for the fluid subproblem remains the same as
that in the fixed-point coupling algorithm. However, the
boundary conditions of the solid subproblem are different.
They are: Dirichlet boundary conditions are used on all
sides. The left, right, and bottom sides are clamped
by setting the Dirichlet data to zero. On the fluid-solid
interface boundary (the top side), the Dirichlet data is

supplied by the coupling algorithm.

Fluid executable Solid executable
J̃n+1
f
−J̃nf

∆t
= 3

2
GRHSnf −

1
2

GRHSn−1
f

Ûf J̃
n+1
f
−Unf J̃nf

∆t
=

3
2

(
−NLnf + 1

Re
VISCnf + BFnf

)
−

1
2

(
−NLn−1

f + 1
Re

VISCn−1
f + BFn−1

f

)
Extrapolate d∗Γ Extrapolate Ω∗s,h

Compute ALE mapping ϕ∗f (d∗Γ) Recompute G∗s , and G∗
T

s

Recompute M∗Γ, and g∗Γ

Construct initial guess un+1,0
Γ s.t. g∗

T
un+1,0

Γ = sn+1
Γ

Compute initial residual, rn+1,0
Γ = FSICouplingKernel (un+1,0

Γ )

k=0; win=un+1,0
Γ

do while (.true.)

(isnc,isc,wout)= matFreeGMRESKernel (k,win,tol,maxIter)

if(isnc) stop “GMRES did not converge.”

if(.not. isc) win= FSICouplingKernel (un+1,0
Γ +wout)-rn+1,0

Γ

if(isc) then

un+1
Γ = un+1,0

Γ +wout,

compute the fluid and solid solution by solving

rn+1
Γ = FSICouplingKernel (un+1

Γ ), and

verify rn+1
Γ to be small

endif

k=k+1

enddo

Un+1
f = Ûf −∆tG∗Pn+1

f dn+1
s = dns + ∆t

2

(
Un+1

s + Uns

)
an+1

s = 2
∆t

(
Un+1

s −Uns

)
− ans

Table 6: Two-way coupling algorithm.

rΓ= FSICouplingKernel (vΓ)

Fluid executable Solid executable

Input: vΓ

−L∗Pn+1
f = b(vΓ), Cs,effU

n+1
s + G∗s Pn+1

s = bn+1
u (vΓ)

G∗
T

s Un+1
s = bn+1

p (vΓ),

and require (
∑

CVs p
n+1
f,icv |Ω

∗
f,icv|)/|Ω

∗
f | = 0. and require (

∫
Ω∗f

pn+1
s dΩ)/|Ω∗s | = 0.

Post-process fluid solution to form FfΓ Post-process solid solution to form FsΓ

Compute Hn+1
fΓ =

[
M∗Γ
]−1

FfΓ Compute Hn+1
sΓ =

[
M∗Γ
]−1

FsΓ

Set λ(vΓ) to
−g∗

T

Γ

[
Hn+1

fΓ
−Hn+1

sΓ

]
g∗

T
Γ [M∗Γ]−1

g

Set rΓ to Hn+1
fΓ −Hn+1

sΓ + λ(vΓ)
[
M∗Γ
]−1

g∗Γ

Output: rΓ

Table 7: The FSI coupling kernel.

A brief description of the proposed method is
as follows. The predictor equations of the fluid
are first advanced using the explicit Adams-Bashforth
scheme. The new timestep displacement of the fluid-solid
is extrapolated from the previous timesteps, and the
corresponding ALE mapping in the fluid is computed
via the Laplacian extension approach (Nobile, 2001).
The solid domain is also extrapolated from the previous
timesteps, and the new timestep gradient and divergence
matrices are computed. At each timestep, the fluid and
solid solution are coupled by solving the below discrete
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problem at the interface:

Find un+1
Γ , pn+1

f , and pn+1
s , such that

‖Hn+1
fΓ (un+1

Γ , pn+1
f )−Hn+1

sΓ (un+1
Γ , pn+1

s )‖`2 is minimum,

g∗
T

Γ un+1
Γ = sn+1

Γ , and

pn+1
f |Ω∗f |+ pn+1

s |Ω∗s | = 0.

(24)

Here, un+1
Γ is the new timestep velocity at the nodes of

the interface mesh. pn+1
f , and pn+1

s , are the new timestep
fluid and solid average pressure, respectively. Hn+1

fΓ and
Hn+1

sΓ are the discrete fluid and solid Steklov-Poincare
operators, respectively. |Ω∗f | and |Ω∗s | are the volumes
of the discrete fluid and solid domains, respectively. g∗

is the discrete gradient at the interface, and sn+1
Γ is the

contribution from the fixed nodes at the interface. To
solve the above interface problem, we developed a novel
solution procedure using the matrix-free implementation
of GMRES. Note that the fluid and solid equations
are solved using MPCUGLES and MPCUGLES-SOLID,
respectively.

Algorithm in table 6 summarizes the method and
also its multiple-program multiple-data implementation.
The two main kernels of the algorithm are the FSI
coupling kernel (denoted as ‘FSICouplingKernel’),
and the matrix-free GMRES kernel (denoted as
‘matFreeGMRESKernel’). The FSI coupling kernel
shown in algorithm 7 yields the residual vector rΓ given
a GMRES Arnoldi vector vΓ. Within this kernel, we
solve the pressure Poisson equation within the fluid,
and the saddle point problem within the solid. The
matrix-free GMRES kernel performs the operations of the
GMRES algorithm which includes i) orthogonalizing the
matrix-vector products, ii) building the upper Hessenberg
matrix, iii) checking whether the residual is smaller than
the specified tolerance (denoted as ‘tol’), iv) checking
whether the number of GMRES iterations has reached
the specified maximum number (denoted as ’maxIter’),
and v) solving the projected least squares problem when
the iterations converge. To compute the matrix-vector
products required at each iteration ‘k’, the kernel uses
reverse communication through the work vectors ‘wout’
and ‘win’.

Some details of the multiple program, multiple
data implementation are discussed. The fluid
and solid executables are started simultaneously as
mpiexec -n np_f ./fsolver_exe : -n np_s
./ssolver_exe. This command runs the fluid solver
executable, fsolver_exe, in the first 0 to np_f-1
ranks, and the solid solver executable, ssolver_exe,
in the remaining np_f to np_f+np_s-1 ranks. In
tables 6 and 7, the cells shaded in blue and red show
the tasks performed by the fluid and solid executable,
respectively. To perform the unshaded tasks, the two
executables need to be synchronized. The fluid and solid

solver tasks between any two consecutive synchronization
points can be performed in parallel. Therefore, ours is a
parallel coupling approach. To exchange data between
the processors running the fluid and solid executables, we
use the global MPI communicator, MPI_COMM_WORLD.
For communication within the fluid processors and within
the solid processors, we use a sub-communicator created
via MPI_COMM_SPLIT.

Validation of the proposed method
The method of manufactured solution is used for

validation. The undeformed fluid and solid domains are
assumed to be two unit cubes. The exact fluid velocities
and pressure are assumed to be

uf,1(x1, x2, x3, t) = 0

uf,2(x1, x2, x3, t) = α sin(k1x1)ω sin(2ωt)

uf,3(x1, x2, x3, t) = 0

pf(x1, x2, x3, t) = α sin(k1x1) sin(ωt).

The constants k1 and ω are both set to 2π, and the constant
α is set to 0.1. The exact solid displacement and pressure
are taken to be

ds,1(X1, X2, X3, t) = 0,

ds,2(X1, X2, X3, t) = α sin(k1X1) sin2(ωt)

ds,3(X1, X2, X3, t) = 0

ps(x1, x2, x3, t) = α sin(k1x1) sin(ωt).

The above fluid and solid velocities correspond to an
incompressible generalized shear deformation. Using the
above solution, the FSI problem data, i.e., the body force
within the fluid and solid, the fluid and solid Dirichlet
boundary data on the boundary surfaces except the
fluid-solid interface, the fluid and solid initial conditions,
and the jump in their stresses at the fluid-solid interface,
are set. Note that the Dirichlet boundary data for this
test case is different compared to the two-way coupled
channel case. The solid is assumed to an incompressible
elastic material, i.e., µ0 is set to one and ninelastic is set to
zero. The non-dimensional zero-time Young’s modulus,
and Poisson’s ratio are set to 3, and 0.5, respectively. The
non-dimensional density of 1 is used to test the robustness
of our method in the presence of added-mass effect. The
Reynolds number of the fluid is set to 100.

Both fluid and solid meshes use 32 elements along
X1 direction, 5 elements along X2 direction, and 5
elements along X3 direction. The test is conducted using
8 processors for the fluid solver, and 8 processors for the
solid solver. Note that we have also successfully tested the
implementation for number of fluid processors 6= number
of solid processors. The coupled problem is solved until
T = 1 with a time step of 10−3.
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Figure 12: Instantaneous snapshot of the computed fluid
and solid solutions.

Figure 12 shows an instantaneous snapshot of the
computed fluid and solid solutions. The figure shows
the contours of the X2 component of the fluid and
solid velocity. To verify our coupling approach and the
correctness of our parallel implementation, we measure
the error in the solid displacements eus

which is defined
as follows.

eus
= max

1≤n≤N
‖Un

s,h(X)−U(X, tn)‖L2(Ω0
s ),

where N is the total number of timesteps. The
computed error eus

is ≈ 5 × 10−5. This verifies our
coupling approach and the correctness of our parallel
implementation. Simulations to check the parallel
efficiency of the method and to verify the correctness for
turbulent FSI problems are currently being conducted.

ONE-WAY COUPLED PLATE EXCITATION

Problem

x

y

zLfy
δ

Lfz

Lfx

Lsx

Lsz

Figure 13: Computational domain.

x

z

Figure 14: Plate boundary conditions. Arrow denotes the
direction of mean flow.

Figure 13 shows the problem setup. The blue, yellow,
and orange regions denote the fluid, solid, and acoustic
subdomains, respectively. The fluid subdomain is a
channel of size Lfx×Lfy×Lfz , where Lfx = 6πδ, Lfy = 2δ,
and Lfz = 2πδ. The solid subdomain is a plate of
size Lsx × Lsy × Lsz , where Lsx = (6π/5) δ, the plate
thickness Lsy = 0.004δ, and Lsz = (2π/5) δ. The acoustic
subdomain is the entire bottom half-space below the plate.
The large streamwise (Lfx) and spanwise (Lfz ) extents
of the channel are essential to include the contribution
of large-scale turbulent structures to the wall-pressure
fluctuations.

The plate is centered and baffled. The three plate
boundary conditions considered are – all four sides
clamped (CCCC), three sides clamped and one side free
(CCCF), and all four sides simply supported (SSSS).
Figure 14 shows a schematic of the different boundary
conditions and also the orientation of the edges. Two
plate materials are considered: synthetic rubber – a soft
material, and stainless steel – a stiff material. The
two materials are assumed to be elastic. For synthetic
rubber, the density, Young’s modulus, and Poisson’s ratio
are set to 1522kg m−3, 50MPa, and 0.4, respectively.
For stainless steel, the density, Young’s modulus, and
Poisson’s ratio are set to 7500kg m−3, 180GPa, and 0.305,
respectively. The fluid inside the channel is chosen to
be incompressible air at room temperature. The channel
half height, δ, is chosen to be 1.25cm. The friction
Reynolds numbers considered are Reτ = 180 and Reτ =
400, where Reτ is defined to be ufτ δ/ν

f . To increase
the Reynolds number, we increase the flow velocity
while keeping the remaining parameters constant. This
yields a friction velocity, ufτ , of around 0.225m s−1 for
Reτ = 180 and around 0.5m s−1 for Reτ = 400. For
structural damping, we use the Rayleigh damping model.
The stiffness-proportional damping coefficient is set to
zero and the mass-proportional damping coefficient is
computed such that the loss factor is 0.05 at the first
natural frequency of the plate. The acoustic medium is
assumed to be air. Assuming room temperature, the speed
of sound is then 343m s−1. In total, we have 12 cases –
two Reynolds number, two plate materials, and three plate
boundary conditions.
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Simulation methodology

For both Reynolds numbers, the turbulent flow is first
simulated by assuming the bottom wall to be rigid. Once
the flow becomes statistically stationary, the wall-pressure
fluctuations are stored for a total time of 30δ/ufτ for
Reτ = 180, and 23δ/ufτ for Reτ = 400. The
channel flow simulation is performed in a moving frame
of reference for better accuracy (Bernardini et al., 2013).
Therefore, the pressure fluctuations are converted to a
stationary frame, and then used to compute the plate
response for each Reynolds number, plate material and
plate boundary condition. The far-field sound is computed
from the plate response. We discard the initial 15δ/ufτ
units of the simulated response and sound for Reτ = 180
cases, and 8δ/ufτ units for Reτ = 400 cases because
it predominantly contains the plate’s transient response.
The remaining data is used to compute the statistics of the
plate displacement and sound.

The DNS simulation of the turbulent channel flow is
performed by solving the incompressible Navier-Stokes
equations using MPCUGLES (Mahesh et al., 2004). Table
8 shows the DNS mesh resolution. The validation of
the computed solution can be found in Anantharamu
and Mahesh (2020). The plate response is simulated
by solving the dynamic linear elasticity equations using
MPCUGLES-SOLID. The plate is discretized with
27-node hexahedral finite elements. Table 9 shows the
solid mesh resolution. Note that the fluid and solid
meshes match at the fluid-solid interface, and therefore,
transferring the pressure fluctuations from the fluid to
the solid mesh is straightforward. For validation of
MPCUGLES-SOLID for plate problems, we refer the
reader to Anantharamu and Mahesh (2021). To compute
the sound radiated by the vibrating plate, we solve
the wave equation for acoustic pressure in the acoustic
domain using a Green’s function methodology. The plate
acceleration supplies the Neumann boundary condition at
the interface between the plate and the acoustic medium.
The sound pressure is computed at discrete points on a
polar grid in the acoustic domain, and at discrete time
instants. These points are (ri cos(θj), ri sin(θj), π), where

ri = ro + i∆r; θj = θo + j∆θ; ro = 10π; θo = π;

∆r =
160π

Nr
; ∆θ =

π

Nθ
;

i = 1, . . . , Nr, and j = 1, . . . , Nθ.

Here, Nr and Nθ are the number of points along radial
and angular directions, respectively. Nr is set to 15, and
Nθ is set to 19. The acoustic solver which is a module
within MPCUGLES-SOLID has also been validated (not
shown). All three solvers use a non-dimensional timestep
of ∆t ufτ /δ = 5× 10−4 for all the cases.

Reτ Nf
x ×Nf

y ×Nf
z ∆xf

+
∆zf

+
∆yf

+

w ∆yf
+

c

180 720× 176× 330 4.7 3.4 0.27 4.4

400 1388× 288× 660 5.4 3.8 0.37 5.9

Table 8: Fluid mesh details.

Reτ Ns
x ×Ns

y ×Ns
z ∆xs

+
∆zs

+

180 144× 1× 66 4.7 3.4

400 278× 1× 132 5.4 3.8

Table 9: Solid mesh details.

Results

Synthetic rubber (×103) Stainless steel (×107)

BC Reτ = 180 Reτ = 400 Reτ = 180 Reτ = 400

CCCC 0.68 1.65 0.55 2.43

CCCF 0.74 1.84 0.65 3.07

SSSS 3.28 3.27 2.03 9.43

Table 10: Square root of plate-averaged mean square
displacement (normalized by δ).
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Figure 15: Plate-averaged displacement spectrum of
synthetic rubber plate in (a) outer and (b) inner units.

(SSSS Reτ = 400), (CCCC Reτ = 400),
(CCCF Reτ = 400), (SSSS Reτ = 400),

(CCCC Reτ = 400), (CCCF Reτ = 400).
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The square root of the plate-averaged mean-square
displacement (refered to as ‘displacement rms’) is
tabulated in table 10 for all the cases. The rms changes by
a factor of 2-5 when the boundary condition is changed
for fixed plate material and Reynolds number. For a
given boundary condition, the change in displacement rms
with Reynolds number depends on the plate material; on
increasing the Reynolds number from 180 to 400, the
rms displacement of the synthetic rubber plate increases
by a factor of 1-2 while that of the stainless steel plate
increases by a factor of 4-5.

The displacement spectra for the synthetic rubber
plate are shown in figures 15a and 15b in outer and inner
units, respectively. An overlap region is observed. The
spectra in the region 20 < ωδ/ufτ < 0.5(Reτ = 180) (denoted
by ←→) collapse with Reynolds number to a similar
extent in both outer and inner units. The decay in the
spectra is approximately proportional to ω−3. It can be
shown that the outer-inner overlap implies a ω−3 decay. A
proof of this follows. The spectra in the overlap region can
be written as follows using both outer and inner scaling.

φsdd(ω)ufτ

δ3
≈ fδ

(
ωδ

ufτ

)
, and (25)

φsdd(ω)uf
4

τ

νf3 ≈ fν

(
ωνf

uf
2

τ

)
. (26)

Here, fδ and fν are two functions that do not explicitly
depend on the Reynolds number. Equate the above
two equations and choose ωδ/uτ and Reτ as the two
independent variables. This yields

fδ

(
ωδ

ufτ

)
≈ fν

(
ωδ

ufτ

1

Reτ

)
1

Re3
τ

.

Partially differentiate w.r.t. Reτ to obtain

− 1

Re4
τ

[
3fν

(
ωδ

ufτ

1

Reτ

)
+
ωδ

ufτ

1

Reτ
f ′ν

(
ωδ

ufτ

1

Reτ

)]
≈ 0.

Rearranging yields

d

d
(
ωδ

ufτ

1
Reτ

) [(ωδ
ufτ

1

Reτ

)3

fν

(
ωδ

ufτ

1

Reτ

)]
≈ 0.

This implies

fν

(
ωνf

uf
2

τ

)
≈ C

(
ωνf

uf
2

τ

)−3

,

where C is the proportionality constant, and therefore,
φsdd(ω) ≈ Cω−3.
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Figure 16: Plate-averaged displacement spectrum of
stainless steel plate in (a) outer and (b) inner units. See
caption of figure 15 for the description of lines and
symbols.

The stainless steel plate spectra on the other hand
does not show such overlap. Their spectra are shown in
outer and inner units in figures 16a and 16b, respectively.
For an overlap region to exist, we believe that there
should be sufficient separation between the time scale
of the plate first natural frequency (ω1) and that of the
high-frequency turbulent motion which is set by νf and
ufτ , i.e., ω1ν

f/uf
2

τ should be much smaller than one. For
the synthetic rubber plates, ω1ν

f/uf
2

τ is of order 0.1,
while for the stainless steel plates, ω1ν

f/uf
2

τ is of order
1. Therefore, the synthetic rubber plates have an overlap
region, while the stainless steel plates do not.

The high-frequency portion (ωνf/uf
2

τ > 1) of
the synthetic rubber plate spectra collapse better with
Reynolds number in inner units compared to outer
units. See figure 15. This high-frequency collapse
does not follow just from the collapse of high-frequency
wall-pressure in inner units. This is because ufτ
changes with Reynolds number, and therefore, the plate
thickness in inner units (hsufτ/ν

f ) also changes with
Reynolds number. Further, the plate spatially filters
the wall-pressure based on the modal wavenumber, and
therefore, the scaling of the modal wavenumber with
Reynolds number also matters. It turns out that the
effect of change in plate thickness in inner units gets
nullified for mass-proportional damping and that the
modal wavenumber scales in inner units. Therefore, the
high-frequency displacement spectrum collapses in inner
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units. This result can be shown using infinite plate theory.
The high-frequency portion of the stainless steel plate also
collapses better in inner units. However, the collapse is
not as good as that of the synthetic rubber plate.
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Figure 17:
(
φsdd(ω)ufτ/δ

3
) (
Ds/ρfuf

2

τ δ
3
)2

v/s ωδ/ufτ
for (a) synthetic rubber and (b) stainless steel plates.
See caption of figure 15 for the description of lines and
symbols.

The very low frequency portion (frequencies
much smaller than the first natural frequency) of the
displacement spectra collapse neither in inner nor in outer
units, for both plate materials. It can be shown from
Poisson-Kirchoff plate theory that in this region,(

φsdd(ω)uτ

δ3

)(
Ds

ρfuf
2

τ δ3

)2

v/s
ωδ

ufτ
(27)

collapses with Reynolds number and also with plate
material. Ds here is the bending stiffness of the plate.
The plate-averaged displacement spectra shown in figure
17 support this result. For a reference first natural
frequency, consider that of the simply supported plate
for Reτ = 400 (denoted by vertical black line). For
frequencies much smaller than this reference first natural
frequency, the collapse with Reynolds number is evident
from the figures. For a given boundary condition, the
y-intercepts of the synthetic rubber and stainless steel
plates are almost coincident. Therefore, the scaling in
equation 27 collapses the spectra with both plate material
and Reynolds number. Note that the factor Ds2 in
equation 27 accounts for the change in stiffness with
plate material. A similar factor has been previously used

by Ciappi et al. (2012). However, they use the plate
thickness and wall-pressure convection velocity as the
length and velocity scales to account for the Reynolds
number dependence. We use the channel half-height and
friction velocity to account for the change in Reynolds
number.

Synthetic rubber

BC Reτ = 180 Reτ = 400

CCCC 16.39 29.75

CCCF 14.85 29.9

SSSS 21.44 27.75

Table 11: Sound pressure level in dB at r = 50δ below
the plate center.
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Figure 18: SPL (in dB) directivity at r = 50δ for the
synthetic rubber plate. • (SSSS Reτ = 400), • (CCCC
Reτ = 400), • (CCCF Reτ = 400), ◦ (SSSS Reτ =
180), ◦ (CCCC Reτ = 180), ◦ (CCCF Reτ = 180).

The sound pressure level (SPL) at a radial distance
of 50δ below the plate center (θ = φ = 0) is tabulated
in table 11. The statistics of the sound pressure radiated
by the stainless steel plates are not shown as they hardly
radiate any sound. The boundary condition is found
to change the SPL by 2-20dB depending on the plate
material and Reynolds number. Note that the sound
radiated by the stainless steel plate is very small (negative
dB) at these Reynolds numbers. The directivity of SPL at
the same radial distance along the plate mid-span (φ = 0)
is shown in figure 18. It resembles that of a monopole
source for all the cases. This is because, the dominant
contribution to the SPL is from the first plate mode,
and the ratio of the acoustic wavenumber to the modal
wavenumber of the first mode is very small. Therefore,
the directivity of the first mode contribution (Hambric
and Fahnline, 2007), and hence, the directivity of SPL
resembles a monopole source.
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Figure 19: Acoustic pressure PSD at r = 50δ below
the synthetic rubber plate center in (a) outer and (b) inner
units. See caption of figure 15 for the description of lines
and symbols.

The acoustic pressure spectra for the synthetic rubber
plate computed at a point r = 50δ below the plate center
are shown in figure 19. Figures 19a and 19b is in outer and
inner units, respectively. The acoustic pressure spectrum
displays an overlap region similar to the displacement
spectrum. The Reτ = 180 overlap region shown by
red arrow (←→) collapses with Reynolds number to a
similar extent in both outer and inner units. Further,
the spectra decay approximately as ω−1. Following a
derivation similar to the displacement spectrum, we can
analytically show that the outer-inner overlap implies
φapp(ω) ≈ Cω−1.

ONE-WAY COUPLED PLATE EXCITATION
SOURCE ANALYSIS

Problem
An elastic plate is embedded in the bottom wall of a

turbulent channel. One-way coupling is assumed because
the plate deformation and velocity is very small in viscous
units. The contribution of shear-stress fluctuations is
neglected because the plate is thin. For thin plates, the
bending stiffness is much smaller (scales as cube of the
plate thickness) than the shear modulus. Therefore, the
bending deformation would be much larger than shear
deformation. The problem domain and dimensions are the
same as that in the previous section; except the acoustic
domain is omitted. The plate is clamped on all four sides.
The top and bottom sides are free. The non-dimensional

Young’s modulus, density, and Poisson’s ratio of the plate
are tabulated in table 12. The mass proportional damping
coefficient is set such that the loss factor is 0.05 at the
natural frequency (same as in the previous section). The
friction Reynolds numbers considered are 180 and 400.

Young’s modulus (E/
(
ρfu

2
τ

)
) 6.88× 109

Poisson ratio (νs) 0.4

Solid density (ρs/ρf ) 1.17× 103

Table 12: Non-dimensional properties of the plate.

Method
The main idea behind this method is to express the

plate-averaged displacement spectrum as a double integral
of a cross-spectral density using theory, and then to
compute this cross-spectral density by postprocessing the
channel DNS velocity field. This method is an extension
of Anantharamu and Mahesh (2020) which is a similar
method to analyze the wall-pressure sources instead.

Denote the plate-averaged displacement spectrum by
φadd(ω). By using the pressure fluctuation Poisson
equation and the modal decomposition of the plate, it can
be shown that

φadd(ω) =

∫ +δ

−δ

∫ +δ

−δ
Γa(r, s, ω),dr ds, (28)

where, δ is the half-channel height, Γa(r, s, ω) is a
cross-spectral density whose expression can be shown to
be

Γa(r, s, ω) =

1

ρsLsyAp

∫∫ +∞

−∞
G∗(−δ, r, k)G(−δ, s, k)ϕff (r, s, k1, k3, ω) ∞∑

j=1

|Sj(k1, k3)|2|Hj(ω)|2
 dk1 dk3.

(29)

Here, ρs, Lsy, and Ap are the density, thickness, and area
of the plate, respectively, k is the magnitude of the wave
vector (k1, k3), G is the Green’s function, ϕff is the
four-dimensional cross-spectral density of the right hand
side of the Poisson equation for the pressure fluctuation,
j is the index of the plate mode, Sj is the finite-domain
Fourier transform of the jth plate mode shape, and |Hj |2
is the transfer function of the jth plate mode. We refer to
Γa(r, s, ω) as the net displacement source cross-spectral
density.

To identify the decorrelated features, spectral POD
of the cross-spectral density Γa(r, s, ω) is performed as
follows. Solve the eigenvalue problem:∫ +δ

−δ
Γa(r, s, ω) Φ̄j(s, ω) ds =

λj(ω)

((
− (1− β)

∂2

∂y2
+ β

)
Φ̄j

)
(r, ω),

(30)
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where β is a small value satisfying 0 < β ≤ 1. The spectral
POD modes are Φj which relates to the eigenfunction
Φ̄j through the relation Φj =

(
− (1− β) ∂2

∂y2 + β
)

Φ̄j . The
spectral POD eigenvalues are λj(ω). These spectral POD
modes and eigenvalues relate to the cross-spectral density
as

Γa(r, s, ω) =
∞∑
j=1

λj(ω)Φj(r, ω)Φ∗j (s, ω). (31)

The difference between the above version of spectral POD
and the most common version (Lumley, 2007; Towne
et al., 2018) of spectral POD is in the inner product used
to enforce the orthogonality of the eigenfunctions. In the
above version, the orthogonality is enforced in the inner
product∫ +δ

−δ

((
− (1− β)

∂2

∂y2
+ β

)
Φ̄i

)
Φ̄∗j dy = δij , (32)

while in the most common version, the orthogonality
is enforced in the L2 inner product. The reason for
not using the L2 inner product is because the L2

inner-product isolates the dominant source to the integral∫ +δ

−δ Γa(r, r, ω) dr and not the plate-average displacement
spectrum. On the other hand, it turns out that, for a
small enough value of β, the inner product in equation
32 isolates the source that contributes the most to the
plate-averaged displacement spectrum. Therefore, we use
the inner product in equation 32 instead of the commonly
used L2 inner product.

Implementation

The net displacement source cross-spectral density
Γa is computed using 80TB of Reτ = 400 and 12TB
of Reτ = 180 DNS velocity data. This computation
is both memory and I/O intensive. A special parallel
tool was developed for this purpose. It uses a low
memory consuming streaming method to compute Γa.
Direct computation of the four-dimensional cross-spectral
density ϕff requires around 1000TB of RAM for Reτ =
400 case, and is therefore prohibitively memory intensive.
To perform the summation in equation 29, 50 modes are
used. It turns out that the first 50 modes are sufficient to
analyze the sources up to ωδ/ufτ = 500.

The 3D DNS velocity is sampled with a temporal
resolution of ∆tuτ/δ = 3.5 × 10−3 for both Reynolds
numbers. A total of 20δ/uτ and 23δ/uτ time units are
used for Reτ = 180 and 400, respectively. In each FFT
chunk, we use 2000 samples which leads to a frequency
resolution of ∆ωδ/uτ = 2π/7. To reduce the spectral
leakage and to increase the statistical convergence, we use
Hanning window with 75% overlap. Further, to account
for the reduction in the spectral level after windowing, we
multiply the estimated CSD by a factor of 8/3 (Bendat
and Piersol, 2011).

Results

(a)

(b)

(c)
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(d)

Figure 20: Real part of the normalized wall
displacement-net displacement source CSD

Re(Ψa(y,ω))∫+∞
−∞

∫+1
−1

Ψa(y,ωδ) dy/δ dωδ/uτ
. The wall-normal distance

is in outer units in figures (a) and (b), and is in inner
units in figures (c) and (d). Figures (a) and (c) are for
Reτ = 180, and figures (b) and (d) are for Reτ = 400.
In all the figures, the contours are 100 equally spaced
values between -0.002 and 0.2. Horizontal dashed red
lines denote the first four natural frequencies of the plate.

Range Reτ = 180 Reτ = 400

0 < y+ < 30 0.52 0.34

30 < y+ < 0.2Reτ 0.06 0.17

0.2 < y/δ < 1 0.41 0.49

Table 13: Fractional contribution of different wall-normal
regions to the plate-averaged mean square displacement.

Figure 20 shows the real part of the plate-averaged
wall displacement-net displacement source CSD
Ψa(y, ω) which relates to Γa as Ψa(y, ω) =∫ +δ

−δ Γa(y, s, ω) ds. Ψa gives the contribution of the
correlation with the sources at distance y from the wall
to the plate-averaged displacement spectrum at each
frequency ω. Note that integrating Ψa along y gives the
plate averaged displacement spectrum. In figures 20a and
b, the wall-normal distance is in outer units. In figures 20c
and d, the wall-normal distance is in inner units. Figures
20a and c are forReτ = 180, and figures 20b and d are for
Reτ = 400. In all figures, the frequency ordinates of the
four horizontal dashed red lines are the first four natural
frequencies of the plate. From a visual inspection of the
contours in figure 20, we see that the fluid sources around
the natural frequencies are the dominant contributors to
the structural response. This dominant contribution peaks
close to the wall in the buffer region (figures 20c and
d), and extends to the outer region of the channel up to

y/δ ≈ 0.75 (figures 20c and d).

(a) (b)

Figure 21: (a) Envelope and (b) phase of the dominant
spectral POD mode for Reτ = 180 for the second natural
frequency.

(a)

(b)

Figure 22: (a) Spectral POD eigenvalues and (b)
fractional contribution of each mode to the plate-averaged
displacement PSD at Reτ = 180.

Table 13 shows the fractional contribution of sources
in the inner, overlap, and outer region of the channel to the
plate-averaged mean square displacement. These values
are computed by partially integrating Ψa(y, ω). The
contribution of the outer and overlap region increases with
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Reynolds numbers while the inner region’s contribution
decreases. Further, the combined contribution of the
overlap and outer regions to the plate response is
comparable to that of the buffer region forReτ = 180 and
exceeds the buffer region contribution for Reτ = 400.

For brevity, only the Reτ = 180 spectral POD results
are presented here. The parameter β is set to 0.01 for
all the cases. For a discussion on the choice of β, we
refer the reader to Anantharamu and Mahesh (2021). The
spectral POD eigenvalues and the contribution of each
eigenvalue to the plate-averaged displacement spectrum
are shown in figures 22a and 22b, respectively, for the
second, third, and fourth natural frequencies of the plate.
The first spectral POD mode is the most dominant and
accounts for almost the entire displacement spectrum.
Therefore, the inner-product in equation 32 is successful
in isolating the dominant decorrelated plate excitation
feature. The envelope and phase of this dominant feature
is shown in figure 21 for the second natural frequency.
The envelope peaks in the buffer layer and its width
extends up to the outer layer similar to the contours of
Ψa. The phase lies between −π/2 and +π/2. This
implies a constructive interference of the contributions
from the different wall-parallel planes. In the sub-optimal
modes, this contribution interferes destructively resulting
in a net zero contribution (not shown). Therefore, the
mechanism responsible for the dominant source is the
constructive interference of the contributions from the
different wall-normal locations.

SUMMARY

In summary, this paper discusses

• the development of numerical methods to simulate
turbulent fluid-structure interaction problems using
DNS/LES,

• some new findings in the context of wall-pressure
induced plate vibration and sound radiation
problem using one-way coupled DNS, and

• a data-intensive method to identify the spatial and
spectral features of the turbulent sources that excite
a plate embedded in the bottom wall of a turbulent
channel.

Extensions to our in-house solver MPCUGLES to
perform accurate LES/DNS in curved and deforming
meshes are discussed. These extensions are developed
in the context of a canonical turbulent FSI problem:
response of an incompressible viscoelastic wall in an
incompressible turbulent channel. Numerical experiments
demonstrate the second-order accuracy, and stability of
the computed solution even in the presence of extremely
skewed and curved elements which might arise while
simulating deforming geometries.

The development of a method to couple the fluid and
solid solutions is discussed in the context of the same
FSI problem. This method allows for the simultaneous
execution of the fluid and solid solvers, and hence, is a
parallel coupling approach. It uses the Steklov-Poincare
operator for this feature. Steklov-Poincare operator-based
methods were previously thought to be possible only
for finite element discretizations in the fluid and solid
domain. This development is the first to extend its
applicability to a finite volume discretization in the fluid
and a finite element discretization in the solid. Some
preliminary results of the two-way coupled problem are
presented.

The dependence of wall-pressure fluctuation induced
plate vibration and far-field sound on plate boundary
condition, plate material, and Reynolds number is
studied using one-way coupled DNS. The plate boundary
condition has a non-negligible impact on displacement
rms (factor of 4-5), and far-field SPL (2-20dB). For
frequencies much smaller than the plate first natural
frequency,

(
φsdd(ω)uτ/δ3

) (
Ds/(ρfuf

2

τ δ3)
)2

v/s ωδ/ufτ is
found to collapse with both plate material and Reynolds
number. The displacement spectra of the synthetic rubber
plate show an overlap region, while that of the stainless
steel plate do not. In this overlap region, the displacement
and spectra decays as ω−3. This trend is observed in our
simulations.

A method to quantitatively analyse the turbulent fluid
sources that excite a plate embedded in the bottom wall
of a turbulent channel is discussed. Around 100TB of
Reτ = 180 and 400 channel DNS data is processed for
this analysis. At these Reynolds numbers, the intensity of
the dominant contribution is found to peak in the buffer
region, and the width of this intensity extends to the
outer region of the channel. The combined contribution
from the sources in the outer and overlap region to
the mean-square displacement is found to increase with
Reynolds number while the contribution from the inner
region sources is found to decrease. Spectral POD is
used to isolate the dominant decorrelated contribution
to the plate excitation into the first spectral POD mode.
From the phase of this dominant mode, it is found
that the contribution from the different wall-parallel
planes interfere constructively. On the other hand, the
contribution from the different wall-normal regions for the
remaining modes interfere destructively resulting in a zero
net contribution.
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