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These lectures are in three parts:

1. Physical phenomena associated with hyperbolicity and change of type;

2. Conceptual ideas associated with effective viscosities and rigidities and the origins of

viscosity in elasticity;

3. Mathematical problems associated with hyperbolicity and change of type.

The ideas which I will express in these lecture are very condensed forms of ideas which

have been put forward in various papers and most completely in my recent book Fluid Dynamics

of Viscoelastic Liquids, published in 1990 by Springer-Verlag.  The mathematical theory of

hyperbolicity and change of type is associated with models with an instantaneous elastic

response.  Basically, this means that there is no Newtonian like part of the constitutive equation.

The theory for these models as it is presently known is in my book.  I am persuaded that further

development of this subject lies in the realm of physics rather than mathematics.  The main

issues are centered around the idea of the effective viscosity and rigidity and the measurements of

slow speeds, topics which are discussed in this paper in a rather more discursive than

mathematical manner.
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1. PHYSICAL PHENOMENA ASSOCIATED WITH HYPERBOLICITY AND CHANGE OF TYPE

It is well known that small amounts of polymer in a Newtonian liquid can have big

effects on the dynamics of flow.  Drag reductions of the order of 80% can be achieved by adding

polymers in concentrations of fifty parts per million to water.  This minute addition does not

change the viscosity of the liquid but evidently has a strong effect on other properties of the

liquid which have as yet been inadequately identified.

We are going to consider some effects of adding minute quantities of polyethylene oxide

to water on the flow over wires.  The first experiments were on uniform flow with velocity U

across small wires, flow over a cylinder.  James and Acosta [1970] measured the heat transferred

from three wires of diameter D=0.001, 0.002 and 0.006 inches.  They used three different

molecular weights of polymers in water (WSR 301, 205 and coagulant) in concentrations φ

ranging from 7 parts to 400 parts per million by weight, the range of extreme dilution, in the drag

reduction range.  They found a critical velocity Uc in all cases except the case of most extreme

dilution φ=6.62 ppm, as is shown in Figure 1.  A brief summary of the results apparent in this

figure follows.
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Figure 1 Heat transfer from heated wires of WSR 301 (after James and Acosta [1987]).  The
experimental points are dots and the lines are from computations of Hu and Joseph
[1990].  (a) d=0.001 in. (b) d=0.002 in. (c) d=0.006 in.

1. There is a critical value Uc for all but the most dilute solutions:  When U<Uc, the Nusselt

number Nu(U) increases with U as in a Newtonian fluid.  For U>Uc, the Nusselt number

becomes independent of U as in Figure 1.

2. Uc is independent of the diameter of the wire.  This is remarkable.  It suggests that Uc is a

material parameter depending on the fluid alone.
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3. Uc is a decreasing function of φ, the concentration.  It is useful to note once again that in

the range of φ between 6 ppm to 400 ppm, the viscosity is essentially constant and equal

to the viscosity of water.

Ambari, Deslouis, and Tribollet [1984] obtained results for the mass transfer from 50

micron wires in a uniform flow of aqueous polyox (coagulant) solution in concentrations of 50,

100, and 200 parts per million.  Their results are essentially identical to those obtained by James

and Acosta [1970]; there is a critical Uc, a decreasing function of φ, signalling a qualitative

change for the dependence of the mass transport of U, from a Newtonian dependence when

U<Uc, to a U independent value for U>Uc.  Their values of Uc for the break in the mass transport

curve are just about the same as the value of Uc found by James and Acosta for heat transfer.

Ultman and Denn [1970] suggested that Uc=c= η/λρ  where η is the viscosity, λ the

relaxation time, and ρ is the density of a fluid whose extra stress ττττ=T+p1 satisfies Maxwell’s

equation

λU∂τ τ τ τ /∂x + ττττ = µ[ u = uT] (1)

where u is the velocity.  They used the molecular theory of Bueche to find the value of the

relaxation time λB for the 52.4 ppm solution and they found that a 0.7λB would give η/0.7λB  

=Uc ~ 2.9 cm/sec., that is, their estimate of λB from Bueche’s theory is almost good enough to

give c=Uc.  Their calculation of the time of relaxation cannot be relevant, however, because in

the Bueche theory

λB = 
12Mηs(103+12φ)

106π2RgT  (2)

does not go to zero with the concentration φ.  The quantities in (2) are (M, ηs, Rg, T)=(molecular

weight, the viscosity of water, the gas constant, absolute temperature).  The zero φ value of λB

can be interpreted as a relaxation time for a single polymer in a sea of solvent.  The relaxation
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time of one polymer cannot be the relaxation time of the solution in the limit in which the

polymer concentration tends to zero, because in this limit the solution is all solvent.

Joseph, Riccius and Arney [1986] measured c=2.48 cm/sec in a 50 ppm, WSR 301

aqueous solution.  This measurement supports the idea that Uc=c.  We are trying now to measure

wave speeds in extremely dilute solutions in the drag reduction range.  We find considerable

scatter in our data in these low viscosity solutions and are at present uncertain about the true

value of the effective wave speed, including the values which we reported earlier.

The hypothesis that Uc=c is consistent with the following argument about the dependence

of the wave speed on concentration.  In the regime of extreme dilution, the viscosity does not

change with concentration.  However, there appears to be a marked effect on the average time of

relaxation which increases with concentration.  It follows then that the wave speed c= η/ρλ  

must decrease with concentration φ.

The shear viscosity for dilute polymers can be calculated using

η = ηs(1 + [η]φ) (3)

where [η]=(η–ηs)/φ is the intrinsic viscosity.  It has a definite value as φ∅ 0.  James and Acosta

[1970] and James and Gupta [1971] developed expressions of the form λ=Aφ from molecular

theory.  A is a function of the polymer properties and it can even be a slowly varying function of

φ.  They find that

A = 
2
5  

ηs[η]2M
RgT    . (4)

This expression shows that λ is proportional both to the largest relaxation time of polymer

molecules λm=ηs[η]n/π2RgT and to the concentration φ.  James and Gupta [1971] generalized

the derivation and showed significant influence of molecular weight distribution on the

magnitude of the relaxation.  They found that λ=Aφ, with A given by (4) could possibly
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underestimate the value of the relaxation time computed as a mean value from a two relaxation

time model by a factor of order 10, depending on the molecular weight distribution of the

polymers.

If at small concentrations φ, λ=Aφ with A independent of φ, then the wave speeds c= η/λρ  

of dilute polymer solutions of two concentrations φ1 and φ2 are given by

c2 = c1 
φ1
φ2

   
1+[η]φ2
1+[η]φ1

    .

for extremely dilute solutions [η]φ«1 and we find that

c = ηs/ρAφ    = Cφ1/2 (5)

where λ=Aφ and ηs, A, ρ and C are independent of φ.

In Figure 2 we have plotted the critical velocity versus concentration for three polyox

solutions and the three diameters of wires used in the experiments.  We see that the line

Uc=Cφ1/2 fit the data of James and Acosta quite well.  This lends support to the notion that the

critical speed is equal to the shear wave speed Uc=c in some approximate sense.  We note that

the attempt of Ultmann and Denn [1971] to fit the concentration data (their Figure 3) failed

because they used the Bueche relaxation time (2) rather than the linear relation λ=Aφ, with A

determined from a measurement using the wave speed meter.

We shall return to compare these observations with direct numerical simulations in part 3

of this paper.
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Figure 2 Critical velocity at which the Nusselt number starts to deviate from the Newtonian
data versus concentration for three Polyox solutions (WSR-205, WSR-301,
coagulant) and three cylindrical wires (d=0.001, 0.002, 0.006in.). Data of James and
Acosta [6]. Solid lines are correlations Uc = C φ-1/2.

Konuita, Adler and Piau [1980] studied the flow around a 0.206 mm wire in an aqueous

polyox solution (500 ppm, WSR-301) using laser-Doppler techniques.  They found a kind of

shock wave in front of the cylinder, like a bow shock.  They say that the velocity of the fluid is

zero in a region fluid in front of the stagnation point.  Basically they say that there is no flow, or

very slow flow near the cylinder.  The formation of the shock occurs at a certain finite speed,

perhaps Uc.  This type of shock is consistent with the other observations in the sense that with a

stagnant region around the cylinder, the transport of heat and mass could take place only by
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diffusion, without convection.  This explains why there is no dependence of the heat and mass

transfer on the velocity when it exceeds a critical value.

I estimated the critical speed, using the data of Konuita, Adler and Piau, and I estimated

the wave speed c by extrapolating from our measurements in the polyox solutions at different

concentrations.  These estimates are reported in my book “Fluid Dynamics of Viscoelastic

Liquids.”  They are consistent with the notion of a supercritical shock transition at Uc=c.

Another striking phenomenon which appears to be associated with a supercritical

transition is delayed die swell.  It is well known that polymeric liquid will swell when extruded

from small diameter pipes.  The swelling can be very large, four, even five times the diameter of

the jet.  This swelling is still not well understood even when there is no delay.  Joseph, Matta and

Chen [1987] have carried out experiments on 19 different polymer solutions.  They found that

there is a critical value of the extrusion velocity Uc such that when U<Uc, the swell occurs at the

exit, but when U>Uc the swell is delayed, as in Figure 3.  If U is taken as the centerline velocity

in the pipe, then the transition is always supercritical with Uc>c.  The length of the delay

increases with U.  The velocity in the jet after the swell of jet has fully swelled is subcritical

Uf<U where Uf is the final U.  This is something like a hydraulic jump with supercritical flow

ahead of the delay and subcritical flow behind it.

Figure 3 Delayed die swell.

Yoo and Joseph [1985] studied Poiseuille flow of an upper convected Maxwell model

through a plane channel.  Ahrens, Yoo and Joseph [1987] studied the same problem in a round

pipe.  In both cases, we get a hyperbolic region of flow in the center of the pipe when the
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centerline velocity Um, equal to 2U in the Maxwell model, is greater than the wave speed c.  This

gives theoretical support to the idea that delayed die swell is a supercritical phenomenon.

There is a marked difference between the shape of the swell when it is delayed between

different polymer solutions.  The shape seems to correlate with a relaxation time

λ = ~µ /Gc (2)

where ~µ  is the zero shear rate viscosity and Gc is the rigidity.  We get Gc from measuring c

c2 = Gc/ρ . (3)

When λ is large, say λ≥0(10–3 sec), the delay is sharp, as in Figure 3.  When the relaxation times

are small, λ≤0(10–4 sec), the delay is smoothed; in the extreme cases it is difficult to see that the

swell is actually delayed.

We can say the Newtonian fluids are fluids with very large values of λ.  In the case of

delayed die swell, the smoothing of the swell is probably associated by the effect of smoothing

due to an effective viscosity which arises from rapidly relaxing modes which have already

relaxed when the delayed swell commences.  Very viscous liquids always exhibit relaxation or

non-Newtonian effects because even though the relaxation is fast, there is so much to relax.
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In Figure 4, we plotted the critical Mach number

Mc = 2Uc/c

against the diameter of the pipe.  In all cases Mc≥1, nearly.  The value Mc=1 seems to be some

form of asymptote for large values of the pipe diameter d.  We do not understand why different

fluids have such different Mc vs. d curves.  We have thought about the consequences of shear

thinning, which are important for some of the test liquids, in trying to collapse the experimental

curves for different liquids into one curve, but we have not  been successful.
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Delvaux and Crochet [1989] have done a numerical study of delayed die swell in a plane

jet using an Oldroyd B model, the upper convected Maxwell model plus a very small perturbing

Newtonian viscosity µ such that µ/(µ+η)=0.05.  The results of their calculation are very

interesting.  They confirm the conjectures of Joseph, Matta and Chen [1987] which have been

expounded, and introduce some new understandings.  The main new result can be described as

“the breakout of the region of the hyperbolic vorticity.”  At small supercritical values of the

velocity (Mach numbers not too greatly in excess of one) the hyperbolic region extends slightly

downstream into the jet but does not touch the jet boundary, as can be seen in panel (a) and (b) of

Figure 5.

As the velocity increases, more and more of the jet is consumed by the hyperbolic region.

At a certain velocity, between panel (b) and (c) of Figure 5, the hyperbolic region first touches

the jet boundary, then consumes more and more of the jet boundary.  Evidently the change in the

curvature of the jet is associated with the breakout of the hyperbolic region.  This explains why

the delay is not observed at small supercritical values of the velocity but only at larger

postcritical breakout values.  It would be good if we could find a way to explain the way the

delay depends on the jet diameter.

Figure 5 (after Delvaux and Crochet, 1989).  Jet profile and hyperbolic regions of vorticity
under different conditions in a plane jet of an Oldroyd B fluid with a very small
Newtonian viscosity.  (a) (M, R,W)=(2.3, 13.5, 0.39); (b) (2.9, 17, 0.49); (c) (4.1,
29.9, 0.87), (d) (5.1, 34.6, 1)

2. CONCEPTUAL IDEAS

Nonlinear constitutive modeling is a jungle.  The possible responses of the material to

stresses are too complicated to describe by one explicit expression.  General expressions are too

abstract to be of direct use and are always insufficiently general to describe everything.

Linearizing around rest is good because many different models collapse to one.  The nonlinear
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parameters go away.  Moreover, the elasticity of liquids is preeminently associated with

propagation of small amplitude waves into rest.

We start with Boltzmann’s expression for the extra stress ττττ which has been generalized to

contain a Newtonian term

ττττ = 2µD [u(x, t)] + 2��
0 

∞
  G(s)D[u(x, t–s)]ds (6)

where u is the velocity, D is the symmetric part of grad u and G(s) is positive, bounded and

monotonically decreasing to zero.  The actual stress T=–p1+ττττ differs from ττττ by a “pressure” p.

Equation (6) is the most general linear functional of grad u in a fluid.  To name a fluid, we need a

Newtonian viscosity µ and a shear relaxation modulus G(s).  We get Jeffreys’ model from (6)

when we write G(s)=
η
λ   exp (–s/λ) and Jeffreys’ model reduces to Maxwell’s if also µ=0.

Now we consider viscosity.  In steady flow, u is independent of t and comes out of the

integral in (6).  We get

ττττ = 2~µ D[u(x)]

where ~µ =µ+η is the static or zero shear viscosity and η =��
0 

∞
G(s)ds , the area under G(s), is the

elastic viscosity.  We have a viscosity inequality ~µ ≥η with equality when there is no Newtonian

viscosity µ=0.

Now we consider elasticity µ=0, writing

D[u(x, t–s)] = – 
∂
∂s  E [ξξξξ(x, t–s)]
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where ξξξξ is a displacement and E is the infinitesimal strain.  If it were possible to make a step in

strain without flow, and it isn’t possible, we would have D[u(x, t)] = E0(x)δ(t) for Dirac δ.  Then,

from (6), with µ=0,

ττττ = 2G(t) E0(x)

and you can see why G(t) is called the stress relaxation function and G(0) the rigidity or shear

modulus.  Another way to see elasticity with µ=0 is to write

ττττ = 2��
0 

∞
  – 
∂
∂s  {G(s)E [ξ ξ ξ ξ (x, t–s)]}ds + 2��

0 

∞
  G´(s)E [ξ ξ ξ ξ (x, t–s)] ds . (7)

Now we can suppose that G(s) decays ever so slowly so that the second integral will tend to zero

while the first gives rise to linear elasticity for an incompressible solid

ττττ = 2G(0) E [(ξξξξ (x, t)]. (8)

Now we restore the Newtonian viscosity and we note that this viscosity smooths

discontinuities.  For example, in the problem of the suddenly accelerated plate, the boundary at

y=0 below a semi-infinite plate is suddenly put into motion, sliding parallel to itself with a

uniform speed.  If µ=0, this problem is governed by a telegraph equation.  The news of the

change in the boundary value from zero to constant velocity propagates into the interior by a

damped wave with a velocity c= G(0)/ρ .  The amplitude of the velocity shock decays

exponentially.  A short while after the wave passes, the solution at the given y looks diffusive.  If

µ≠0, and is small, a sharp front cannot propagate.  Instead we get a shock layer whose thickness

is proportional to µy/~µ  and the solution, as in the Newtonian fluid, is felt instantly

everywhere.  We get a diffusive signal plus a wave.  The wave could be dominant in the

dynamics if µ is small.
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Actually diffusion is impossible because it requires that a pulse initiated at any point be

felt instantly everywhere.  This same defect hold for all models with µ≠0, like Jeffreys’.

Propagation should proceed as waves.

Poisson, Maxwell, Poynting and others thought that µ=0 ultimately.  It’s all a matter of

time scales.  Short range forces between molecules of a liquid give rise to weak clusters of

molecules which resist fast deformations elastically, then relax.  Liquids are closer to solids than

to gases.  Liquid molecules do not bounce around with a mean free path, they move

cooperatively.

So what is the difference between two liquids with the same η, one appearing viscous

(Newtonian) and the other elastic?  Maxwell thought that viscous liquids were actually elastic,

with high rigidity and a single fast time of relaxation.  To fix his idea in your mind, we compare

two liquids with the same viscosity η, satisfying Maxwell’s model with G(s)=G(0) exp(–s/λ),

G(0)=η/λ.  To have the same η the Newtonian liquid would have a relatively large G(0) and a

small time λ of relaxation.  The trouble with Maxwell’s model, if not his idea, is that a single

time of relaxation is against experiments which can never be made to fit a single time of

relaxation.

There are many different times of relaxation.  Experiments indicate that many liquids

respond to high frequency ultrasound like a solid organic glass with

G(0) ~ 109Pa, c= G(0)/ρ  ~ 105 cm/sec. (9)

This type of estimation is valid for a huge range of liquids, from olive oil to high molecular

weight silicon oils.  With this time of relaxation and such a high rigidity, all the liquids would

look Newtonian, with t much greater than ~µ /G(0), which is of the order of 10–10 sec. in olive oil,

and is perhaps 10–6 in some high viscosity silicon oils.  In fact, we see much longer lasting

responses which come about because there are different times of relaxation.  Small molecules
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relax rapidly, giving rise to large rigidity G(0) and fast speed.  Large molecules and polymers

relax slowly, giving rise to a smaller effective rigidity Gµ(0), effective viscosity µ and slow speed

c=cµ= Gµ(0)/ρ  . (10)

To get this firmly in mind, we can think of a kernel with values like those given by (9),

sketched in Figure 6.

Figure 6 G(s), fast relaxation (say 10–10 sec) followed by a slow relaxation (say 10–4 sec).

We may inquire if at t>>10–10 sec the relaxed fast modes have a dynamical effect.  Yes, they

give rise to an effective viscosity.  We may as well collapse the glassy mode into a one-sided

delta function µδ(s) where µ=G(0)λ1, or some fraction of this.  This is our effective viscosity and

our construction shows that is not unique.  This is a very interesting concept, but it is not

amenable to experiments that we know.

It is useful to define a time unit in terms of the slowest relaxation, say ~µ /Gc.  This gives

rise to an internal clock, with a material time defined by the slowest relaxation.  This time may

be slow or fast on the external clock.  To get this idea, think of the analog for the transport of

heat.  Heat is transported in solids by fast waves.  The fastest wave is associated with electrons

with relaxation times of 10–13 sec, then by lattice waves (phonons) with relaxation times of 10–
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11 sec.  Both times are surpassingly short on our clock.  However, at 10–13 sec, the electrons have

all relaxed (and they give rise to diffusion) whilst the phonons have not begun to relax.  Of

course, it’s more interesting when the slow relaxation is not too fast on our clock, as is true for

viscoelastic fluids.

The notion of an external and internal clock is an appealing idea for expressing the

difference between different theories of fading memory.  Some theories, like Maxwell’s and the

more mathematical one by Coleman and Noll [1960] use an external clock; in rapid deformations

the fluid responds elastically; in slow deformations the response is viscous.  Fast and slow are

measured in our time, on the external clock.  Such theories rule out transient Newtonian

responses.  Models with µ≠0, like Jeffreys’, or the more mathematical one by Saut and Joseph

[1983], are disallowed.  To get µ≠0 back in, even though ultimately µ=0, we need an effective µ,

associated with an internal clock.

3. MATHEMATICAL THEORY

When the fluid is elastic the governing equations are partly hyperbolic.  The hyperbolic

theory makes sense when the Newtonian viscosity is zero or small relative to the static viscosity
~µ .  For very fast deformations in which the fluid responds momentarily like a glass, the

equations always exhibit properties of hyperbolic response, waves and change of type.  However,

the glassy response takes place in times too short to notice.  Hence, the hyperbolic theory is not

useful where it is exact.  The hyperbolic theory is useful when we get an elastic response at times

we read on our clock, in the domain of the effective theory.  Hence, the hyperbolic theory is

useful where it is not exact.

Most of the mathematical work has been done with fluids like Maxwell’s and for plane

flows.  These problems are governed by six quasilinear equations in six unknowns.  The

unknowns are two velocity components, three components of the stress, and a pressure.  The
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continuity equation, two momentum equations and three equations for the stress govern the

evolution of the six variables.  The stress equations are like Maxwell’s

λ
�
�
�

�
�
�∂ττττ

∂t+u• ττττ +τΩτΩτΩτΩ–ΩτΩτΩτΩτ–a(Dττττ+ττττD)   = 2ηD + l

where D is the symmetric part and ΩΩΩΩ the antisymmetric part of u, –1≤a≤1 and l are lower order

terms, algebraic in the system variables.  This system may be analyzed for type in the usual way.

We get a 6th order system and it factors into three quadratic roots.  Two of the roots are

imaginary so that the system is not hyperbolic.  The streamlines are characteristic, with double

roots so that the system is not strictly hyperbolic.  The third quadratic factor depends on the

unknown solution, algebraically, and it can be real or complex, depending on the solution.  We

say that such a solution with mixed roots is of composite type.  Some variables are elliptic, some

are hyperbolic.

It turns out that the pair of roots which depend on the unknown solution and can change

type are associated with the vorticity equation, a second order nonlinear PDE.  This equation is

either elliptic or it is hyperbolic, depending on the solution.  It is not of composite type, but is

classical, like the equation for the potential in gas dynamics.

We can think of the unsteady vorticity equation and the steady vorticity equation.  The

analysis of the two has greatly different consequences.  The unsteady equation is ill-posed when

it is elliptic and well-posed when it is hyperbolic.  Ill-posed problems are catastrophically

unstable to short waves, with growth rates which go to infinity with the wave number.  The

conditions on the stress which lead to ill-posed problems can be determined by the method of

frozen coefficients, as was first done by Rutkevich [1969].  It turns out that the Maxwell models

with a=±1 cannot be ill-posed on smooth solutions, but the other models do become ill-posed for

certain flows.
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The problem of change of type in steady flow is different.  The vorticity in steady flow

can be of mixed type with elliptic and hyperbolic regions, as in transonic flow.  The physical

implications of these mixed “transonic” fields are not yet perfectly understood, though many

examples have been calculated.

There are many models, other than those like Maxwell’s, in which vorticity is the key

variable.  It is the only variable which is either strictly elliptic or strictly hyperbolic.  The stream

function satisfies Laplace’s equation, the velocity and the stresses are of composite type.  The

stresses do not satisfy a hyperbolic equation and it is wrong to speak of the propagation of stress

waves.

There are other models in which the vorticity is not the key variable.  However, when

these models are linearized around rest, one finds again that the steady vorticity equation is either

elliptic or hyperbolic, and the unsteady vorticity equation is always hyperbolic.  Hence it is

precisely waves of vorticity which propagate into rest.

Figure 7 Mach wedge for the vorticity, tan α = (1–M2)–1/2.

The mathematical consequences of composite roots are clearly evident in the recent

solutions of L. E. Fraenkel [1987], H. Hu [1990], which are reviewed in Joseph’s [1990] book, of

the problem of linearized supercritical flow over a flat plate.  The linearization here is around the

uniform flow which exists at infinity, as in Oseen’s problem for the Navier-Stokes equation.
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Fraenkel’s solution shows that there is a Mach wedge of vorticity ζ centered on the leading edge

of the plate.  The vorticity in front of this wedge is zero and it is not zero behind the wedge [see

Figure 7].  Surprisingly, the vorticity jumps from zero to infinity at the wedge, but the singularity

is integrable.  We have rotational flow behind the shock and irrotational flow in front of the

shock.  The stream function satisfies 2Ψ=–ζ where ζ=0 in front of the shock.  Therefore, we

may write Ψ=Ψ1+Ψ2, 2Ψ2=–ζ, 2Ψ1=0.  To satisfy the boundary conditions on the plate, we

must have a nonzero potential field Ψ1.  In fact Ψ1 satisfies a Dirichlet problem for the region

outside a strip on the positive x axis.

The potential flow decays to uniform flow as one moves upstream, but the delay is slow.

There is no upstream influence in the fully hyperbolic flow of a gas over a flat plate.  The

upstream influence of the flat plate in the flow of a Newtonian fluid is almost negligible.  The

persistence of Ψ1 is a consequence of its ellipticity, ultimately to the fact that the first order

system is of composite type.  This type of solution may be new in mathematical physics.

The velocity and the stresses decompose into harmonic and vortical parts.  Hence these

fields are all of composite type.  Only the vorticity is pure, strictly hyperbolic in the linearized

problem of flow past bodies.  The velocity and stresses are continuous across the shock.  The

normal derivative of the velocity, the normal and shear stress are also continuous, but the

tangential derivative of the tangential components of velocity and stress are discontinuous.  The

elliptic component of our composite system is associated with a huge upstream influence.

Similar considerations enter into the dynamics of flow over small cylinders which we

discussed in §1 of this paper.  Delvaux and Crochet [1990] gave a numerical solution of the

problem of flow over a cylinder using the constitutive equation of an upper convected Maxwell

model.  This solution is reviewed in the book of Joseph [1990].  Their solution is fully nonlinear

and it supports the notion that the anomalous heat transport and drag observed in the experiments

are associated with a change of type.  A different numerical solution based on the algorithm
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SIMPLER has been given by Hu and Joseph [1990] and it agrees with the numerical solution of

Delvaux and Crochet.  Aspects of the solution of Hu and Joseph are discussed below.

In the present problem we wish to evaluate the effect of viscoelasticity upon the heat

transfer and drag. An upper convected Maxwell model is used. We assume that the viscous

heating is negligible and that temperature differences in the flow are small and such that the fluid

properties (ρ, λ and η) do not change. Then the temperature field is decoupled from the velocity

field, the energy equation is simply

cp ρ ( u . ) T = κ ∆ T (11)

where T is the temperature, cp the heat capacity and κ the thermal conductivity.

We shall scale length with the diameter of the cylinder d, velocity with the free stream

velocity U, pressure with ρU2 and stress with ηU/d, and use the same symbol for the

dimensional and dimensionless quantities. In the dimensionless form the equations of the

momentum, the constitutive equation and the temperature are

( u . ) u = − p + 
1
←   ∆u + 

1
←   .ττττE , (12)

W[(u . ) (ττττE + ττττN ) − u (ττττE + ττττN ) −    (ττττE + ττττN ) uT ]+ ττττE  = 0, (13)

← Pr ( u . ) T = ∆ T (14)

where for the convenience of numerical treatment the extra stress is split into two parts ττττ = ττττN +

ττττE with ττττN = 2η D being the pseudo-Newtonian part and ττττE being the part due to the elasticity.

The dimensionless temperature is taken as (T−T∞)/T∞ (T∞ is the temperature of the coming

fluid). In these equations the non-dimensional parameters ← (Reynolds number), W

(Weissenberg number), Pr (Prandtl number) are defined as
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← =  ρUd/η  ,

W  =  λU/d  ,

Pr  =  cpρ/κ  . (15)

It is helpful to introduce another two non-dimensional parameters, the viscoelastic Mach number

M and the elasticity number E which are defined by

M = W←  = ← E   = 
U
c    ,

E  = 
W
←  =  

ηλ
ρd2  , (16)

where

c = 
η
λρ  (17) 

is the speed of shear waves in a Maxwell fluid. In the study of change of type the Mach number

M is an essential parameter. The elasticity number E depends only on the fluid properties and the

flow geometry. In our computation we choose the pair (←,E) as the independent parameters, and

simulate the flow in experiments by keeping E fixed and adjusting ←.

In the computation we solve for the velocities, the pressure and the stresses in each

iteration. Since the temperature field does not effect the velocity, the heat equation is solved after

the iteration converges. Some additional quantities are also calculated.  We evaluate the stream

function ψ and the vorticity ω which are defined by

 ur = − 
∂ψ
r∂θ  ,  uθ = 

∂ψ
∂r   , (18)

 ω = 
∂uθ
∂r   + 

uθ
r   − 

∂ur
r∂θ  . (19)
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From the computed values of the pressure and the pseudo-Newtonian stresses on the

surface of the cylinder it is easy to obtain the drag force acting on the cylinder. The dimensional

drag force per unit length on the cylinder is found to be

Fx = ρU2 d ∫   
0

    
π
  [ p cosθ + 

1
←  τNrθ sinθ]

r=d/2 dθ , (20)

which has two contributions, one from the pressure and the other from the pseudo-Newtonian

shear stress.  In writing (20) we noted that the contribution to the drag of the elastic part of the

extra stress vanishes because ττττErθ =0 on the surface of the cylinder. The drag coefficient is given

by

CD = 
Fx

ρ
2U2d

  (21)

In our computation of heat transfer, we prescribe the upstream temperature as T∞ (in

dimensionless form T=0), and the temperature on the cylinder surface as T0=2T∞ ( in

dimensionless form T=1). The dimensional average heat flux from the cylinder to the

surrounding fluid is

Q= 
1
π ∫  

0

π
 [κ
∂T
∂r  ]

r=d/2 dθ . (22)

Thus the Nusselt number which characterizes the heat transfer from the cylinder to the

surrounding fluid is defined as

Nu = 
Qd

κ(T0−T∞)  = 
Qd
κT∞

  . (23)

We next keep the flow fixed at a certain Reynolds number and vary the elasticity number,

thus we can look at the effect of the elasticity of the fluid on the flow. Figure 8 presents the

streamlines in the neighborhood of the cylinder for flows at ←=10 and E varying from 0 to 1.0.

(a) and (b) are almost identical. Starting from (c) with M greater than one, we see an increasingly
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larger downstream shift of the streamlines, at the same time there is a relatively small upstream

shift. The streamline pattern with viscoelastic fluids of large elasticity number differs

significantly from that with Newtonian fluids. The large distortion of the streamlines creates a

wide region near the cylinder where the velocity is very low, thus affects the total drag on the

cylinder and the heat transfer from the cylinder to the surrounding fluid as we will see later.

Figure 8 Streamlines in the neighborhood of the cylinder for the flow of the same Reynolds
number ←=10 and different elasticity number E. (a) E=0 (M=0). (b) E=0.01
(M=1.0). (c) E=0.1 (M=3.16). (d) E=0.25 (M=5.0). (e) E=0.5 (M=7.07). (f) E=1.0
(M=10). In the figures the values of the incoming streamlines, starting from the
bottom,  are  0.01, 0.05, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2 and 2.4
respectively.

Figure 8 shows the isovorticity lines at ←=10 and E varying from 0 to 1.0. (a) is the

familiar Newtonian case, where the isovorticity lines are swept downstream by the flow and the

high vorticity region is at the front shoulder of the cylinder surface where the vorticity is being

created. (b) is basically the same as (a) except at the front of the cylinder where the isovorticity

lines are closer together signaling a sharper change of vorticity in this region. In (c), at a Mach

number M=3.16, we see that the isovorticity lines jam together at the front of the cylinder thus

creating a vorticity shock, like a blunt body shock in gas dynamics. As the elasticity number

increases, this shock still exists and moves slightly upstream. In Figure 8(d) to 8(f), the picture of

the isovorticity lines for viscoelastic fluids with large relaxation time is drastically different from

that of Newtonian fluids. Besides the high vorticity zone on the front shoulder of the cylinder

surface which occurs already in the Newtonian case, there exists a second high vorticity region

which starts to build up and shifts away from the cylinder surface as the elasticity number

increases. We find that the maximum values of the vorticity in this second region are even higher

than the maximum values of the vorticity on the cylinder surface, which suggests generation of

the vorticity away from the cylinder surface or behind the shock. We still do not understand the

physical consequences of this build up. The existence of this second high vorticity region away
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from the cylinder surface was also observed in the work of Delvaux and Crochet [1990]; they

found a local minimum and maximum in the vorticity plot along a path just above the cylinder

(θ=π/2). The dashed lines in Figure 9 indicate the angles, β=tan-1 1
1-M2

  , of vorticity shocks

predicted in the linear theory in which the governing equations are linearized around the uniform

income flow. Close to the cylinder, the vorticity shock is strong. The nonlinearity makes the

shock curve around the cylinder. As E increases, the nonlinear region also increases due to the

large stagnant region around the cylinder.  Since the linear theory is valid far away from the

cylinder, the vorticity shock, if it exists, should eventually stretch with the angle predicted in the

linear theory. But because the the shock is weak and the numerical space discretization is usually

coarse far away from the cylinder, it is very hard to capture this part of the shock numerically.

Figure 9 Isovorticity lines for the flow of the same Reynolds number ←=10 and different
elasticity number E. (a) E=0 (M=0). (b) E=0.01 (M=1.0). (c) E=0.1 (M=3.16). (d)
E=0.25 (M=5.0). (e) E=0.5 (M=7.07). (f) E=1.0 (M=10). The dashed lines in the
figures indicate the angle of the vorticity shocks predicted in the linearized theory.

The velocity component u in the direction of the free stream is presented in Figure 10 for

←=10 and E=0, 0.01, 0.1, 0.25, 0.5, 1.0. Figure 10(a) gives the profile of u ahead of the cylinder

along the ray θ=0.  10(b) gives the profile just above the cylinder along the ray θ=π/2. It is clear

that for the flows of larger E, there is a region with small velocity close to the cylinder. This

stagnant region grows with E. The diameter of this region has increased to about 3 times the

cylinder diameter when E=1 as seen in Figure 10(b). Figure 10(a) also shows that there is a

strong upstream influence for the viscoelastic flow with large E. In  10(b) we notice a velocity

over-shoot in the region above the cylinder. This over-shoot exists for all cases with M>1 and

shifts away from the cylinder as E increases. The slope of the velocity profile in (b) is consistent

with the vorticity (derivatives of the velocity) distribution above the cylinder, and indicates a

second high vorticity region away from the cylinder surface.



Problems associated with the elasticity of liquids
D.D. Joseph

27

Numerical integration is carried out for (20) on the cylinder surface to get the drag force

acting on the cylinder. The drag coefficient CD is plotted in Figure 11 as a function of ← for four

values of E= 0, 0.01, 0.1 and 1. The results for E=0, 0.01 and 0.1 are obtained using mesh No.2.

For E=1 the results using the other two meshes are also presented. We see that the mesh

refinement has little influence on the drag coefficient for the range of parameters in our

computation. In the figure we indicated the critical values of ← at which M=1 for different E’s

(for E=1, ←=1; E=0.1, ←=3.16 and E=0.01, ←=0.1). As ← increases beyond these critical

values, the drag coefficient curves for viscoelastic flows begin to separate from the curve for

Newtonian flow. The deviation is more evident for flows with large E. In the region of

supercritical flow, M>1, we see that the effect of the viscoelasticity is to increase the drag. This is

consistent with the observation in the streamline plot Figure 8, which shows a nearly stagnant

region around the cylinder. This stagnant region effectively increases the size of the cylinder,

thus increases the total drag.

Figure 10 Effects of viscoelasticity on the velocity profile. The results are obtained with
←=10 and E = 0, 0.01, 0.1, 0.25, 0.5, 1. u is the velocity component in the direction
of the free stream. (a) u versus r along the path θ=0, ahead of the cylinder. (b) u
versus r along the path θ=π/2, just above the cylinder.



Problems associated with the elasticity of liquids
D.D. Joseph

28

100101.1
1

10

100

R

D
ra

g 
co

ef
fic

ie
nt

E=1

E=0.1

E=0.01
E=0

M=1 for E=1

M=1 for E=0.1

M=1 for E=0.01

Mesh 1

Mesh 3

Mesh 2

Figure 11 Drag coefficient CD versus Reynolds number ← for elasticity number E=0
(Newtonian), 0.01, 0.1 and 1.0. Results for solid lines are obtained using mesh
No.2. For E=1, the results obtained by the other two meshes are also plotted. The
dashed lines indicate the values of Reynolds number at which the viscoelastic Mach
number M=1.

The formula for the drag force acting on the cylinder (20) shows that the total drag can be

separated into two parts, one part due to the pressure distribution around the cylinder and the

other part due to the shear stress on the cylinder surface. These two contributions of the drag are

plotted in Figure 12.  In the figure, the drag coefficients of a viscoelastic case E=0.1 is compared
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with those of the Newtonian case E=0. In the Newtonian case, when ← is small, the drag

coefficients due to pressure and due to shear stress are equal, as is well known. The pressure drag

coefficient increases with ← because of the wake generated behind the cylinder. This is

especially true in the viscoelastic case, where the drag due to pressure can be much larger than

the drag due to shear stress, as we see in the figure, since we have larger wakes in viscoelastic

cases. The nearly stagnant region around the cylinder is also responsible for the reduction of the

drag due to the shear stress in viscoelastic flow.

Figure 13 presents graphs of the Nusselt number Nu versus ← for E=0, 0.01, 0.1 and 1 at

Pr=1 and Pr=10. We checked the results for E=1 with three meshes. The results are almost

identical. Again the values of ← at which M=1 are indicated in the figure with dashed lines. For

← less than these critical values, the Nusselt number for viscoelastic flow is the same as that for

Newtonian flow. For ← greater than the critical values, the Nusselt number deviates from the

Newtonian path and tends to an asymptotic value which does not depend on ←. This deviation is

more prominent for large E and Pr. We see that the effect of the viscoelasticity is to decrease the

Nusselt number, or to reduce the heat transfer from the cylinder to the surrounding fluid. This can

also be explained by the stagnant region which develops around the cylinder when the flow

becomes supercritical (M>1).
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Figure 12 Effect of the elasticity of the fluids on the drag due to pressure and the drag due to
shear stress on the cylinder surface.
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Figure 13 Nusselt number Nu versus Reynolds number ← for different elasticity numbers E=0
(Newtonian), 0.01, 0.1, 1.0, and at Prandtl number Pr=1 and 10. The dashed lines
indicate the values of Reynolds number at which the viscoelastic Mach number
M=1.

For the drag coefficient, the experiments of James and Acosta [6] were carried out on a

wire of diameter 0.005in. in solutions of Polyox WSR-301. The intrinsic viscosity of WSR-301

was [η]=9.6 g/100ml measured in the experiments.  We reproduced the data for concentration

φ=15.7, 30, 60, 119 and 226 ppmw in Figure 14. The shear wave speed for WSR-301 of
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concentration 50 ppm is about 2.48 cm/s, which is measured using a wave speed meter and listed

in the tables of Joseph [1990]. Using this wave speed, we can get the shear wave speeds for the

other concentrations from relation (5). Thus we estimate that elasticity numbers E=0.03 for the

set of data of 15.7 ppm, E=0.07 for 30 ppmw, E=0.13 for 60 ppm, E=0.3 for 119 ppm and E=0.6

for 226 ppm as indicated in Figure 14. These values are much larger, about 50 times larger, than

the values estimated in James and Gupta [1971].  As shown in Figure 14, the agreement is fair.

In the Nusselt number Figure 1 we have reproduced the experimental data for distilled

water and for Polyox WSR-301 of concentrations 26.2, 52.4, 119 and 226 ppmw with three wire

diameters, d=0.006in., 0.002in. and 0.001in. The elasticity numbers are similarly estimated and

indicated in the figures. The experimental value of Pr is not known exactly, for distilled water at

20°C the Prandtl number is about 7. Thus the numerical results plotted in lines are obtained with

Pr=7. Qualitatively, the numerical results show the same tendency of the experimental results.

The differences, we think, are due to many factors. Our estimation of the elasticity number is

rough, as we see from (33), a 10% error in the shear wave speed causes 20% difference in E. The

heat transfer experiments were carried out with a temperature difference varying from 9-33°C.

This temperature difference changes the viscosity and the shear wave speed of the solution, thus

causes differences in the E. Also our choice of Maxwell model with a single relaxation time to

characterize the fluid is certainly not optimal.



Problems associated with the elasticity of liquids
D.D. Joseph

33

100101.1
1

10

100
E=0
E=0.01

Distilled water
15.7 ppm, E=0.03
30 ppm, E=0.07
60 ppm, E=0.13
119 ppm, E=0.3
226 ppm, E=0.6

E=0.1
E=1

R

D
ra

g 
co

ef
fic

ie
nt

Figure 14 Comparison of the drag coefficient obtained by present computation (lines) with
those measured in experiments of James and Acosta [6] (dots). The elasticity
numbers for the experimental data are estimated using the shear wave speed as
described.
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