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1. Introduction

There are many problems for which the critical eigenvalue of linearized stability

theory is proportional to some positive power of the wave number k

σ = kmf,  m > 0 (1.1)

where Re σ is unbounded as k→∞.  This means that the growth rate

(Re = real part)
 
Re σ = km Re f

 (1.2)

associated with exponential disturbances proportional to exp (σt) is unbounded as the

disturbance wave length λ = 2π
k   tends to zero.

Some interesting stability problems satisfying (1.1) are discussed in Sections 3, 4,

and 6.  The first example arises in Kelvin’s [1871] analysis of the Helmholtz instability of

vortex sheets and it seems to have been noticed first by Rayleigh [1926].  He comments

about the rapid growth of the wave amplitude h:

h = Re± 1/2 kVt cos k 
�
�
�

�
�
�1

2 Vt – x  (34)

In (34) an arbitrary constant may of course be added to x.  It
appears that the waves travel in the same direction as the stream, and with
one-half its velocity.  In the case of the positive exponent, the rapidity with
which the amplitude increases is very great.  Since k = 2π/λ, the amplitude
is multiplied by eπ, or about 23, in the time occupied by the stream in

passing over a distance λ.  If λ = Vτ,  exp (
1
2  kVt) = exp (πt/τ),

independent of V.

Equation (1.2) has curious implications.  Suppose, following conventions used in

linearized stability theory, that
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Re σ = km Re f < 0 means stability,
 
Re σ = km Re f > 0 means instability.

 (1.3)

As λ = 2π/k→0 (short waves) stable disturbances are immediately squashed and unstable

disturbances are massively unstable, growing without bound.  In some cases Re f (p)

depends on some parameter p and is such the Re f (pc) = 0 with Re f (p) < 0 when p < pc

and Re f (p) > 0 when p > pc.  As p is increased past pc, the flow loses stability in a

catastrophe with exponentially unbounded growth of the shortest waves.  This type of

mathematical description of the underlying fluid mechanics is obviously unacceptable,

but it occurs in good models of physically interesting problems.

We are obliged to consider what analysis leading to unbounded growth rates (1.1)

tells us about physics and what is missed out.  For example, this type of short wave

instability cannot lead to bifurcation in the usual sense because we are dealing with a

continuum of unstable modes with strange properties.  In fact, the usual equilibrated

structures, steady, periodic, quasiperiodic, chaotic, and attracting flows do not appear to

occur.  Instead of these we may expect unsteady fingering instabilities leading to fibril

structures.

The utility of maintaining a strict division between bounded and unbounded

growth rates seems to have been noted first by I. Petrowsky [1938].  His ideas were

further developed by Birkhoff [1954].  Birkhoff was considering how to set up partial

differential equation problems so as to generate physically reasonable solutions.  His was

a work in the classical theory of well-set or well-posed problems that is generally

attributed to Hadamard [1922].  He made a good connection between problems that are

ill-posed as initial value problems and those that have catastrophic short-wave

instabilities with unbounded growth rates, like (1.1).  He argued that well-posedness was

strongly tied to the selection of the class of functions in which a given problem is posed,
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to the choice of functions that might be considered “physically reasonable.”  He

concluded that, at least for partial differential equations with constant coefficients, the

functions with well-defined Fourier transforms constitute a sufficiently general class for

many physical applications.  In this class he then showed that unbounded growth rates

imply the loss of well-posedness of the initial value (Cauchy) problems.

A steady motion which is Hadamard unstable is also unstable in the sense of

linear theory; the amplitude of the disturbance tends to infinity exponentially with the

time.  Unsteady motions may be “stable” in the sense of linear theory but Hadamard

unstable.  This is to say that the motion is “stable” because the amplitude of the

disturbance eventually tends to zero or at least grow less radially than exponentially with

time at any fixed k, no matter how large, but the motion is Hadamard unstable because

the amplitude tends to infinity with k at any fixed time, no matter how large.  Such

situations are discussed at the end of §4 where we consider the unsteady Kelvin-

Helmholtz instability for several cases.

Ill-posed problems will be discussed briefly in the next section, from a

mathematical perspective.  For now it will suffice to emphasize three points about ill-

posedness:  (1) ill-posed problems are disasters for numerical simulations.  Because such

problems are unstable to ever shorter waves, the finer the mesh, the worse the result.  (2)

Some techniques must be introduced to regularize the instability of shortest waves.  (3)

Regularizing techniques are preferentially found from neglected physical effects,

ordinarily small, which enter strongly at short wave lengths, like surface tension and

viscosity.

2. Ill-posed and well-posed problems

Roughly speaking, well-posed problems are those for which the given data

determines physically reasonable solutions.  Physically reasonable solutions are defined
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relative to a mathematical class in which theorems of existence, uniqueness, and

continuous dependence on the data can be proved.  It is the data which is posed.  A given

equation (or system of equations) is compatible with some data and not with other data.

For example, good data for hyperbolic or parabolic partial differential equations is

associated with the prescription of initial data, while elliptic problems are ill-posed with

the prescription of initial values and are well-posed with the prescription of boundary

data.  These considerations seem to have been introduced by Hadamard [1922].  He gave

the following example of how Laplace’s equation is ill-posed as an initial value problem.

Consider the half space

D = {x, t; t > 0, –∞ < x < ∞}

appropriate for an initial value problem for Laplace’s equation

∂2u
∂t2

  + 
∂2u
∂x2  = 0 (2.1)

with initial values

u (0, x) = 0 ,
 
∂u
∂t  (0, x) = f(x) .

 (2.2)

We may choose an oscillating function

f(x) = 
1
kp   sin kx,   p > 0, (2.3)

which is bounded for all x and tends to zero for small wave lengths 2π/k→0.  The

solution of this problem is

u (t, x) = 
1

k1+p   sin kx sinh kt . (2.4)
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Small data at t = 0 leads to huge, unbounded oscillations for any small t>0 as the wave

length tends to zero.  This lack of continuous dependence of the solution on the data is

called Hadamard instability.  This type of instability gets worse as the wave length

decreases, with ultimate catastrophe as k→∞.

Ill-posedness of the Cauchy problem can also be associated with the nonexistence

of solutions of initial value (Cauchy) problem (2.1, 2.2) for nonanalytic data.  If u is a

solution of (2.1) in t > 0, it is analytic there and, by reflection, to all of  2.  But then f(x)

must be analytic.  If f(x) is not analytic, no solution is possible, even in a small interval of

t around zero.  We shall show in section 21 that ill-posed problems generally cannot be

solved outside a class of analytic initial data.

The backwards heat equation

∂u
∂t    = – 

∂2u
∂x2 (2.5)

is also ill-posed as an initial value problem.  This problem may be regarded as the time

reversal of the heat equation that is well-posed as an initial value problem.  The initial

value problem for the heat equation can be solved by Fourier series.  Some implications

of this type of solution were beautifully described by Clark Maxwell [1891].

If the body is originally heated in any arbitrary manner, Fourier
shows us how to express the original temperature as the sum of a series of
harmonic distributions.  When the body is left to itself the part depending
on the higher harmonic rapidly dies away, so that after a certain time the
distribution of heat continually approximates to that due to the
fundamental harmonic, which therefor represents the law of cooling of a
body after the process of diffusion of heat has gone on for a long time.

Sir William Thompson has shown, in a paper published in the
‘Cambridge and Dublin Mathematical Journal’ in 1844 how to deduce, in
certain cases, the thermal state of a body in past time from its observed
condition at present.
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For this purpose, the present distribution of temperature must be
expressed (as it always may be) as the sum of a series of harmonic
distributions.  Each of these harmonic distributions is such that the
difference of the temperature of any point from the final temperature
diminishes in a geometrical progression as the time increases in
arithmetical progression, the ratio of the geometrical progression being the
greater the higher the degree of the harmonic.

If we now make t negative, and trace the history of the distribution
of temperature up the stream of time, we shall find each harmonic
increasing as we go backwards, and the higher harmonics increasing faster
than the lower ones.

If the present distribution of temperature is such that it may be
expressed in a finite series of harmonics, the distribution of temperature at
any previous time may be calculated; but if (as is generally the case) the
series of harmonics is infinite, the the temperature can be calculated only
when this series is convergent.  For present and future time it is always
convergent, but for past time it becomes ultimately divergent when the
time is taken at a sufficiently remote epoch.  The negative value of t for
which the series becomes ultimately divergent, indicates a certain date in
past time such that the present state of things cannot be deduced from any
distribution of temperature occurring previously to that date, and
becoming diffused by ordinary conduction.  Some other event besides
ordinary conduction must have occurred since that date in order to produce
the present state of things.

This is only one of the cases in which a consideration of the
dissipation of energy leads to the determination of a superior limit to the
antiquity of the observed order of things.

Garret Birkhoff [1954], following I. Petrowsky [1938], considered the problem of

partial differential equations, elliptic, hyperbolic, and parabolic.  He restricted his

considerations to linear PDE’s with constant coefficients, hoping that the analysis would

extend to quasilinear PDE’s with variable coefficients.  He points out that different

mathematicians have different definitions of the categories of the classification,

“Maxwell’s equations are hyperbolic in the sense of Courant-Hilbert, but not in the sense

of Petrowsky.”  He advocates a scheme of classification based on Fourier transforms.

“… functions with well-defined Fourier transforms constitute a sufficiently general class

for many physical problems.”  Applying these ideas to the linear PDE’s, he shows that the
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transforms are essentially superpositions of spatially periodic solutions expressed in

normal modes proportional to

exp {σt + ik • x} .

Of course, in the usual way the normal modes lead to solvability conditions of the form

F (σ, k) = 0 . (2.6)

He then introduces the important idea of a regular eigenvalue σ(k).  He calls the

underlying system stable if for all real values of k all of the roots σ(k) have negative real

parts, as usual.  He calls the system regular if and only if Re σ(k) has a finite upper

bound, independent of k.  In the regular case the initial value problem is well-posed in the

sense of Petrowsky, the rate of exponential growth of the Fourier transform is clearly

bounded; in the other cases, it is unbounded.  Birkhoff then proceeds to amplify the

notion that regularity should be interpreted to mean that satisfactory existence and

uniqueness theorems for the initial value problem can be proved.  In his 1964 paper he

notes that

Following Hadamard, most mathematicians would agree that a
Cauchy problem … should be called  well-set when the solution at time t
exists and is unique for given initial u(x, 0).  Unfortunately, this answer is
highly ambiguous, until one has specified the class of functions admitted,
together with a topology on the space of all “admissible” functions.

In spite of this ambiguity, various interpretations support the
conclusion that the Cauchy problem for (1) should be considered as well-
set (properly posed) if and only if (1) if regular (see [4, p. 198]).  (Here (1)
is a linear partial differential equation with constant coefficients.)  This
conclusion was essentially reached by Hadamard, and, arguments
supporting it have been given by Petrowsky, Garding, Hörmander, and
others [5; 6; 4, pp. 330–1; 7].  For the backwards heat equation … it was
already reached by Maxwell!

4 Friedman, A.  “Generalized Functions and Partial Differential Equations.” Prentice-
Hall, Englewood Cliffs, New Jersey, 1963.

5 Gelfand, I.M., and Schilow, G.E.  “Verallgemeinerte Funktiones,” 4 Vols.  Deutscher
Verlag, Wiss., Berlin, 1960.
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6 Hörmander, L.  “Linear Partial Differential Operators.”  Academic Press, New York,
1963.

7 Friedman, A.  “Existence of smooth solutions of the Cauchy problem for differential
systems of any type.”  J. Math. Mech. 12, 335–74 [1963].

An interesting discussion of these matters is given by R. Hersh [1973].

In section 21 we are going to prove that for a fairly general class of systems with

irregular eigenvalues the initial value problem cannot be solved for initial data which is

not analytic.  The concept of a regular unstable eigenvalue also appears to be useful for

applications in the theory of bifurcations.  Problems with irregular eigenvalues, like those

satisfying (1.1), do not lead to bifurcations but probably to fingering or filamentous

solutions.

3. Interface problems which are Hadamard unstable

Some classical problems involving interfaces give rise to short wave instabilities

with unbounded growth rates.  Rayleigh-Taylor and Kelvin-Helmholtz instabilities are of

this type, as well as a Taylor-Saffman instability of a fluid interface in a porous media.  In

all three of these problems, there is a fluid interface

F = z – ζ(x, y, t) = 0 , (3.1)

which is an identity in t, following the motion

dF
dt    = w – 

∂ζ
∂t    – u 

∂ζ
∂x   – v 

∂ζ
∂y   = 0 (3.2)

where (u, v, w) are velocity components corresponding to (x, y, z).  The normal stress

condition at the interface between two fluids is

2Hγn = -[[T]] • n = ([[Φ]] – gζ[[ρ]])n

where
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Φ = p + ρgz (3.3)

is the head, p the pressure, T= –p1 the stress,

n = 
∇ F
|∇ F|   = 

ez – exζx – eyζy

( )1 + ζ2
x + ζ2

y
1/2

 

where ζx = 
∂ζ
∂x

  , etc.

The normal stress condition for an interface between two fluids in a porous

medium is usually framed in terms of composite fluids in which each fluid plus the

porous solid is regarded as a composite fluid with “effective” material coefficients.  The

velocity in Darcy’s law is such a composite velocity.  It is called the superficial velocity

and is defined as the volume flux across an area A fixed in the solid, over solid and voids,

divided by A.  The velocity components (u, v, w) are to be regarded as components of the

superficial velocity in flow through a porous medium and

–[[Φ]]+ [[ρ]]gζ  = –[[p]] ,
 
[[p]] = 2Hγ + pc

 (3.4)

holds on the macroscopic interface between two composite fluids in a porous medium

where γ is the “effective” interfacial tension,

H = 12  ∇ 2 • 
��
	
�


��
�
�σ∇ 2ζ

( )1 + |∇ 2ζ |2 1/2  (3.5)

is the mean curvature of z = ζ and pc is the capillary pressure difference between the two

fluids due to microscopic curvature of the true fluid in the pores of the porous media.
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4. Kelvin-Helmholtz and Rayleigh-Taylor instability

We now confine our attention to the special situation shown in Figure 4.1.  We are

looking for Hadamard instabilities to short waves and hence neglect surface tension

which would stabilize short waves.

x

z g

ρ1

ρ2

Figure 4.1  The interface at z = ζ separates two fluids of different density
[[ρ]] def

=   ρ1 – ρ2 ≠ 0 and different velocity.

The governing equations are

∂u
∂x  + 

∂v
∂y  + 

∂w
∂z    = 0 (4.1)

ρ 
du
dt    = –∇Φ (4.2)

where u = (u, v, w), Φ = p + ρgz

u = ex 
��
	
�

U2 ; z →∞
 
 U1 ; z → –∞ .

 (4.3)

The pressure and normal component of velocity are continuous on z=ζ.  The normal

component of velocity will be automatically continuous if (3.2) holds, and if [[p]] = 0,

then

[[Φ]] = g[[ρ]]ζ (4.4)



13

where the average value of ζ(x, y, t) on horizontal planes vanishes, ζ!(t)  = 0.

The basic flow is given by ζ = 0 ,

u = U = ex 
��
	
�

 U2 , z > 0 ,
 
 U1 , z < 0

 (4.5)

and φ = p0, [[p0]] = 0.  Hence,

p = 
��
	
�

 p0 – ρ1gz ,  z > 0
 
 p0 – ρ2gz ,  z < 0.

 (4.6)

The Bernoulli equation for this solution is given by

p + 
ρ
2   |u|2 + ρgz = c (4.7)

where c is the constant of integration which takes the value c1 when z > 0 and c2 when z

< 0.  Since the pressure is continuous across z = 0,

c1 – 
1
2   ρ1U2

1  = c2 – 
1
2   ρ2U2

2 . (4.8)

Kelvin [1871] solved the stability problem for (4.5 through 4.7), assuming

irrotational flow

u = U + ∇φ (4.9)

where

∇ 2φ = 0 (4.10)

and φ vanishes as |z| → ∞.  The Bernoulli equation is given by

p + ρ 
∂φ
∂t    + 

ρ
2  (U + ∇φ ) 2 + ρgz = c (4.11)
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where c1 and c2 are related by (4.8).  The problem is now linearized and the interface

conditions are expressed on z = 0.  Equation (3.2) may then be written as

w = 
∂φ
∂z   = 

∂ζ
∂t    + U 

∂ζ
∂x  . (4.12)

This implies that the normal component of velocity is continuous across z = 0

∂φ1
∂z    – U1 

∂ζ
∂x   = 

∂φ2
∂z    – U2 

∂ζ
∂x  . (4.13)

Evaluation of the Bernoulli equation on either side of z = 0 with p1 = p2 gives

ρ1 �
�
�

�
�
�

U1 
∂φ1
∂x   + 

∂φ1
∂t   + gζ   = ρ2 �

�
�

�
�
�

U2 
∂φ2
∂x   + 

∂φ2
∂t   + gζ   . (4.14)

The problem (4.10, 12 through 14) is solved using normal modes

(ζ, φ1, φ2) = (ζ̂  , φ̂ 1e–αz , φ̂ 2eαz) ei(kx+  y) eσt (4.15)

where α = 22 lk + and ζ̂ , φ̂ 1, φ̂ 2 are constants.  Elimination of these constants leads to

σ = – ik  
ρ1U1 + ρ2U2

ρ1 + ρ2
   ± 

��
	
�


��
�
�k2ρ1ρ2 (U1 – U2)2

(ρ1 + ρ2)2  – 
αg(ρ1 – ρ2)

ρ1 + ρ2
 1/2.

(4.16)

Only the positive root can lead to instability and provided that

k2ρ1ρ2(U1 – U2)2 > αg(ρ2
1  – ρ2

2 ) . (4.17)

The most rapidly growing wave is two-dimensional, α=k.  Thus we have instability when

kρ1ρ2(U1 – U2)2 > g(ρ2
1  – ρ2

2 ) . (4.18)

Equation (4.16) shows that the normal mode solution (4.15) is a wave traveling in

the direction αααα = kex + ley with speed c = – Im σ/|α|.
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Various conclusions may be drawn from (4.16).  The conclusions about instability

to short waves can be determined by inspection for large wave number k.  If U1≠U2 and k

is large, we have an unstable eigenvalue with

Re σ = k  
U1 – U2
ρ1 + ρ2

  ρ1ρ2  . (4.19)

This is known as Kelvin-Helmholtz instability.  If U1=U2 and ρ2>ρ1 (heavy above) then

there is an unstable eigenvalue with

Re σ = 
�
	



�
�
αg(ρ2 – ρ1)

ρ1 + ρ2
  1/2 . (4.20)

This is Rayleigh instability, sometimes called Rayleigh-Taylor instability because Taylor

noticed that the same result would hold if g was replaced by any other acceleration.

Equations (4.19 and 20) show that Kelvin-Helmholtz and Rayleigh-Taylor

instabilities are catastrophic short wave instabilities of the Hadamard type.

The appearance of Hadamard instabilities of idealized problems should not be

discounted as fundamental results in the study of physical systems.  Their appearance

shows that there is a kind of instability associated with short waves which brings into

action terms which are small in the hydrodynamics of smoother motions.  The relevance

of these kinds of instabilities has been convincingly expressed by Birkhoff [1962].

Helmholtz and Taylor instability are very real physical phenomena.
They show up, at least qualitatively, in many familiar situations.

Already in 18671, Tyndall observed that acoustic stimulation could
cause the vortex sheet surrounding a circular air jet to “roll up” into
periodic spirals.  This, and the related phenomenon of the roaring of a
“sensitive gas jet,” were exhaustively studied by Helmholtz and Rayleigh
[7a, (Section) 322, 70].  Rayleigh showed that resonance, as well as
acoustic stimulation, could give rise to periodic instability.
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High-speed liquid jets in air are also subject to Helmholtz
instability; this is an important factor in the atomization of liquid fuel jets
and sprays.  But the phenomenon of atomization is extremely complicated.
Thus, at low speeds, capillarity is more important than Helmholtz
instability [7a, Chapter XX].  At higher speeds, atomization is influenced
by a combination of Helmholtz instability, surface tension, viscosity, and
turbulence,2 a general mathematical description of whose combined action
seems very difficult.

Many other natural phenomena have been attributed to Helmholtz
instability.  Most familiar is the generation by wind of waves in water,
whose Helmholtz instability was first analyzed by Kelvin [5, pp. 76–85].
Helmholtz [5, p. 457] explained the formation of “mackerel clouds” as due
to Helmholtz instability,3 while Rayleigh [7, p. 367] attributed “the
flapping of sails and flags” to the same cause.

Taylor instability helps to explain the loss of energy in successive
pulsations of underwater explosion bubbles.4  Near the minimum radius of
a pulsating bubble, the spherical interface postulated by Rayleigh [3, p.
239] is unstable,  and so his solution of the equations of motion is
unrealistic.  The Taylor instability of collapsing cavitation bubbles is more
subtle [3, Chapter XI, (Section) 13)] but also important.

Taylor instability also helps to explain the observed instability of
Humphreys pumps [1, p. 30], and the breakdown of film boiling.5

1 Philos, Mag. vol. 33 [1867] pp. 92–99 and 375–391.  Helmholtz’ ideas were directly
influenced by Tyndall’s observations [4, p. 222].

2 [3, pp. 328–331] and refs. given there.  See also H.B. Squire, British J. Appl. Phys. vol.
4 [1953] pp. 167–169; N. Dombrowski and R.P. Fraser, Philos. Trans. Roy. Soc. London
Ser. A. vol. 247 [1954] pp. 101–130; P. Eisenklam, N. Dombrowski, and D. Hasson,
Imperial College Report JRL 44, May, 1959.

3 See also V. Bjerknes, J. Bjerknes, H. Solberg, and T. Bergeron, Physikalische
Hydrodynamik, Berlin, Teubner, 1932.

4 R.H. Cole, Underwater Explosions, Princeton, N.J., Princeton University Press, 1948,
p. 304.

5 S.S. Kutateladze, Izv. Akad. Nauk SSSR.  Otd. Tehn. Nauk vol. 4 [1951] pp. 529–536;
Y.P. Chang, Trans. Amer. Soc. Mech. Eng. vol. 79 [1957] pp. 1501–1513; N. Zuber, ibid.
vol. 80 [1958] pp. 711–720.

1 G. Birkhoff, Taylor instability and laminar mixing, Los Alamos Report LA-1862
[1954], with Appendices A–H issued as Report LA-1927 [1956].

3 G. Birkhoff and E.H. Zarantonello, Jets, wakes, and cavities, New York, Academic
Press, 1957.
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5 Lord Kelvin (Sir William Thompson), Mathematical and physical papers, vol. 4,
Cambridge University Press, 1910.

7 Lord Rayleigh (J.W. Strutt), Scientific papers, vol. 1, Cambridge University Press,
1899.

7a ——, Theory of sound, 2nd ed., 1896, vol. 2.

We could imagine different unsteady versions of the present problem.  For

example, if two (l = 1,2) uniform body force field exρlfl(t) are prescribed, then the basic

flow satisfies lU� =fl(t) and can be unsteady.  In this case, the stability problem has

coefficients which depend on t and (4.15) would be replaced by

[ζ, φ1, φ2] = {ε(t), φ
^
 1(t)e–αz, φ

^
 2(t)eαz] eikx . (4.21)

After eliminating φ
^
 1(t) and φ

^
 2(t) we find that

ε°°  + 2iA(t)ε°  + [–B(t) + iC(t)] ε = 0 (4.22)

where

A = k 
ρ1U1+ρ2U2

ρ1+ρ2
   ,

B = k 
ρ1–ρ2
ρ1+ρ2

   + k 
ρ1U2

1
+ρ2U2

2
ρ1+ρ2

   , (4.23)

C = k 
ρ1U° 1+ρ2U° 2

ρ1+ρ2
   .

We can have stability at any fixed k, no matter how large, if the evolution of A, B, C is

such that ε(t) is bounded as t→∞.  Hadamard stability is different; we freeze coefficients,

write ε(t)~eσt and find that

σ = –iA ± B–A2–iC (4.24)

where
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B–A2–iC = k 
ρ1ρ2

ρ1+ρ2
   + k2 

ρ2ρ1(U1–U2)2

(ρ1+ρ2)2  (4.25)

The frozen coefficient problem is Hadamard unstable if U1≠U2 or ρ1>ρ2 (heavy above).

Moore and Griffith-Jones [1974] considered a Kelvin-Helmholtz problem with

ρ1=ρ2 for a circular vortex of radius R(t) and a fixed circulation Γ.  The basic flow for

their problem has a source at origin with an outward radial component of velocity Ur=R
°

R/r and discontinuous tangential component of velocity Uθ=Γ/2πr when r>R(t) and Uθ=0

when r<R(t).  They disturb this flow and consider the linearized stability relative to a

disturbed interface at r=R(t)+ε(t)eisθ, s is a positive integer, and they find (4.22) with

C=0,

A = –i 
R
°

R   + 
sΓ

4πR2   ,

B = 
s(s–1)Γ2

8π2R4    – 
R
°°

R   .

They show that when R(t)=R0(at+1)n, then |ε(t)|~(at+1)1–n when n>1
2 .  Hence the

stretched vortex flow is stable when the stretch rate n>1 is large.  However, an analysis of

frozen coefficients like the one given above, or a WKB analysis leading to equation (4.1)

of their paper, shows that the stable flows are Hadamard unstable for a fixed wave

number k, however large, ε(t, k)→0 as τ→∞ whilst for fixed t, however large, ε(t, k)→∞

exponentially with k.

5. Nonlinear Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability is sometimes described as the instability of a

vortex sheet.  The corresponding non-linear initial-value problem can be framed as

follows.  Initially we are given some surface of concentrated vorticity in  3 outside of
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which curl u=0.  We seek then to determine the evolution of this surface of discontinuity

along solutions of Euler’s equations

∂u
∂t    + u • ∇ u = –∇ p,  div u = 0 .

Birkhoff [1962] conjectured that this non-linear problem has an analytic solution local in

time.  This problem has been studied by P.L. Sulem, C. Sulem,

C. Bardos, and U. Frisch [1981].  They have proved some interesting results for the two-

dimensional problem in which the surface of prescribed non-zero vorticity is replaced by

a curve.  They show that a weak solution of this problem exists for all time.  One wants to

know if the vorticity of the fluid will remain concentrated on a smooth curve, if it is

concentrated on a smooth curve initially.  The interest then is in smooth solutions.  They

show that initial data in C∞ functions can be found that become singular in arbitrarily

short times.  This is the Kelvin-Helmholtz instability, and it shows that the initial-value

problem is not well-posed in class of C∞ functions.  On the other hand, if all the data are

analytic, then for a small time the vorticity of the fluid will remain concentrated on a

smooth curve, but this process is highly unstable.

In the Kelvin-Helmholtz problem the amplification rate of a wave of wavelength k

is inversely proportional to k.  Thus short waves amplify faster than longer waves at all

wavelengths, and so, except for some delay in actually exciting the short waves, the

outcome is almost inevitably headed for a singularity of some kind.  Analytic data is

important because with such data the short waves may be avoided (certainly

discontinuous Ck data, even with k large or infinite, imply short waves; see section 21).

In linear problems, if short waves are not present initially, they will not develop.  In

nonlinear problems shorter and shorter waves develop from nonlinear interactions,

leading to breakdown.  Birkhoff and Fisher [1959] conjectured that an analytic solution of

the nonlinear Kelvin-Helmholtz problem can stop being analytic at a finite time.
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Support for this was given by Moore [1984, 1979] in an asymptotic analysis

which predicted that to leading order in the initial amplitude ε, a singularity forms in the

vortex sheet at a critical time tc(ε).  The singularity which appears is an infinite jump

discontinuity in the vortex sheet’s curvature.  Using Taylor series in time, Meiron, Baker,

and Orszag [1982] obtained results in agreement with Moore’s.  The evolution of a

planar-vortex sheet was studied by Duchon and Robert [1986, 1988] using the Birkhoff-

Rott equation.  They constructed exact solutions of this equation that are analytic for all

t<0 but have a possible singularity at a finite time.  Caflish and Orellana [1989] have

shown that the vortex sheet problem is ill-posed in a Sobolev class Hn with n>3
2 .

The picture we have developed is that an initially analytic distribution of the

strength of a vortex sheet will evolve to a singularity in a finite time but that it is prey to

Hadamard instability at each and every instant of its evolution.

6. Regularizing mechanisms and applications

An axiom of physics is that “there is always a cut-off;”  in medicine, the same

idea appears in the observation that “the bleeding always stops.”  From a more pragmatic

point of view one must regard the emergence of a singularity as physically unacceptable,

a feature that shows an inadequacy in the description of the problem.  The notion that

perturbations of arbitrarily short wavelengths grow arbitrarily fast cannot be a physically

meaningful statement within the framework of hydrodynamic theory.  Clearly the basic

equations must be augmented in some way to regularize the singularities that are

associated with unstable short waves.  In some problems it is clear how to so augment the

equations, accounting for physical effects omitted in the idealized problems.  For the

Kelvin-Helmholtz or Rayleigh-Taylor problems one could add a viscous term, basing the

analysis on the Navier-Stokes rather then the Euler equations, promoting regularization

through diffusion.  Rayleigh [1926] seems to have been the first to notice through
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diffusion that this type of regularization is appropriate to problems which, like gas jets,

involve the stability of an interface between two domains of the same fluid.  He notes that

The investigations of (Section) 365 may be considered to afford an
adequate general explanation of the sensitiveness of jets.  In the ideal case
of abrupt transitions of velocity, constituting vortex sheets, in frictionless
fluid, the motion is always unstable, and degree of instability increases as
the wave-length of the disturbance diminishes.

The direct application of this result to actual jets would lead us to
the conclusion that their sensitiveness increases indefinitely with pitch.  It
is true that, in the case of certain flames, the pitch of the most efficient
sounds is very high, not far from the upper limit of human hearing; but
there are other kinds of sensitive jets on which these high sounds are
without effect, and which require for their excitation a moderate or even a
grave pitch.

A probable explanation fo the discrepancy readily suggests itself.
The calculations are founded upon the supposition that the change of
velocity are discontinuous—a supposition that cannot possibly agree with
reality.  In consequence of fluid friction a surface of discontinuity, even if
it could ever be formed, would instantaneously disappear, the transition
from the one velocity to the other becoming more and more gradual, until
the layer of transition attained a sensible width.  When this width is
comparable with the wave-length of a sinuous disturbance, the solution for
an abrupt transition ceases to be applicable, and we have no reason for
supposing that the instability would increase for much shorter wave-
lengths.

Kulikovski and Regirer [1968] have shown that electrohydrodynamic equations

which change type in steady flow can become ill-posed as initial-value problems.  Such

solutions are Hadamard unstable and cannot be realized.  They note that

Owing to the rapid increase of perturbations, nonevolutionary
equations cannot describe correctly changes of any physical quantity in
time.  Nonevolutionary solutions of the nonlinear equations in many cases
can be regarded as an oversimplification in the derivation of these
equations by discarding terms which are small for evolutionary solutions,
but they can be essential for the perturbations which display a rapid
increase.  As the short wave disturbances increase most rapidly, then these
could be the terms containing space derivatives of higher order or mixed
derivatives with respect to space or time.
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A similar point of view was adopted by Rutkevitch [1970] in his discussion of

loss of stability in the sense of ill-posed problems for viscoelastic fluids.

In order to describe the development of small perturbations in the
region where evolutionarity of the initial conditions is not possible, the
effect of supplementary physical parameters should be taken into account.
In a real system, these parameters can be extremely small, but they play a
definite role in establishing a finite upper limit for the rate of buildup of
perturbations.

In sections 7–12 we are going to consider some examples of Hadamard instability

and introduce some methods which have been used to regularize the instability.  These

include the addition of physical effects associated with viscosity §7 and 9, surface tension

§8, capillarity of Korteweg’s [1901] type §9, compressibility §11, and by weakening the

discontinuity §7.

7. Regularization of the Kelvin-Helmholtz problem with viscosity or

by replacing the discontinuity in velocity by a discontinuity of

vorticity

The instability of the linearized Kelvin-Helmholtz can be regularized by taking

viscous effects into account.  In this case a discontinuity of velocity is not possible;

instead there is a prescribed discontinuity of vorticity whose magnitude is determined by

the requirement that the shear stress be continuous across the flat interface.  Hooper and

Boyd [1983] considered the problem of stability of the shear flow of superimposed

immiscible viscous with a linear velocity profile (constant vorticity) above and below the

flat interface.  They showed that this viscous analogue of the Kelvin-Helmholtz instability

is unstable to surpassingly short waves k→∞.  The instability is benign rather than

catastrophic.  Surface tension is especially effective in stabilizing this instability.

Another possible way to regularize the Kelvin-Helmholtz problem is to keep the

inviscid approximation but to spread the vorticity over a finite layer.  In this



23

approximation, like the viscous problem, the undisturbed velocity is initially continuous

but the vorticity is discontinuous.  Rayleigh [1880] showed that the finite vortex layer is

stable to long waves and is not unstable to short waves; the maximum growth rate occurs

for wavelengths approximately 8 times the layer thickness.  The finite layer problem is

therefore not ill-posed in a linearized approximation.  Pozrikidis and Higdon [1985] did

numerical studies of the nonlinear Kelvin-Helmholtz problem for a finite vortex layer.

The growth rate of the disturbances is strongly affected by the layer thickness; however,

the finite amplitude of the disturbance is relatively insensitive to the thickness and

reaches a maximum value of approximately 20% of the wavelength.  This might imply

that the maximum amplitude is unbounded in the limit of ill-posed problem k→∞.

Actually the crux of the well-posedness of the finite vorticity layer is not the layer, but

resides in the diminution of the order of discontinuity, as the following argument shows.

We consider the problem of the stability of a plane shear flow of two inviscid fluids with

the same density separated by a flat interface.  The velocity of the shear flow is

continuous, with constant but different vorticity above and below z=0, as shown in figure

6.1

U  (z) = a  z2 2

2

1
z

x

U  (z) = a  z1 1

(x, z) ~ (u, w)

Figure 7.1  Plane shear flow with continuous
velocity and discontinuous vorticity
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The linearized equations governing the perturbation of the plane shear flow are

ρut + ρU ux + ρwU' = –px , (7.1)

ρwt + ρU wx = –pz , (7.2)

ux + wz = 0 . (7.3)

Of course, the integral u • n over a pillbox control volume centered on z=0 shows that the

normal component of velocity is continuous on z=0

[[w]] = w1 – w2 = 0 (7.4)

Moreover

w = δt (7.5)

and

p1 – p2 = Tδxx (7.6)

where T is surface tension and δ is the amplitude of the perturbation.

We may eliminate p and u from (7.1, 2, 3).  Thus ∂

[U∂x + ∂t] ∇
2
2  w = 0. (7.7)

Now we shall eliminate p from the interface conditions by forming the jump of (7.1)

across z = 0

ρ[[ut]] + ρw[[U']] = – [[px]] = –Tδxxx. (7.8)

After differentiating (7.8) with respect to x, we may eliminate u, using (7.3)

[[wzt]] – wx[[U']] = 
T
ρ   δxxxx (7.9)

Now we solve (7.5), (7.7), and (7.9) using normal modes
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δ = δ̂ eσt eikx ,
 
w = ŵ (z) eσt eikx .

 (7.10)

We find that

ŵ (0)  = σδ̂ (7.11)

and

(iUk + σ) (ŵ '' – k2ŵ ) = 0 . (7.12)

Hence there is a continuous spectrum with

σ = –iU(z) k, for all z ∈   (7.13)

where U(z) is linear in z, as in figure 7.1.  Another solution is

ŵ1 = Ae–kz ,
 
ŵ2 = Aekz .

 (7.14)

Hence ŵ 1(0) = ŵ 2(0) = ŵ(0)  = A and

A = σδ̂  . (7.15)

We next evaluate (7.9):

–2σ kA – kiA [[U']] = 
T
ρ   k4δ̂ 

where

[[U']] = a1–a2 .

Hence

2σ2k + ikσ [[U']] = – 
T
ρ   k4 .
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It follows that the shear flow with discontinuous vorticity is stable even when the surface

tension T=0 and in any case is not Hadamard unstable.

8. Fingering instabilities in porous media.  Regularization with

interfacial tension

Fingering instabilities are an important topic for the dynamical description of

flowing multicomponent systems.  They may be related to Hadamard instabilities, when

regularizing mechanisms are neglected.  The mathematical analysis of fingering is not

well developed; it is perhaps best developed for the case of displacement of one fluid by

another in a porous media.  The analysis of stability of this problem is evidently due to

Chouke, van Meurs and van der Poel [1959], (see Homsy [1987] for a historical note).

According to P. Saffman,

About 1956, Sir Geoffrey Taylor paid a visit to the Humble Oil
Company and became interested in problems of two phase flow in porous
media.  He worked out the macroscopic instability which can arise when a
less viscous fluid drives a more viscous one and which is at least partly
responsible for the coreing in processes of secondary recovery in oil fields.
He also realized that two-dimensional flow in a porous medium is
modelled by flow in a Hele-Shaw [1898] apparatus consisting of two flat
parallel plates separated by a small gap b.  Then the average two-
dimensional velocity u of a viscous fluid in the space between the plates is
related to the pressure by the formula

u = – b2

12µ   grad p,   div u = 0

where µ is the viscosity.  This is identical to Darcy’s law for motion in a

porous medium of permeability b
2

12 .  But it is, of course, an approximation
valid when the gap or transverse dimension b is small compared with
variations of scale a, say, in the lateral dimension parallel to the plates.

It is necessary to add that nonlinear effects in the flow in porous media which are

described by (8.3) may not be well modelled by averaging inertial terms in a small gap of

a Hele-Shaw cell.
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The famous fingering instability result of Chouke, et al, given in Saffman and

Taylor [1958], explains why it is so difficult to push oil out of the ground with water.

The water fingers through the oil.  They considered stability of a plane interface between

the fluids when the two fluids are advancing against gravity with a speed W.  They

assumed that the flow of each of the two fluids is governed by Darcy’s law

∇Φ  = – 
µ
κ   u (8.1)

where Φ = p + ρgz is the head, p the pressure, ρ the density, z is against gravity, µ is the

viscosity, κ is the permeability and u is the velocity.  They linearized their problem

around the motion with a flat moving interface and considered disturbances periodic in x

(along the interface) with period 2π/α proportional to eσt.  They found that

σ
α  

�
�
�

�
�
�µ1

κ1
 + 

µ2
κ2

  = g(ρ1 – ρ2) + 
�
�
�

�
�
�µ1

κ1
 – 

µ2
κ2

 W (8.2)

where the subscript two is for the lower fluid and one is for the upper fluid, α is a wave

number.  In the formula the upper and lower fluids have different permeabilities κ1 and

κ2.  When water advances into oil, some oil is left behind so that the permeability of solid

to oil is different than the permeability of the solid plus some oil to water.  Equation (8.2)

shows that Taylor’s fingering instability is a Hadamard instability.

Darcy’s law is an asymptotic law, valid for very low Reynolds numbers.  The

effects of inertia manifest themselves in a quadratic drag law which arises from the

pressure loss in the wakes of solid particles, averaged over many particles.  This law is

expressed by the quadratic term introduced by Dupuit [1863] and Forcheimer [1901].  We

express this law in vector notation as

∇Φ  = – 
υ
κ   u ,    υ (|u|) def

=   µ + cρ |u| κ (8.3)
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where c is the “form drag” constant.

The effect of inertia on the fingering instability in the flow of two fluids in a

saturated porous medium is to increase the resistance by a term that is independent of

viscosity and is proportional to the density times the square of the velocity.  This effect

can stabilize the displacement of more viscous fluids by less viscous ones and destabilize

the displacement of less viscous fluids by more viscous ones.

It is of interest to repeat the analysis of Chouke, et al, using (8.3) rather than (8.2),

following the work of Saville [1969].  We must satisfy (8.3), div u=0, u→ezW as |z|→∞.

At the interface z=ζ we have (3.2) and (3.2) implying that the normal component of

velocity is continuous.  The origin z=0 moves upward with constant velocity W.  The

normal “stress” condition at the interface is expressed by (3.4) which reduced to the

continuity of the pressure over z=ζ when surface tension effects are neglected.  These

equations can be satisfied by a traveling flat interface

(u, Φ, ζ) = (ezW, Φ0(z), ζ0), ζ0 = 0 (8.4)

where W = 
dζ0
dt   is constant and

Φ0
1
  = – 

υ1(W)
κ1

   Wz + π1 ,   z > 0  , (8.5)

Φ0
2
  = – 

υ2(W)
κ2

   Wz + π2 ,   z < 0  , (8.6)

[[Φ0]] = Φ0
1
  – Φ0

2
  = [[π]] = pc . (8.7)

To study stability we extend the basic solution; (8.5) holds for z>ζ and (8.6) for

z<ζ.  We then consider a perturbation

(u, Φ, ζ) = (u + ezW, φ + Φ0, ζ) (8.8)
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of the extended basic flow.  The evolution of ζ is governed by (3.2), φ satisfies

∇φ  = – 
υ(|ezW + u|)

κ   (u + ezW)  – 
υ(W)

κ    ezW (8.9)

and after accounting for Φ0 in [[φ + Φ0]], we get the normal stress equations on z=ζ in

the form

[[φ]] – [[ρ]]gζ – ( )
�
�

�
�
�

�
��

�
��

�

κ
υ W Wζ = γ∇ 2 • 

��
	
�


��
�
�∇ 2ζ

( )1 + |∇ 2ζ |2 1/2   . (8.10)

After linearizing for small disturbances |ezW + u| → W + w, we replace (8.9) with

∇φ  = – 
υ(W)

κ   u – 
cρ

κ
  wWez (8.11)

(3.2) with

w = 
∂ζ
∂t  (8.12)

on z=0 and (8.10) with

[[φ]] – [[ρ]]gζ – ( )
�
�

�
�
�

�
��

�
��

�

κ
υ W Wζ = γ∇ 2

2 ζ (8.13)

on z=0.  It is convenient to write (8.11) as

 
�
�
�

�
�
�∂φ

∂z , 
∂φ
∂x , 

∂φ
∂y   = –a [ξw, u, v] (8.14)

where

a = υ(W)/κ ,

b = υ(W)/κ (8.15)

ξa = a + b = 
1
κ (µ + 2cρW κ) .
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After using (8.14) we get

∂ζ
∂t    = w =  – 

1
ξa  

∂φ
∂z (8.16)

and using div u=0

1
ξ  

∂2φ
∂z2   + 

∂2φ
∂x2   + 

∂2φ
∂y2   = 0 (8.17)

We may now solve (8.16) and (8.17) using normal modes

[ ] [ ] )(
2121

21
~,~,~,, yxitzqzq eee βασφφζφφζ +−−= , (8.18)

where

(q1, q2) = k( )ξ1 , ξ2   ,  k2 = α2 + β2 . (8.19)

The normal mode reduction of (8.16) gives

σζ~  = 
q1

ξ1a1
 φ~ 1 = 

–q2
ξ2a2

 φ~ 2 (8.20)

Hence,

φ~ 1 – φ~ 2 = σζ~  A2/k (8.21)

where

A2 = k 
�
	



�
�
ξ1a1

q1
 + 

ξ2a2
q2

  = a1 ξ1  + a2 ξ2 

and

a ξ   = 
�
�
�

�
�
�µ

κ + 
cρW

κ
 1/2 

�
�
�

�
�
�µ

κ + 
2cρW

κ
 1/2 .
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The growth rate σ may be determined from the normal stress balance (8.13), now written

as

φ~ 1 – φ~ 2 = [[ρ]]gζ~  + ]][[ )(
κ

υ W Wζ~  – k2γζ~  . (8.22)

Hence

σ = 
�
�
�

�
�
�

W)(  + ]][[ ]][[2 κ
υρ Wg

A
k – 

k3

A2   γ . (8.23)

Equation (8.23) is the main result of the analysis.  The flat advancing

displacement front is stable when

[[ρ]]g + ]][[ )(
κ

υ W W = (ρ1 – ρ2)g + 
�
�
�

�
�
�υ1

κ1
 – 

υ2
κ2

  W def
=   Γ < 0 (8.24)

where

υ1 = µ1 + c1ρ1W κ1  .

The displacement front is stable if the heavy and more viscous fluid is below.  When

there is no surface tension and π > 0, then σ = kΓ
A2  is unbounded, irregular, tending to

infinity with k.  In the absence of stabilization by gravity, it is not possible to displace oil

with water; the water will finger through.  The effects of inertia are stabilizing when

ρ1c1

κ1
   < 

ρ2c2

κ2
    .

Consider the case in which the less viscous heavy liquid advances W>0 into a

more viscous liquid (µ1 > µ2, ρ1 < ρ2), say, water displaces oil.  Suppose, only for

simplicity, that the form drag constant c1=c2 and permeability κ1=κ2 are the same on

either side of the advancing front.  Then the term
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υ1 – υ2 = µ1 – µ2 – cW(ρ2 – ρ1) κ 

is destabilizing

W < 
µ1 – µ2

 c(ρ2 – ρ1) κ
 

and is stabilizing when

W > 
µ1 – µ2

 c(ρ2 – ρ1) κ
  .

When surface tension is positive γ>0 and Γ>0, small waves with large k are stable

but there is always a band k2<Γ
γ  of unstable wave numbers.  Moreover σ(k) is bounded

with a maximum growth rate σ = 23  Γ ( Γ
3γ)/A

2 at k2 = 
Γ
3γ. 

The aforementioned results show that fingering in the oil displacement problem,

using the Darcy-Forcheimer law, leads to Hadamard instability when surface tension is

neglected and is regularized by surface tension.  It is natural to think about what might

actually happen to this problem if the experiment could be carried out with two liquids

possessing vanishing interfacial tension.  Nittman, Daccord and Stanley [1985] did an

experiment to answer this question.  They asked, “What happens when one attempts to

push water through a fluid of higher viscosity?  Under appropriate experimental

conditions, the water breaks through in the form of highly branched patterns called

viscous fingers.  Water was used to push a more viscous but miscible, non-Newtonian

fluid in a Hele-Shaw cell.  The resulting viscous finger instability was found to be a

fractal growth phenomenon.”
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9. Instability of phase-change models based on reclining S-shaped

curves.  Regularization by viscosity and capillarity

Mathematical models of phase changes are sometimes based on material behavior

based on reclining S shaped curves (Figure 9.1).  A classical example of this behavior is

the phase diagram for the van der Walls gas.

This type of constitutive assumption leads to Hadamard instability in the so-called

spinoidal region.  This instability can be regularized by viscosity and by capillarity.

Consider the quasilinear system

∂u
∂t  = 

∂p(v)
∂x  , 

∂v
∂t  = 

∂u
∂x .

 (9.1)

where p(v) lies on a reclining S shaped curve shown in Figure 9.1

p

v

Hysteresis loop

Hyperbolic
Elliptic

Hyperbolic

Figure 9.1.  The system (9.1) is hyperbolic when p'(v) > 0.  The elliptic branch is unstable
in the sense of Hadamard.  This region is called “spinoidal”.
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The curve p(v) is a constitutive assumption giving, say, the stress p is a function

of strain or velocity for different problems.  Equations (9.1) are a first order quasilinear

system which is equivalent to a single second order equation

∂2v
∂t2

   = 
∂2p(v)

∂x2   . (9.2)

It is clear from (9.2) that wherever p'(v) is negative (9.2) is like Laplace’s equation and is

Hadamard unstable.  The resulting partial differential equation is nonlinear:

∂2v
∂t2    + | |p'(v)  

∂2v
∂x2   = p''(v)

�
�
�

�
�
�∂v

∂x  2  .

The sign of p'' is important!

Let us do something a little artificial to show how Hadamard instability arises on

frozen coefficients of a stability problem for (9.2).  We could solve

∂2p(v)
∂x2   = 0

for v(x) such that v(0) = 0 and v(1) = 1.  Call this solution v0 and let w be a small

perturbation of v0.  For w we get

∂2w
∂t2

   = 2p''(v0) 
∂v0
∂x   

∂w
∂x   + p'(v0)

∂2w
∂x2   + 

�
�
�

�
�
�

p'''(v0)
�
�
�

�
�
�∂v0

∂x
2+p''(v0)

∂2v0

∂x2  w (9.3)

where v'=0 at x=0,1.  In general (9.2) has variable coefficients and doesn’t admit stability

studies using normal modes.

Now we are going to look at short wave length disturbances.  If the wave length of

a disturbance is short enough, v0 will be nearly constant over the whole length of the

wave.  This leads us to freeze the coefficients in (9.3), treating v0 as a constant in a small

neighborhood of each and every point.  In each neighborhood we write
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w = const eσt+ikx (9.4)

and get

σ2 = p'(v0)k2 + O(|k|) .

Of course we cannot satisfy the boundary condition for (9.3); the analysis of stability here

is purely local and it may hold only if k→∞, for short waves.  Hence,

σ2

k2   = p'(v0) (9.5)

asymptotically and we have Hadamard instability wherever v0 is such that p'(v0) > 0.

In another version of this problem we could try to regularize with a Newtonian

viscosity µ.  Then we would consider the system

∂u
∂t    = 

∂p(v)
∂x    + µ

∂2u
∂x2  , (9.6)

∂v
∂u   = 

∂u
∂x   .

The system (9.6) can be reformulated as an equation of third order

∂2v
∂t2

   = 
∂2p(v)

∂x2    + µ
∂3v

∂x2∂t
  .

Let v0 (x–ct) be a traveling wave.  Now write

v = v0 + w

and linearize to get

∂2w
∂t2

   = p''(v0)2
∂v0
∂x   

∂w
∂x   +p'''(v0)w

�
�
�

�
�
�∂v0

∂x   2 +p'(v0)
∂2w
∂x2   +p''(v0)w

∂2v0

∂x2   +µ
∂3w

∂x2∂t
  .

(9.7)
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We next freeze the coefficients and write

w = const eσt+ikx .

Then (9.7) reduces to the algebraic expression

σ2 = p''(v0)2
∂v0
∂x   ik + p'''(v0)

�
�
�

�
�
�∂v0

∂x   2 + p''(v0)
∂2v0

∂x2    – p'(v0)k2 – µσk2. (9.8)

Divide (9.8) by k2, and simplify the result for large k.  Thus

σ2 + µσk2 ~ – p'k2 .

Hence, to lowest order

σ
k   = – 

µk
2    ± 

 µ2k2 
4  – p'  .

We clearly have stability when p'>0.  Now consider p' = – |p'|.  Then

σ
k   = – 

µk
2    + 

 µ2k2 
4  + |p'|   = – 

µk
2  

�
�
�
�

�
�
�
�

–1 + 1+ 
 4|p'| 

µ2k2   .

For large µk this reduces to ~ 
|p'|
µk  .  Hence σ ~ |p'|/µ.  The solution is unstable, but not

Hadamard unstable.

Hadamard instability “occurs” when

µ2k2 << |p'|

and

k → ∞.

So in this case we get a formal regularization of the equations, but the Hadamard

instability persists in a practical sense if µ is small enough.
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Of course, there is some form of continuity between ill-posed problems as the

regularizing parameter tends to zero.

Korteweg [1901] introduces the notion that the stress in a fluid should depend on

the density.  He derived the invariant form for the quadratic approximation of this stress.

In Newtonian-Korteweg fluids this stress can be expressed in notations used by Truesdell

and Noll [1965] as

T = (–p + λtr D – α|∇ρ |2 + γ∇ 2ρ)1 + 2µD – β ∇ρ⊗∇ρ  + δ∇  (∇ρ ) (9.9)

where p is to be determined from the equations as in an incompressible fluid.  In fact

Korteweg’s theory has been applied to liquid vapor transitions in which sharp interfaces

are replaced by narrow layers with strong gradients of density.  The theory has been

applied by Slemrod [1983] and Hagen and Slemrod [1983] to a problem of admissibility

of shock solutions.  Without going into their application we can use their equations to

introduce the notion of Korteweg regularization of ill-posed problems

∂u
∂t    = 

∂τ
∂x  ,

∂v
∂t    = 

∂u
∂x  ,

where u is the velocity and v the density.  In the notation of Hagen and Slemrod

τ = –p(v) + B(v)vx
2 – C(v) vxx + µ(v)ux

and

∂2v
∂t2

   = 
∂2τ
∂x2   = 

∂2

∂x2 �� �
�–p + Bv2

x
 – Cvxx + µvt   .

We are going now to repeat the analysis which was constructed for the case B = C = 0

when µ, B, C are constants, possibly not zero.  We write
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v = v0 + w

where v0 is a traveling wave solution and w is small.  Then, neglecting some terms which

will be negligible in the analysis of short waves on frozen coefficients we get

∂2w
∂t2

   = p'(v0) 
∂2w
∂x2    + 2Bv0x 

∂2w
∂x2    – cwxxxx + µwtxx .

We may reduce this using normal modes (9.4) to

σ2 = µσk2 = –(p'(v0) + 2Bv0x)k2 – ck4 ,

σ
k  = – 

µk
2   ± 

�
�
�

�
�
�µ2

4  – c  k2 – (p'+2BV0x)  ,

This problem is ill-posed when c is negative, with unbounded positive growth rate σ ~

k |c|  for sufficiently large k.  This result could be used to argue that c>0 in good models.

We leave it to the reader to formulate the cut-off condition for which the problem

with small, positive c and µ is exactly well-posed but effectively ill-posed.

10. Regularization with nonlinear viscosity

Beale and Schaeffer [1988] have exhibited equations which they interpret as being

linearly ill-posed and nonlinearly well-posed.  Their results can be interpreted in terms of

a nonlinear viscosity which vanishes with the trivial solution.  Consider a Cauchy-

Riemann equation perturbed by a viscosity µ

ut + iux = µuxx .

When µ=0, disturbances of the form eikteσt give rise to

σ = k ,

that is, the Hadamard instability.  When µ≠0



39

σ = –µk2 + k

which is Hadamard stable.  Beale and Schaeffer introduced a nonlinear viscosity µ=|ux|2

so that the linearization of

ut + iux = (|ux|2 ux)x

around zero is the left side alone and is Hadamard unstable.  On the other hand,

linearization on any solution for which ux≠0 will give an effective viscosity which will

regularize the problem.  Beale and Schaeffer have shown that the nonlinear equation does

possess a solution in a suitable Sobolev class.  The analysis of short waves using the

method of frozen coefficients shows that the flow will be Hadamard unstable in the

neighborhood of any point for which ux=0.  This shows again that the concept of ill-posed

problems is rigorously attached to the solutions, and not to the equation.

11. Instability in the evolution equations describing granular flow.

Regularization by compressibility

This section summarizes some results of Schaeffer [1987] and Pitman and

Schaeffer [1988].  Their studies show that compressibility regularizes ill-posed problems

in granular materials.  The type of problem they consider arise in the application of

mathematics to silo design.  They obtain a system of governing evolutions using

constitutive modeling, which is to specify a flow rule, a yield condition, and a relation

between density and stress.  They then freeze the coefficients and determine the

conditions for Hadamard instability.

They find that when compressibility is not taken into account, the equations

governing granular flow can be Hadamard unstable, depending on geometric and material

parameters.  The instability which develops is analogous to that for

ut = uxx – uyy. (11.1)



40

(If we write u = eσtei(αx+βy),  then σ = –α2 + β2 gives Hadamard instability when β2 – α2

> 0).  This instability they say is to be expected for parameter values arising in most

industrial applications, but the instability can be suppressed by compressibility.

It is of interest to look at their derivation fo the system of evolution equations.

Equations for conservation of mass and momentum are

∂ρ
∂t    + ρ div u = 0 , (11.2)

ρ
∂ui
∂t    + 

∂Σij
∂xj

  = ρgi (11.3)

where ρ is the density, ui is a velocity component, Σij (= – Tij) is a stress tensor, positive

in compression and g is gravity.

Constitutive assumptions which lead to ill-posedness are (1) incompressibility; (2)

a yield stress condition of Von-Mises type

�
i=1

3
(Σij)

2  ≤ k2σ2 (11.4)

where σ = 1/2 trΣ is the mean normal stress (in 2 dimensions, σ = 12  trΣ), Σ11, Σ22, Σ33

are eigenvalues of Σ and k2 is a constant which depends on the material; (3) a flow rule

relating to the velocity

D[u] = q dev Σ (11.5)

where

devΣ = Σ – σ1 (11.6)
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is the stress deviator, D[u] is here the negative of the symmetric part of grad u and q is a

positive scalar.  The grains flow, following the flow rule, when the material yields,

equality holds in (11.4).  In this case,

�
i=1

3
(Σij – σ)2  = |dev Σ|2 = k2σ2 (11.7)

where |A|2 = tr (AAT), for any matrix A.  It follows that |D[u]|2 = q2k2σ2 which may be

solved for q, eliminating q in the flow rule

Σ = σ 
�
�
�

�
�
�

k
D[u]
|D[u]| + 1   . (11.8)

The governing evolution equation

div u = 0 ,

ρ
∂u1
∂t    = –k 

∂
∂xj

  
��
�
��

��
�
��

σ 
Dij
|D|   – 

∂σ
∂xj

  + ρgi (11.9)

follows after substituting (11.8), assuming incompressibility and neglecting inertia.  An

interesting consequence of these equations is the dissipation does not increase with the

velocity, Dij/|D| is homogeneous of degree zero.  Schaeffer [1987] remarks that

“A striking illustration of this point occurred when mechanical
plows replaced draught animals on farms:  it was found, to everyone’s
surprise, that plowing at greater speeds does not require greater forces.”

The analysis of (11.9), using frozen coefficients, leads to conical regions of flow

in which, depending on parameters, the problem is ill-posed.  All granular materials are at

least slightly compressible.  The equations which describe granular flow when

compressibility is included are significantly more complicated than (11.9).  Schaeffer

notes that

“…, if these equations are expanded in an asymptotic series in
powers of the compressibility, then (11.9) emerges as the zeroth order term
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in the expansion.  Unfortunately, the subsequent terms in the expansion
are singular perturbations of (11.9).  For example, the first order
perturbation of (div U = 0) may be written

div U + εP 
�
�
�

�
�
�∂σ

∂t  , 
∂2σ

∂xi∂xj
 , 

∂3ui
∂xj∂xk∂xg

  = 0

where the arguments of P indicate the highest order terms in the
perturbation.”

Pitman and Schaeffer [1988] studied the effect of small compressibility for flows

in two dimensions.  They found that even though the magnitude of the density changes in

real granular flows is quite small, nevertheless compressibility effects greatly regularize

the equations.  If the material is loosely packed, then the equations are still linearly well-

posed.  If the material is tightly packed, the equations are still linearly ill-posed, but the

instability is greatly changed and corresponds to the shear banding which is observed in

shearing of consolidated granular media.  There are two specific directions in wave

number space in which disturbances will amplify uncontrollably; other modes are

bounded.  The two singular directions are characteristic of the hyperbolic steady state

equations.  This instability appears to be related to the tendency for overconsolidated

material to shear discontinuously along characteristics of the steady state equations.

Pitman and Schaeffer also considered elastic effects and they say that they showed

that elastic effects alone are insufficient to regularize the equations.

12. Quasilinear systems and nonlinear systems

It is always possible to define systems of partial differential equations of any order

as a system of first order equations in more unknowns.  We restrict attention to systems of

first order partial differential equations which may be quasilinear or nonlinear.  For

example
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∂u
∂t    + u2∂u

∂x   = f(u) (12.1)

is quasilinear, linear in 
∂u
∂t    and 

∂u
∂x  while

∂u
∂t    + u

�
�
�

�
�
�∂u

∂x  2 – f(u) = 0

is nonlinear.  We may write (12.1) as

F def
=   p + uq2 – f(u) = 0 ,  p = 

∂u
∂t   , q = 

∂u
∂x  . (12.2)

We can reduce a system of N first order nonlinear partial differential equations in

γ independent variables to a system of (γ+1)N quasilinear equations.  A general system of

N first order PDE’s in two independent variables can be expressed as

Fi (x, y, u1, …, un, p1, …, pn, q1, …, qn) = 0     i = 1, …, n (12.3)

where

pi = 
∂ui
∂x       q = 

∂ui
∂y 

are introduced as additional unknowns.  We have 3N variables and 3N equations but one

of the equations is nonlinear rather than quasilinear.  The system can be reduced to a

quasilinear one by differentiation but the reduction is not unique.  One symmetric

reduction is:  Fi = 0 is an identity in x and y jointly, hence

dFi
dy    = 

∂Fi
∂y    + 

l

i

u
dF
∂

ql + 
∂Fi
∂ql

  
∂ql
∂y   + 

∂Fi
∂pl

  
∂pl
∂y   = 0 , (12.4)

dFi
dx    = 

∂Fi
∂x    + 

dFi
∂ul

  pl + 
∂Fi
∂ql

  
∂ql
∂x    + 

∂Fi
∂pl

  
∂pl
∂x    = 0 , (12.5)

Equation (12.3) implies that
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∂Fi
∂pj

  pj + 
∂Fi
∂qj

  qj = 
∂Fi
∂pj

  
∂uj
∂x    + 

∂Fi
∂qj

  
∂uj
∂y (12.6)

We put this system into a symmetric form by writing ∂pl/dy = ∂ql/dx in (12.4) and (12.5).

Then we put the principal part on the right and the lower order terms on the left

– 
�
�
�

�
�
�∂Fi

∂y  + 
∂Fi
∂uj

qj   = 
∂Fi
∂pj

  
∂qj
∂x    + 

∂Fi
∂qj

  
∂qj
∂y (12.7)

– 
�
�
�

�
�
�∂Fi

∂x  + 
∂Fi
∂u pi   = 

∂Fi
∂pj

  
∂pj
∂x    + 

∂Fi
∂qj

  
∂pj
∂y (12.8)

Equations (12.6), (12.7), and (12.8) are 3N equations for the 3N unknowns.

The principal parts of each of the equations (12.6), (12.7), and (12.8) are identical.

Each one determines the same characteristic directions.  We have

∂Fi
∂pj

  
∂aj
∂x   + 

∂Fi
∂qj

  
∂aj
∂y   = lot . (12.9)

Hence the characteristics λ = dy/dx are determined from

det 
�
�
�

�
�
�

λ 
∂Fi
∂pj

 – 
∂Fi
∂qj

  = 0 . (12.10)

(The value of λ for (12.2) is λ = 2uq.)  Equation (12.10) has N roots.  The N nonlinear

first order PDE’s give rise to N characteristic roots for the quasilinear system arising from

differentiating the nonlinear system once with respect to each independent variable.

If we generate (12.10) by the method of simple jumps we can state that real

characteristic directions are the loci for discontinuities in the derivatives of pi and qi.

This means that the second derivatives of ui suffer jumps in the nonlinear case and first

derivatives jump in the quasilinear case.  The first derivatives are smooth when second

derivatives jump so that we get one more derivative of smoothness in the nonlinear case.
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It appears that a more far reaching conclusion following along lines of the last

paragraph may be true.  Compare quasilinear and nonlinear first order systems which

allow blow up in finite time.  The solutions are smooth before the blow up time.  To find

blow up we look for intersecting characteristics.  First derivatives blow up in quasilinear

systems, second derivatives in nonlinear systems.  This conjecture is true for some special

one-dimensional models of flow of a viscoelastic fluid which have been studied by M.

Slemrod [1985] and Renardy, Hrusa, and Nohel [1987].

13. Characteristic surfaces and simple jumps

Let (12.3) be a quasilinear problem and write it in a direct notation as

�
=

n

l 0

Al 
lx∂

∂u = f ,  x = (t , x1, x2, …, xn) (13.1)

A surface S defined by the equation φ(t , x1, x2, …, xn) = 0, is characteristic with respect

to (13.5) at x = (t , x1, x2, …, xn) if

det )(
0

xA �
�
�

�
�
�
�

�

∂
∂

�
= l

n

l x
f = 0 . (13.2)

If φ= xn–f(x0,…,xn–1), then

det �
�
�

�
�
�
�

�

∂
∂

�
−

= l
l

n

l
n x

fAA
1

0

= 0 . (13.3)

Any one of the n+1 quantities ∂φ/∂xl in (12.6) may be regarded as an eigenvalue.  We

shall say (13.1) is hyperbolic if A = Aµ is non-singular and for any choice of the real

parameters (γl, l = 0, 1, …, n; l ≠ µ), the roots α of

det 
�
�
�

�

�

�
�
�

�

�

�
≠
=

ll

n

l
l

a AA γ
µ
0

= 0 (13.4)
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are real and are associated with k linearly independent characteristic vectors v:

αAv = �
≠
=

n

l
l

µ
0

γlAlv . (13.5)

If all the roots are complex, the system (13.1) is said to be elliptic.  Equations (13.1) may

also be of parabolic type, but we shall not state the conditions for this.  In general the

roots of the polynomial (13.4) are neither all real (hyperbolic) are all complex (elliptic).

In this case, the quasilinear system (13.1) is neither totally hyperbolic or entirely elliptic

and it is said to be a “quasilinear system of composite type.”

Most of our applications are framed in one or two space dimensions.  For these, it

is enough to consider quasilinear systems of the form

A
∂u
∂t    + B

∂u
∂x   + C

∂u
∂y   = f (13.6)

At this point the identification of t as a time variable and (x,y) as space variables is

entirely arbitrary.  The identification is in our mind when we think of an initial value

problem for which the initial data is some prescribed function of (x,y).  It is useful at first

to think of (13.6) in R 2 (x,y) with initial data in a Fourier transform class and with tε0

and to modify this thought when the occasion arises.  Now we identify characteristic

surface φ(x,y,t) = 0 as the locus of S of points across which derivatives of u may be

discontinuous, even though u, hence A, B, C, and f are continuous across S.  In this case

the jump [[u]] of u across depends on only the coordinate normal to φ = 0.  The equations

satisfied by [[u]] (φ) are

�
�
�

�
�
�A

∂φ
∂τ  + B

∂φ
∂x  + C

∂φ
∂y  • 

∂[[u]]
∂φ   = 0 (13.7) 

where dφ = 
∂φ
∂t    dt + 

∂φ
∂x   dx + 

∂φ
∂y  dy = 0.
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The eigenvalues for (13.7) are the roots of

det 
�
�
�

�
�
�A

∂φ
∂τ  + B

∂φ
∂x  + C

∂φ
∂y   = 0 (13.8) 

and υυυυ= 
∂[[u]]

∂φ    are the eigenvectors.

Characteristic surfaces can be generated from defining statements which do

introduce the notion of discontinuities.  These defining statements all lead to the same

characteristic surfaces S and eigenvectors, up to normalization.  This part of the theory is

classical and well developed in standard books on partial differential equations.  A defect

in standard books is that they confine attention to purely hyperbolic, parabolic, or elliptic

problems for which the mathematical theory is well developed and do not treat problems

of composite type.

14. Systems of composite type, and mixed type

In general, matrices have real and complex eigenvalues which lead to systems of

composite type.  Many systems arising in applications are of composite type.  In such

problems it is necessary to identify which variables are hyperbolic, etc.  In the case of

irrotational water waves the velocity potential is elliptic but the height function is

governed by a hyperbolic equation giving rise to water waves.

For plane steady flow the time derivative vanishes and (13.8) may be written as

det 
�
�
�

�
�
�B 

dy
dx – C   = 0 (14.1)

where real-valued roots 
dy
dx  = – 

∂φ
∂x  / 

∂φ
∂y  (dφ = 0)  give the projection of tangent vector on

the characteristic surface S.  Complex roots indicate that there are elliptic variables in the

quasilinear system.  Plane steady flow of inviscid incompressible fluids are governed by a

quasilinear system of mixed type (see Joseph, Renardy, and Saut [1985], hereafter called
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JRS, for a discussion).  Plane steady flow of viscoelastic fluids like Maxwell’s (section

17) form a system of quasilinear equations (18.4) of composite type in which the

streamlines are doubly characteristic, the stream function is elliptic and the vorticity can

be either hyperbolic or elliptic, depending on the flow.  In quasilinear problems the

matrices B and C depend on u and x and the values of their components change from

point to point, solution to solution.  So we may have a change of type with ellipticity in

one region of the flow and hyperbolicity in another.  This type of behavior is

characteristic of the velocity potential in gas dynamics and leads to transonic flow,

supersonic in some regions, and subsonic in others.  The same behavior is characteristic

of the vorticity in plane steady flows of viscoelastic fluids like Maxwell’s (see JRS and

Joseph and Saut [1986], hereafter called JS).

Sometimes fields with mixed hyperbolic and elliptic regions are said to be of

mixed type.  This can be confused with quasilinear problems of composite type in which

reference is made to real and complex eigenvalues.  We have agreed that “mixed type”

refers to mixed fields, as in transonic flow.

The concept of change of type is tied strongly to nonlinearity.  In transonic flow a

change of type occurs when the local speed exceeds the sound speed, and a similar

criterion (23.2) applies to “transonic vorticity” of a viscoelastic fluid.

At this point in our analysis there is no reason to think that a change of type could

not occur in the evolution part of the problem.  In fact the eigenvalue problem

det 
�
�
�

�
�
�A 

dx
dt  – B   = 0 (14.2)

is not formally different from (14.1).  The difference lies in our understanding the frame

in which these problems are set.  Evolution problems also can and do change type type so

that there are two types of change of type, one for steady problems leading to transonic
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fields and the other to a change of type in the time dependent problem, leading, as we

shall show, to Hadamard instability and ill-posed problems.  Ill-posed problems need

regularization, at least, no matter what is the truth of the underlying physics they expose.

Transonic problems can be perfectly normal and correct statements of the underlying

physics.  It is necessary to understand the difference between these two types of change of

type.

15. Higher order problems, symbols

Though it is always possible to reduce a quasilinear system of partial differential

equations of order higher than one to a first order system, it is not always convenient  or

necessary to do so.  The theory of classification of partial differential equations of higher

order can be formulated in terms of the symbol.  Actually the symbol is the matrix of

wave numbers and coefficients after analyzing systems with constant coefficients (or

frozen coefficients) using normal modes when lower order terms are neglected.  The

symbol is a convenient way to express the result of computations we would do anyway.

Consider the linear differential operator

P = �
|α|=m

   aα(x,t)∂α + �
|α|<m

   aα(x,t)∂α , (15.1)

where x=(x1, x2, …, xn) and t are space and time coordinates, α = (α0, α1, …, αn) is a

multi-index, |α| = ⊃Σα i , m is the highest order of derivative in P, and

∂α = 
∂|α|

∂tα0∂xα1
1  … ∂xαn

n
  . (15.2)

The equation

�
|α|=m

   aα(x,t)σα = 0,  σ = (σ0, …, σn) , (15.3)
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σα = σα0
0   … σαn

n  

is called the characteristic equation for P.  Only the principal part of P, the terms of

highest order, appears in (15.3).

A surface S in (x,t) space is characteristic for P at a point s∈ S if the normal vector

to S at s satisfies the characteristic equation.  If σ = (σ0, …, σn) is a unit normal vector at

s, S is characteristic for P if and only if

�
0

n

  σ2
k  = 1   and   �

|α|=m

   aα(x)σα = 0. (15.4)

The characteristic equation for Laplace’s equation ∆u=�
k=1

n

  ∂2u/∂x2
k  = 0 is �

k=1

n

  σ2
k 

= 0.  There are no real characteristics because (15.4)1 is not satisfied.  The characteristic

equation (15.4)2

σ2
0  – c2 �

=

n

l 1

σ2
k  = 0

for the n-dimensional wave equation

∂2u
∂t2

  = c2 ∆u

satisfies the characteristic equation (15.4)1 when σ0 = ±c/ c2+ 1 .  Therefore a surface is

characteristic for the wave equation if and only if its normal makes an angle β, cos β =

c/ c2 + 1 , with the t axis.  For the one-dimensional wave equation ∆ = ∂2/∂x2, this

implies that the family of lines x ± ct = const are characteristic.  The classic example of a

parabolic equation is the heat equation, ∂u/∂t = ∆u.  The characteristic equation (15.4)2 is

�
=

n

l 1

σ 2
l = 0 . (15.5)
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Hence, from (15.4)1, σ2
0  = 1 and the characteristic surfaces are the hyperplanes t=const.

Operators of the form 
∂u
∂t   + Lu, where L, like –∆, is a positive definite elliptic operator,

are parabolic.  These operators are strongly dissipative and lead to diffusion rather than to

propagation.  Unlike hyperbolic operators, parabolic operators will smooth initially

discontinuous Cauchy data.

We define the

Symbol of P = P (x, t; iξ0, iξ1, …, iξn) (15.6)

where i = –1 .  To form the symbol we replace the arguments 
∂
∂t , 

∂
∂x1

 , …, 
∂

∂xn
  of P

with the Fourier variables iξ0, iξ1, …, iξn.  In this way we obtain a polynomial in the real

variables x.  The symbol of the Laplace operator –∆ is �
i=1

n

  ξ2
i  ;  the symbol of the wave

operator 
∂2

∂t2
  – ∆ is –ξ2

0  + �
i=1

n

  ξ2
i  ; the symbol of the heat operator 

∂
∂t  – ∆ is iξ0 + �

i=1

n

  ξ2
i  .

The symbol for a system of equations is defined in a similar fashion and is a matrix with

polynomial entries.  For example, the matrix symbol for the system of differential

equations

�
�
�

�
�
�1 0

0 –1
 

∂
∂x1

  
�
�
�
�

�
�
�
�u1

u2
  + 

�
�
�

�
�
�0 1

1 0
 

∂
∂x2

  
�
�
�
�

�
�
�
�u1

u2
  = 0 (15.7)

is

A
def
=  

�
�
�
�

�
�
�
�ξ1 ξ2

ξ2 –ξ1
   . (15.8)

If all the roots of the determinant of the principal part of the matrix symbol are real and

distinct, the system is strictly hyperbolic; it is hyperbolic if the roots are real, and complex

if the roots are all complex, as in (15.8), or of composite type if some roots are real and

others complex.
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It can happen, especially in cases in which higher order systems have been

reduced to first order systems, that the determinant of a matrix symbol does not give up n

roots.  For example, we could have just as well introduced a velocity potential φ, with

u=∇φ  for (15.7).  Then instead of (15.7) we could just as well write these equations as

�
�
�
�

�
�
�
�1 0 0

0 0 1

0 0 0

 
∂

∂x1
  

�
�
�
�

�
�
�
�u1

u2

φ

  + 

�
�
�
�

�
�
�
�0 1 0

0 0 0

0 0 1

 
∂

∂x2
  

�
�
�
�

�
�
�
�u1

u2

φ

  = 

�
�
�
�

�
�
�
�0

u1

u2

   . (15.9)

The determinant of the principal matrix symbol

A = 

�
�
�
�

�
�
�
�ξ1 ξ2 0

0 0 ξ1

0 0 ξ2

 

for (15.9) does not give any non-zero roots and is not equivalent to (15.8).  To deal with

situations like this we need to introduce the notion of weights (e.g., see Agmon Douglis

and Nirenberg [1964] or Pitman and Schaeffer [1988]).  The assignment of weights

appears to be a delicate art for which we can give no prescription.

Two homogeneous scalar operators are said to be of the same type if, up to a

transformation of the independent variables, their symbols have the same asymptotic

behavior at infinity.  If the asymptotic behavior of the symbol changes, then we say that

the equation changes type.  For example, the Tricomi equation

y
∂2u
∂x2  + 

∂2u
∂y2  = 0

is hyperbolic when y<0 and elliptic when y>0.  Another example is the quasilinear system

(8.1) which is hyperbolic for p'(v) > 0 and elliptic for p'(v) < 0.  These problems all

involve a change in the sign of the symbol and Hadamard instabilities, which occur if the
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solution of the Cauchy problem with initial data in the hyperbolic region enters the

elliptic region.

The solid lines, where p'(v)>0, lead to a hyperbolic equation and the dashed lines

in figure 9.1 leads to an elliptic equation.  The elliptic portion is rejected because it will

exhibit Hadamard instabilities; and actual solutions are required to operate only on the

hyperbolic parts of the curve.  This leads to spatially segregated solutions, separated by

lines of discontinuity, each part operating on a different hyperbolic branch of the curve.

There is hysteresis and abrupt transitions in the response of such models.  These features

are all present in the recent study of Hunter and Slemrod [1983], which attempts to

explain some observations of Tordella [1968] of a type of melt fracture called ripple.

This phenomenon shows hysteresis loops, double-valued shear rates at certain stresses

and spatially segregated flow regimes.  Similar ideas have also been used to explain the

phenomenon of necking occurring in cold drawing of polymers.

Regirer and Rutkevich [1968] have considered fluids of the Reiner-Rivlin type

which exhibit change of type.  Their constitutive law is

T = –p1 + ηf (II)D,

where D = 12 ( u + ( u)T) , II = tr D2.  Written in terms of a stream function ψ = (u,v) =

(ψy, – ψx), the equation governing steady two-dimensional flows is as follows:

Lψ def
=   a1

�
�
�

�
�
�∂4ψ

∂x4 + 
∂4ψ
∂y4   + 2a2 

∂4ψ
∂x2∂y2  + 4a3 

∂2

∂x∂y 
�
�
�

�
�
�∂2ψ

∂y2  – 
∂2ψ
∂x2   = H(ψ) ,

(15.10)

where H(ψ) is a nonlinear third order operator and the coefficients a are nonlinear

functions of the second derivatives of ψ.  The characteristic curves y(x) are solutions of

a1y + 4a3y4
x  + 2a2y3

x  –4a3yx
2
x  + a1 = 0. (15.11)
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There are three cases:

(i) f+2IIf' > 0 (no real roots, elliptic),
(ii) f+2IIf' = 0 (parabolic),
(iii) f+2IIf' < 0 (four real roots, hyperbolic).

The hyperbolic regions are those where the stress decreases as a function of shear rate,

and the elliptic regions are those where it increases.  The unsteady problem corresponding

to (15.10) is

ρρρρ 
∂
∂t (∆ψ)  + H (ψ) = L (ψ) .

When the right side is elliptic, this problem is parabolic and well-posed.  When the right-

hand side changes type, the problem is neither parabolic nor well-posed and Hadamard

instability occurs.  Changes of type and Hadamard instabilities can occur in rheological

problems which are not one-dimensional and they need not be associated with non-

monotone constitutive equations.  An interesting case of this type arises in a stability

analysis of plane Couette flow by Akbay, Becker, Krozer, and Sponagel [1980].  In order

to obtain a manageable equation, they introduce the “short memory approximation.”  This

means that, in the memory integrals occurring in the equation for the disturbances, only

terms of first order in the relaxation time of the fluid are kept.  Proceeding thus, they find

(15.10) with

H (ψ) = ρκy 
∂
∂x  ∆ψ (15.12)

where κ is the rate of shear of the Couette flow

a1 = τ',

2a2 = –2τ' + 
4τ
κ   , (15.13)
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4a3 = N1' – 
N1
κ  

and τ(κ), N1(κ) are the shear stress and first normal stress function of the rate of shear.

The problem is posed on the strip

–∞ < x < ∞,  0 < y < h ,

ψ = 
∂ψ
∂y  = 0  on y = 0, h

The paper by Ahrens et al. [1984] reports a study of the stability of viscometric

flow using the type of short memory introduced by Akbay et al.  The instability found by

Akbay et al. can be identified as a loss of evolution leading to the catastrophic short wave

instability of Hadamard type whenever

[(N1(κ)/κ)']2κ3

τ(κ)τ'(κ)   > 16 , (15.14)

If we consider the symbol of the differential operator, i.e. if we formally set 
∂
∂t  = σ, 

∂
∂x1

  

= iα, 
∂

∂x2
  = iβ, then the left-hand side of (15.10) becomes

ρ(σ + κx2iα) (–α2–β2) ,

and the right-hand side becomes

– 
�
�
�

�
�
�

N1' – 
N1
κ (α2–β2) αβ + τ'(α2–β2)2 + 

4τ
κ  α2β2 .

When (15.14) holds, Re σ becomes arbitrarily large as the wave length tends to zero.

Catastrophic instabilities to short waves of this type may be characteristic for

some of the types of instability called “melt fracture.”  Ahrens et al. [1984] addressed the

question of justification for the short memory assumption and finds that it cannot be

justified for some of the more popular rheological models.  The left-hand side of (15.14)
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reduces to the square of the recoverable shear (N2
1 /τ2) when the variation of N1/κ2 and

τ/κ is small.  W. Gleissle [1982] found that flow instabilities (melt fracture) commenced

in 14 very different types of polymer melts and solutions when the recoverable shear

varied 4.36–5.24 with a mean 4.63.  This seems to be in rather astonishing agreement

with the criterion (15.14).

16. Second order scalar equations in two dimensions

The equation

A(p,q,φ) 
∂2φ
∂x2  + 2B (p,q,φ) 

∂2φ
∂x∂y  + C (p,q,φ) 

∂2φ
∂y2  = f (p,q,φ) ,

p = 
∂φ
∂x ,

 

q = 
∂φ
∂y ,

 (16.1)

∂p
∂y  – 

∂q
∂x  = 0

arises in many problems, especially in gas dynamics.  We may write this as a first order

quasilinear system for p and q

�
�
�

�
�
�A 2B

0 –1
 
∂
∂x 

�
�
�

�
�
�p

q
  + 

�
�
�

�
�
�0 C

1 0
 
∂
∂y 

�
�
�

�
�
�p

q
  = 

�
�
�

�
�
�f

0
  . (16.2)

Following now the development leading to (13.11) we find the characteristic equation

det 

�
�
�
�

�
�
�
�A

dy
dx 2B

dy
dx –C

1
dy
dx

  = A
�
�
�

�
�
�dy

dx   2 – 2B
dy
dx  + C = 0 (16.3)

where dy/dx is the projection of the tangent vector of φ=0, dφ = 
∂φ
∂x  dx + 

∂φ
∂y  dy = 0 onto

the (x,y) plane.  We find that
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dy
dx   = 

B
A  + 

B2–AC
A   . (16.4)

There are two real characteristics at all points for which the discriminant

B2–AC>0.  When B2–AC=0 there is one real characteristic and when B2–AC<0 there are

no real characteristics.  Hence

B2–AC > 0   (hyperbolic) ,

B2–AC = 0   (parabolic) , (16.5)

B2–AC < 0   (elliptic) .

There is a relation between ill-posed problems and the classification of type of the

equation

Lφ def
=   A 

∂2φ
∂x2  + 2B 

∂2φ
∂x∂y  + C 

∂2φ
∂y2  . (16.6)

The problems

∂2φ
∂t2

  = Lφ ,

∂φ
∂t   = Lφ

are well-posed when L is elliptic, say A=C=1, B=0, and are ill-posed when L is

hyperbolic, say

AC = –1, B = 0 as in (11.1)

It is necessary to caution the reader at this point against overinterpreting the result just

exhibited.  A superficial statement of this result could be formulated as follows:  any Lφ

which undergoes a transonic change of type will be ill-posed, because there will be some

region of flow in which Lφ is hyperbolic.  In fact the definition of type for Lφ depends on
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how the time derivative is defined.  In section 1 we show that in the theory of plane flow

of fluids of Maxwell’s type we may write

Lξ = ρL1 ξ + L2ξ (16.7)

where ξ = φ is the vorticity and L2 alone is relevant for ill-posedness.

17. Viscoelastic fluids like Maxwell’s

Every important feature of the general theory arises in the study of equations

governing the flow of viscoelastic fluids.  We are going to use these equations to

motivate, organize, and further develop relations between Hadamard instability, ill-posed

problems, problems of numerical simulation and problems of transonic type.

We are going to assume that the part ττττ of the stress T = –p1 + ττττ in an

incompressible fluid satisfies a constitutive equation like Maxwell’s

λ
tD

D t = 2η D[u] + l [u, ττττ] (17.1)

where D[u] is the symmetric part of ∇ u, u is the velocity, λ is the relaxation time, η is the

“elastic” viscosity.

�
�

�
�
�

� +
∂
∂= ut
t

def
tD

D ττττ + ττττΩΩΩΩ – ΩΩΩΩττττ – a(Dττττ + ττττD) (17.2)

where a(–1≤a≤1) is a real number, ΩΩΩΩ[u] is the skew symmetric part of ∇ u and l[u, ττττ] is of

lower order; it does not depend on derivatives of u of ττττ.  Models like Maxwell’s differ in

lower order terms but have the same principal part.  The Oldroyd-Maxwell models of  =

–ττττ; a=1 is an upper-convected Maxwell model, a = –1 is a lower-convected Maxwell

model and a = 0 is a corotational model.  A model of Giesekus is associated with l = –ττττ –

c1ττττ2, a=1, where c1 is constant.  A model of Phan Thien-Tanner is associated with l = –ττττ

– c2ττττ tr ττττ and a=1, where c2 is a constant.  Models like Maxwell’s are rendered nonlinear
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when λ and η are made to depend on the second (quadratic) invariant II of the rate of

strain tensor D[u] = sym ∇ u.  These nonlinear problems can be made quasilinear by

differentiation, as in section 12.

The upper and lower convected Maxwell models are special in that there is a

restriction on the allowed range of stress.  The upper convected model (a=1) can be

written as an integral model

ττττ = � ∞−

t
ttltt

l
h ])(1][/)exp[(2 1C dτ (17.3)

where C–1
t  (τ)  is the Finger tensor.  The lower convected model (a=–1) can be written as

ττττ = � ∞−

t
t tltt

l
h ](][/)exp[(2 1C dτ (17.4)

where Ct (τ) is the right relative Cauchy-Green tensor.  The Finger and Cauchy-Green

tensors have positive eigenvalues, implying a restriction on the range of ττττ.  For a = 1, in

plane flow, this condition may be expressed as

det  

�
�
�
�

�
�
�
�σ+

η
λ τ

τ γ+
η
λ

  ≥ 0 (17.5)

where

[ττττ] = 
�
�
�

�
�
�σ τ

τ γ
 (17.6)

These restrictions keep the upper and lower convected models from becoming ill-posed

on smooth solutions.  The other values of a ≠ ±1 do not rule out Hadamard instability, as

we shall see in section 18, and even the upper and lower convected models can become

ill-posed on discretized solutions.
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The dynamical equations governing the motion of fluids like Maxwell’s are

quasilinear; they are nonlinear, but linear in derivatives.  We can write the dynamical

equations

G(Qt + u • ∇ Q) + HQx + JQy = [Q] (17.7)

where G is not invertible (e.g., there is no pt in this system), Q is a system vector whose

components are the velocity, stresses and pressure and G, H, J, and l depends on Q, but

not on the derivatives of Q1.  In two dimensions we have velocity components u = (u, v)

corresponding to x, y stress components (18.6) and

Q = [u, v, σ, γ, τ, p] .

There are six quasilinear equations for the six scalar fields, [u, v, σ, γ, τ, p], linear in

derivatives with lower order right-hand sides, 1, 2, and 3.

σt + uσx + vσy + τ(vx – uy) – a[2σux + τ(uy + vx)] – 2µux = 1 ,

τt + uτx + vτy + 
1
2 (σ – γ)(uy – vx)  – 

1
2  a(σ + γ)(uy + vx) – µ(uy + vx) = 2 ,

γt + uγx + vγy + τ(uy – vx) = a[2γuy + τ(uy + vx)] – 2µvy = 3 ,

ρ(ut + uux + vuy) + px – σx – τy = 0 , (17.8)

ρ(vt + uvx + vvy) + py – τx – γy = 0 ,

ux + vy = 0 .

                                                

1Equation (17.7) with an invertible G is a canonical quasilinear problem in two space dimensions.

The lack of invertibility for the viscoelastic system does not introduce special problems.
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18. Hadamard instability and ill-posed problems for the flow of

viscoelastic fluids

For the moment it is useful to think about how we might carry out an analysis of

stability.  First we suppose that Q̂  is a solution of (17.7).  It could even be an unsteady

solution.  Then we write

Q = Q̂  + q

and suppose that q is small.  The linearized equations are

Ĝ(qt + û • q)  + Ĥ qx + Ĵ qy = l̂  q (18.1)

where Ĥ , Ĵ , l̂   depend on Q̂ , derivatives of Q̂  but not on q.  We can imagine trying to

solve (18.1) plus boundary conditions as an initial value problem for the stability of Q.  If

Q̂  is steady, we could write q = cσ tQ̂(x)  and determine stability from eigenvalues σ.  To

get the eigenvalues we would have to solve a complicated set of partial differential

equations over the whole field of flow, satisfying boundary conditions.

Now we shall treat the problem of stability for a special class of disturbances

which lead to simple but deep results.  We are going to consider short waves, tending to

zero noting that Q̂ , hence Ĝ , Ĥ , Ĵ , and l̂  are nearly constant on any sufficiently small

neighborhood  | x – x0 | < ε of any point x0.

The coefficients of (18.1) are constant on such a small neighborhood and we may

try for a solution in terms of normal modes

q = a exp { –iωt + iα(x–x0) + iβ (y–y0) } (18.2)

where a(x0) is an amplitude, ω a frequency, and x and β are wave numbers.  Of course,

we cannot hope to satisfy boundary conditions with a solution of this form.  It is a strange
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form for the solution because it applies at each and every point x0, so we may find

stability at some points and instability at others.

To set some notations, we define a wave vector.

k def
=  exα + eyβ ,

 
|k| = α2 + β2 .

 (18.3)

Since exp (–iωt) = exp (ωit) exp (–iωrt) where ω = ωr + iωi we may define a growth rate σ

= ωi.

Instability to short waves

After putting the normal modes (18.2) into (18.1) we get

L̂ (ω, k) a = l̂  a (18.4)

where

L̂  = (–ω + û  • k)Ĝ  + αĤ  + βĴ  .

We divide (18.4) by |k| and let |k| → ∞.  Since l̂  is independent of α and

β, 
l̂a
|k|  → 0 and

L̂ 
�
�
�

�
�
�ω

|k| , 
k
|k|   a = 0 (18.5)

Equation (18.5) represents six linear, homogeneous equations for the six unknown

components of a.  Hence

∆ def
=   det L̂  = –ρc2 + f̂  = 0

where
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c = 
(ω – u • k)

|k|  (18.6)

and

f̂  = 
η
λ   – 

γ̂
2 (1 – a)  + 

σ̂
2 (1 + a)  . (18.7)

The expression (18.7) for f̂  has been simplified by choosing x so that β = 0, k = αex and

σ̂  ≥ γ̂ .  The growth rate ωi is given by

imaginary c = 
ωi
|k|  = ± imaginary  

f̂
ρ  .

It follows that

ωi = 0 if f̂  > 0

and there is a positive growth rate if f̂  < 0.

We may phrase the condition for stability to short waves in terms of the wave

speed c, with stability only if c2 is positive corresponding to real wave speeds.

The condition

0 > f̂  = 
η
λ    – 

γ̂
2 (1 – a)  + 

σ̂
2 (1 + a) (18.8)

for instability to short waves is framed as a condition on the values of the normal stresses

γ̂  and σ̂  in a coordinate system in which k = αex, σ̂  > γ̂ .  If the solution enters into this

region of forbidden stress, a very ugly instability will ensue.

Suppose f̂  < 0, then

ωi = ± |k| |f̂ |ρ  . (18.9)
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This is a strange formula.  When f̂ =0, ωi=0 but when f < 0 and small, ωi→∞ with |k|.

We can get stability to short waves at some points and instability at others, depending on

the values of γ̂  and σ̂  through frozen coefficients.  This kind of catastrophic short wave

number instability is the so-called Hadamard instability.

We may express the condition (18.8) in a general coordinate frame (see JS [1986])

as a condition for stability against short waves

�
�
�

�
�
�η

λ  – 
1
2 γ(1–a) + 

1
2 σ(1+a)  

�
�
�

�
�
�η

λ  – 
1
2 σ(1–a) + 

1
2 γ(1+a)  – τ2 > 0 ,

 
1
2 γ(1–a) – 

1
2 σ(1+α) – 

η
λ  < 0 .

 (18.10)

When a=1, this reduces to

�
�
�

�
�
�η

λ  + σ  
�
�
�

�
�
�η

λ  + γ  – τ2 > 0 ,

 
η
λ  + σ > 0 .

 (18.11)

The conditions (18.11) are always satisfied as (17.3) and (17.5) show.  Hence smooth

solutions of an upper convected Maxwell model are always well-posed.  A similar

argument leads to the same result for the lower convected Maxwell models, but not for

the others at a≠ ± 1.

19. The vorticity equation, short wave instabilities, and problems of

transonic type

For models like Maxwell’s it is possible to frame the discussion of hyperbolicity

in terms of a second order partial differential equation for the vorticity (see Equation (4.1)

in JS).
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In plane flow, there is one nonzero component of vorticity satisfying

ρ 
∂2ζ
∂t2

  + 2ρ(u • ∇ ) 
∂ζ
∂t    – A 

∂2ζ
∂x2   – 2B 

∂2ζ
∂x∂y   – C 

∂2ζ
∂y2  +  = 0 . (19.1)

where  is of lower order, and A, B, C are defined by

A = –ρu2 + µ + 
1
2  σ(1 + a) – 

1
2  γ(1 – a) ,

B = τ – ρuv ,

C = –ρv2 + µ – 
1
2  σ(1 – a) + 

1
2  γ(a + 1) ,

µ = 
η
λ   .

Analysis of (19.1) using the method of short waves leads directly to the criterion of

(18.8).  The same criterion, positive wave speed c2 > 0 , is sufficient to guarantee that

(19.1) is hyperbolic (see JS).

Two conclusions follow from the foregoing comparison:

1. The quasilinear system (17.8) is well-posed or ill-posed if the

vorticity equation (19.1) is well-posed or ill-posed, respectively.

2. The quasilinear system (17.8) is well-posed if and only if the

vorticity equation (19.1) is hyperbolic.  It is useful here to remark

that the property of well-posedness of an initial value problem is a

more general one than hyperbolicity but in the present case there is

a sense in which the two concepts coincide.

Now we put the time derivatives to zero.  This means that we have left behind the

problem of ill-posed problems and short wave instabilities.  The problem now is to find
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the regions of steady flow in which the vorticity equation gives rise to real characteristic

directions.  In general the analysis of the characteristics of (10.1) when the time

derivatives vanish will lead to conditions for the emergence of transcritical flow, like

transonic flow in aerodynamics, elliptic in some regions of flow and hyperbolic in others.

Elementary analysis of the problem of characteristics in steady flow leads to the formula

dy
dx   = 

B
A   ± 

B2 – AC
A  

where A, B, C are defined under (19.1).  Clearly there are real characteristics whenever

the discriminant

B2–AC = –µ2 + ρ [µ+ασ+aγ] (u2+v2)+ 
1
2 ρ(γ–σ) (u2–v2)

 

τ2 + 
1
4 σ2 (1–a2) + 

1
4 γ2 (1–a2) – µa(σ+γ)  – 2ρτv > 0 ,

 (19.2)

and the vorticity equation is elliptic wherever B2 – AC < 0.  The criterion (19.2) depends

on the inertia through the terms multiplying the density ρ but the criterion f̂ <0 for ill-

posedness is independent of ρ (see (18.8)).  Usually regions of high speed steady flow

will go hyperbolic when the velocities are large enough.  However, it is possible for a

steady flow of an inertia-less fluid with ρ=0 to change type.  The following theorem

proved by JS relates the criterion for ill-posed problems, basically defined for evolution,

to the criterion for change of type in steady flow.  The quasilinear system (17.8) is well-

posed if and only if the vorticity equation (19.1) of steady flow is hyperbolic.  If the

vorticity equation of steady flow is hyperbolic when ρ =0, then the unsteady vorticity

equation is elliptic and the quasilinear system ill-posed.  Conversely, if the vorticity of an

inertia-less steady flow is elliptic and A > 0 the system (17.8) is well-posed.

It is easiest to examine the criterion just given in principal coordinates for the

stress, τ=0.  Then putting ρ to zero we have a well-posed problem for σ and γ such that
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A = µ + 
1
2  σ(1+a) – 

1
2  γ(1–a) > 0

and

B2 – AC = –µ2 + 
1
4  σ2 (1–a2) + 

1
4  γ2(1–a2) – µa (σ + γ) < 0 .

For upper convected models, a = 1, this criterion reduces to

A = µ + σ > 0 ,       B2 – AC = –µ(µ + σ + γ) < 0 .

For lower convected models, a = –1, this criterion reduces to

A = µ – γ > 0 ,       B2 – AC = –µ(µ – σ – γ) < 0 .

These inequalities are always satisfied because of restrictions on the range of τ  implied

by the constitutive equations when expressed in integral form (see JRS, equation (5.8)

and (5.9)).  Dupret and Marchal [1985] used the differential form of the upper and lower

convected Maxwell models to show that if the criterion for well-posed problems is

satisfied initially, it will not fail subsequently.

The loss of well-posedness and transonic change of type are indirectly related by

the theorem of comparison just proved.  Transonic change of type involves inertia, ill-

posedness involves only a condition on stresses, not inertia.  A more direct comparison

could have been made in terms of a transonic type of change of type of the operator

L2ζ = A2 
∂2ζ
∂x2  + 2B2 

∂2ζ
∂x∂y  + C2 

∂2ζ
∂y2 

to which we alluded in (16.7).  The decomposition of L=ζL1 + L2 into a part depending

on inertia and a part L2 depending on stress acknowledges the fact that the part L1

depending on inertia arises in one way or another on acceleration which of course does
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not vanish in steady flow.  Tracing back, one can verify that all terms with ρ as a

coefficient arise from the substantial time derivative containing a steady part ρu•∇ .

A large number of examples of problems which change type, using different

constitutive models and different flows, were considered by JRS and JS.  Some models

are always evolutionary (well-posed) and do not change type in unsteady flow.  The

vorticity equation for steady flow of such models can and does change type.  Other

models can become ill-posed and undergo  instability to short waves.  Some flows of all

these models, like simple shear or Poiseuille flow, are always well-posed while other

flows, like plane extension or sink flow, can become ill-posed.  Sink flows of upper

convected and lower convected Maxwell models change type in steady flow, but cannot

be ill-posed.  On the other hand, sink flows of corotational Maxwell models change type

in steady flow and are also ill-posed.  Nearly every possibility is realized for some flow of

some model.

20. Hadamard instability and the failure of numerical simulation

Hadamard instabilities are a disaster for numerical simulations.  If a flow is

Hadamard unstable, the finer you make the mesh the worse is the result.  Shorter waves

grow uncontrollably.  These instabilities arise in many fields and they are a serious

problem since they frustrate the computation of results.  The case of viscoelastic fluids

with instantaneous elasticity is a case in point.  It has not been possible until recently to

compute flows in complex geometrics at high Weissenberg numbers.  For the models

exhibited in section 17 we can define a Weissenberg number as a ratio of times, W = λ/t0

where t0 is an approximation of the process time for externally given data and λ is a

relaxation time, a material parameter.  Large numbers W mean that the material retains its

elasticity for a long relative time.  The numerical simulations would break down for large

values, and even fairly small values of W.  The failure was only weakly dependent on the
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choice of the model and the choice of numerical method.  This suggested that the root

cause was associated with mathematical problems that don’t vary from model to model

and method to method.

There are various reasons to believe that this problem of failure of simulations at

high W is associated with Hadamard instability.  First of all, the results get worse and

worse with increasing mesh refinement.  The simulations readily break down in corners

where the stress levels get high, evidently entering into the region of forbidden stresses.

This type of failure of numerical simulation can occur in non-steady and steady flow; the

growth rate tells us how numerical errors are amplified, and the amplification is

uncontrollable in the case of ill-posed problems.

We have noted already in section 19 that smooth solutions of flows of an upper or

lower convected Maxwell model (a = ±1) never become ill-posed.  Dupret, Marchal, and

Crochet [1985] showed that discretization errors could introduce a Hadamard instability

for these well-posed models.  Discretization for such problems allows one to step into

forbidden and otherwise inaccessible regions of the added stress.  A recent work by

Marchal and Crochet [1987] seems to have partially solved the problem of “false”

discretization induced instability by upwinding on streamlines.  They introduced technical

improvements and the addition of an artificial diffusivity which goes to zero with mesh

refinement.  These methods, of course, would be unavailing in problems exhibiting true

Hadamard instability.  For such problems, it is necessary to regularize the equations.  The

addition of Newtonian viscosity to the constitutive model for fluids with instantaneous

elasticity is the natural way to regularize ill-posed problems.  Many models, like Oldroyd

B, already have a Newtonian contribution, expressed by a retardation time.  Physically we

expect a Newtonian velocity to arise from the decay of rapidly decaying modes associated

with small molecules.  All this puts forward the rheometrical problem of measurements

of an “effective” Newtonian viscosity.  This new problem needs a solution.
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21. Ill-posed initial-value problems cannot be solved unless the initial

data is analytic

We are now going to establish the connection between Hadamard instability and

ill-posed problems in the class of functions having Fourier transforms.  The connection is

particularly suited to problems which arise from freezing coefficients.  Problems which

are Hadamard unstable have no solutions in any class of initial data more general than

analytic.  For example, the Cauchy problem of  2 which follows from freezing the

coefficients has no solution with initial data in the Cm class.  This result is well known for

the Laplace equation treated in the celebrated example by Hadamard.  The solution of

Laplace’s equation is analytic, say in the half (x, y) plane with x > 0, and it can be

extended to x < 0 by reflections.  Hence the initial data on y = 0 must also be analytic.

This “nonexistence” result is valid generally.

We are going to prove the result just mentioned in two ways.  The first one uses

the Paley-Wiener Theorem; the second one is elementary and shows that no solution can

exist in a Ck class.  Suppose, for example, that the coefficients of (18.1) are constant (as

will, in fact, be implied by frozen coefficients) and that q lies in a Fourier transform class

p (α, β, t) = ��
∞

∞−

∞

∞−
p2

1 e–i(αx + βy) q (x, y, t) dx dy (21.1)

is the transform of q (x, y, t) and p (α, β, 0) is the transform of the Cauchy initial data q

(x, y, 0) for q (x, y, t) and

q (x, y, t) = ��
∞

∞−

∞

∞−
p2

1 ei(αx + βy) p (α, β, t) dα dβ . (21.2)

The transform p (α, β, t) satisfies the following ordinary differential system:

Ĝ 
�
�
�

�
�
�dp

dt   + i  û • kp   + i ( )α  Ĥ + β  Ĵ   p = 0 (21.3)
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with a prescribed p = p (α, β, 0) at t=0.  Assuming semi-simple eigenvalues (the

argument is not essentially changed in the general case) we can reduce the system to a

diagonal one.  Then (keeping the same notation for the transformed variables)

p (α, β, t) = ΩΩΩΩ (α, β, t) p (α, β, 0)

where ΩΩΩΩ is the diagonal matrix with diagonal entries –iωl t (the ωl’s are the eigenvalues of

(18.2)).

Let ωj be an irregular eigenvalue, that is to say the imaginary part σ̂ (α, β)  is

unbounded as α2 + β2 → ∞.  Since (18.1) is time reversible we can assume σ (α, β) > 0.

Then

qj (α, β, t) = ��
∞

∞−

∞

∞−
p2

1 ei(αx + βy – ωjt) pj (α, β, 0) dα dβ

The usual factor under the integral is

eσ(α, β)t pj (α, β, 0) ,

since

( ) +∞=
∞→+=

βασ ,lim
22 bak

Therefore the integral defining qj (x, y, t) can exist only if pj (α, β, 0) decays

exponentially as k→∞ with an exponent dominating σ (α, β, t).  By the Paley-Wiener

theorem, this amounts to saying that the initial data qj (x, y, 0) can be extended as an

analytic function in a (complex) strip containing the plane (x, y).  We give below a direct

proof that the Cauchy problem cannot be solved for Ck initial data.
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Suppose the second x derivative of ql )0,,( yx is discontinuous at x = x*, that

ql )0,,( yx tends to zero at large x, and y is as required for functions in the Fourier

transform class.  Then, after integrating by parts, we find

)(1

)0,,(1)0,,(2

2

2

3

3

3

3

*
y

x
q

edye
i

x
yxq

e
i

dyep

jiaxyi

jxiyi
j

�
�
�

�

�
�
�

�

∂
∂

+

∂
∂

=

�

��

∞

∞−

∞

∞−

∞

∞−

β

αβ

α

α
βαπ

(21.6)

where

�
�
�

�
�
�∂2qj(x

*,y)
∂x2  (y) (21.7)

is the jump in qj (x, y) at x = x*.  It follows that, in general pj (α, β, 0) decays like 
1
α3  for

large α when (20.7) holds.  In this case (20.5) is unbounded as α→∞ whenever σ(α, β ) >

0 is irregular.  It is obvious how one could proceed with this proof when derivatives

higher than the second are discontinuous.

The results just given might be taken to mean that there is no difficulty in solving

ill-posed initial value problems with analytic initial values by inverting the Fourier

transform.  Appearances are deceiving.  The difference between an analytic function with

a large derivative tending to a discontinuity and an actual discontinuity could not be

important.  There is surely a sense in which ill-posed problems are “overly sensitive” to

changes in analytic initial data.  In fact, it is just this fact which is implied by saying that

ill-posed Cauchy problems do not depend continuously on the data.

22. Some further comments about frozen coefficients

Analyses of short waves on frozen coefficients has the following useful

properties:
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1. It leads us to linear equations.  Richtmeyer and Morton [1967] note

that, “Indeed, it is in checking the ‘local’ stability of linearized

equations obtained from truly nonlinear equations that the constant

coefficient theory is mainly of use.”

2. The short waves allow one to freeze the coefficients; the

coefficients do not vary on a sufficiently small region, so the

linearized problem has constant coefficients.

3. Since derivatives of the quasilinear system on short waves become

unboundedly large, the lower order terms are increasingly

unimportant and they may be neglected.  This leads to a

homogeneous system, to a set of linear homogeneous equations

which can be solved only if a determinant of constants vanish.

What could be easier?

4. The reduced homogeneous system is now in  n and boundary

conditions can be neglected.  The short wave instabilities start as a

local phenomenon.

The foregoing analysis of short waves on frozen coefficients was formal and not

rigorous.  The connection to ill-posedness can be framed as in section 20, but more needs

to be done.  Kreiss [1978] gives an example of an equation where the problem with

variable coefficients is properly posed, yet all corresponding constant coefficient

problems are improperly posed; on the other hand, he gives an example in which the

constant coefficient problems are all properly posed, yet the variable coefficient problem

is not.  So Kreiss’ examples show that, in general, local stability is neither necessary nor

sufficient for the overall stability of the variable coefficient problem. However, as Strang

[1966] points out, if a quasilinear system of first order equations is properly posed, then
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all frozen coefficient problems are properly posed.  So first order systems, like (18.8)

must be properly posed locally, in the sense of frozen coefficients.
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