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Abstract. The density of incompressible fluids can vary with concentration φ and

temperature, but not with pressure. The velocity field u of such incompressible fluids is

not in general solenoidal, div u≠0. A conservation form for the left hand side of the

diffusion equation which differs from the usual substantial derivative of φ by the addition

of φ div u, is implied by requiring that the mass per unit total volume of one liquids in a

material volume is conserved in the absence of diffusion. The possibility that stresses

are induced by gradients of concentration and density in slow diffusion of

incompressible miscible liquids, as in the theory of Korteweg [1901] is considered. Such

stresses could be important in regions of high gradients giving rise to effects which can

mimic surface tension. The small but interesting history of thought about interfacial

tension between miscible liquids is collected here. The presence of a sharp interface in

the case of slow diffusion in rising bubbles and falling drops has been documented in

many experiments and in the experiments reported here. The shape of such interfaces

can scarcely be distinguished from the shapes of bubbles and drops of immiscible

liquids with surface tension. The usual description of interface problems for miscible

liquids with classical interface conditions but with zero interfacial tensions misses out on

slow diffusion on the one hand and gradient stresses on the other. The usual
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description of diffusion with div u=0 is also inexact, though it is a good approximation in

some cases.

1. Motivation and problem statement

In Figure 1 we have presented a sequence of photographs documenting the change in

the shape of a water bubble (ρ=1 gm/cc) as it rises in a container filled with glycerin

(ρ=1.2 gm/cc). Since water and glycerin are miscible we must admit that our

perceptions trick us and that our eyes do not resolve the diffusion layer of aqueous

glycerol in which the transition from pure glycerin to pure water must take place. The

shape of the water bubble we see, however, is not so different than what we might

expect to see in the case of a rising bubble or falling drop of one immiscible liquid in

another, provided that the immiscible liquids are otherwise similar, with the same

densities and viscosities and a small, but not zero, interfacial tension.

In Figure 2 we show a sequence of photographs of a molasses and water

mixture in glycerin. The densities are nearly matched, so that the bubble rises slowly.

In Figure 3 we show a sequence of photographs of a molasses drop falling in

glycerin. Diffusion is very slow. Even after vigorous mixing, it takes two days for the

small amount of molasses to dissolve completely in the glycerin. Is it possible to find a

pair of miscible liquids that mix, but mix so slowly that essentially no mixing has taken

place over the time of an experiment, or even a lifetime?

In Figure 4 we show some photographs of a dyed thermal plume taken by R.W.

Griffiths [1986].

The first question is to what extent can these drops, bubbles and plumes be

described as free surface problems with zero interfacial tension, and no diffusion. The

second question is if there are forces due to gradients of density and composition which
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are active in producing the shape of the interfaces we observe and if there are such

forces, how they may be modeled. The third question is when and how should diffusion

be entered into the dynamical description.

In figure 5 we show photographs of Koh and Leal [1990] of an unstable spherical

drop of 10000 cs Dow silicone oil in Pale 1000 oil.

Figure 1 Water bubbles rising in a column of glycerin. The photographs (a)
through (e) were taken at approximately two-second intervals with an
interval of 1 to 1-1/2 seconds between (a) and (b). (f) follows (d) after 40
seconds. The density ratio is 1.21 and the viscosity ratio is 69. The
water bubble appears to want to pull into a sphere even and especially
at the instant of injection. The spherical shape in (c) is nearly perfect.
However, there is always a rearward protrusion followed by an extruded
thread of water left behind as the bubble rises. A small “capillary bubble”
is visible on the water thread in (c) and (d). The sharp spherical interface
at the leading edge and the protruding tail at the trailing edge are
persistent. The drop shapes strongly resemble shapes of unstable
spherical drops with nonzero interfacial tension which were computed by
Koh and Leal [1989] (their figures 7 and 9), by Pozrikidis [1990] (his
figure 6) and observed by Koh and Leal [1990] (see figure 5 in this
report). The computed shapes for zero interfacial tension and no
diffusion always have intrusions near the trailing edge even when a
thread is ejected at the trailing edge. We have the impression that
glycerin has been entrained and possibly diffused in the bubble shown
in (e) and (f), as in the thermal drops studied by Griffiths [1986a].
(continued next 6 pages)
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Figure 2 A mixture of molasses and water in glycerin rises slowly. The density is nearly
matched. The essentially “static” configurations in (a) through (c) possibly
suggest action of capillary-like forces. Time on the clock is in seconds:
(a) 00.98, (b) 01.23, (c) 01.14, (d) 01.99, (e) 09.01, (f) 15.68 (continued next 2
pages)
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Figure 3 Molasses drops falling in glycerin. The fall is timed in seconds. Frictional
drag on the falling drop creates circulation. The drop eats the thread in
(a), (b), (c). In (d) a kind of spherical cap develops. In (e) and (f) a
second molasses drop is monitored. In (e) the tail of the drop is
breaking. It may break then reform. In (f) a small “capillary bubble” forms
on the molasses thread. (continued next 2 pages)
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Figure 4 Thermal plume of dyed liquid (Griffiths, 1986a). Similar pictures of

thermal plumes which resemble those shown in Figure 2 can be found in
Griffiths’ [1986b]. He considers, but rejects, the idea that interfacial
tension might play a role in the 22% discrepancy between the observed
rise velocity and the velocity predicted by Stokes’ law.
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Figure 5 (After Koh and Leal [1990]) Unstable spherical drop of 10000 cs Dow
silicone oil (µ=101 P, ρ=0.972 gm

cm3 ) in Pale 1000 oil (oxidized castor oil,

µ=391 P, ρ=1.021).
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2. History

The idea that there are capillary forces at work in the layer between miscible liquids

goes back at least to an 1871 report of J. Bosscha, cited in a paper of Korteweg [1901],

and reproduced here. Korteweg, in a footnote on the second page of his famous paper,

notes that

1. M. J. Bosscha, in particular, has published, in the proceedings of
the 30th of September and the 25th of November 1871 of the
Academy of Sciences of Amsterdam 1871/72, #3 and 5, some
observations on the very slow motion of a solution in water or in a
less concentrated solution; they seem to him to find their most
natural explanation in the existence of appreciable capillary forces
in the layer between the two liquids, miscible in all proportions.

Messieurs J.J. Thomson and H.F. Newall on the contrary attribute
to other causes similar phenomena that they have observed (See
pages 430 and 431 of their article “On the formation of vortex rings
by drops falling into liquids and allied phenomena” Proc. Roy. Soc.
39, 1885 p. 417).

Since the question does not seem to us to be resolved, we believe
it useful to publish an appendix to this paper of the French
translation of some extracts of the proceedings cited above and of
an unedited letter of M. Bosscha treating the same subject. As the
particular conditions in which the volume of these “Archives” were
published have forbidden us from asking M. Bosscha permission to
publish these extracts, we have communicated them without his
knowledge at our own responsibility, hoping as well that M.
Bosscha will excuse this indiscretion.

• • •
Appendix

Extract of a communication made by M. Bosscha
at the Academy of Sciences of Amsterdam,

in the session of 30 September 1871

A test tube, of which the bottom is stretched into a funnel with a
fine opening, is partly immersed in water which fills a large cylindrical
vessel. When the water in the tube reaches the same height as in the
water, one injects a crystal of a soluble substance in the water. The liquid
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contained in the tube then becomes specifically heavier than the
surrounding water and begins to flow in a thin thread. This liquid thread
exhibits all the details of a jet of ordinary water, except that the flow is
much slower so that one has no need for any artifice to observe directly all
the phenomena which accompany it. Some distance from the opening,
one sees bulges form themselves which more and more take the form of
drops, all of them linked by very thin liquid threads. Soon these threads
break and are pulled into the drops which henceforth fall freely. Because
of the great resistance which they meet in their fall the small drops thus
formed flatten; at the center they form themselves into skull caps,
concave on the bottom, which terminate by breaking in their turn, in such
a way that each drop is transformed into a ring which enlarges itself more
and more and disperses itself slowly, as much by the motion of the liquid
as by diffusion. It sometimes happens that a tight ring falls through the
already enlarged ring which preceded it; in these conditions a liquid film is
carried from the interior boundary of the last large ring (ac), which looks
like a known capillary surface, but which contracts itself until at the end
the two rings have formed only one.

 

According to the observations of the author, one can do this
experiment with any salt. The experiment works even when one lets flow a
less concentrated solution, as long as the difference in the birefringent
powers permits one to distinguish between them. If one makes use of a
tube of which the bottom is pulled into a fine point toward the interior, one
can, by suitably regulating the hydrostatic pressure, make a vertical jet of
the liquid from the cylindrical vessel climb in the tube; under these
conditions one can also observe separation into small drops, but it is
sometimes necessary to tap slightly against the glass to produce the
effect.
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From a theoretical point of view it seems important to do these
experiments with some liquids which combine themselves with a
considerable release of heat. I have been able to verify that sulphuric acid
and water, or a solution of caustic potash in dilute sulphuric acid tends
thus to assume a surface as small as possible, from this it results then
that capillary attractions are of an altogether different nature than
chemical attraction.

Extracts from a letter of M. Bosscha from 22 May, 1901

The phenomena which I have observed related to the slow flow of
one liquid into another, however slow the flow, remain nevertheless
phenomena of motion, and the states I have observed are always states
of motion. It is only by way of approximation that one can think of them as
states of equilibrium.

This is why I have always tried to claim some deep scruples that
capillary forces only produce the clearly defined forms which are taken by
the flowing liquid ….

But each time that I have repeated the experiment, in other
respects very simple, and that I saw the liquid thread give rise to local
bulges, as in an ordinary jet of water, and resolve themselves then into
small drops which finally become rings, my conviction became stronger
that capillary action must even play here an important role. What strikes
me especially was to see how of the two consecutive rings the higher,
smaller one falls through the lower, larger one, and carries clearly in its
motion a portion of interior rim of the other, so that between the larger ac
and small bd a film forms a surface of revolution from it, of which a
meridional can very well be the link of a chain.

I returned to this subject later in a discussion relative to the
agglutination of particles suspended in liquids. When this question
became the subject of one of the sessions of the Academy, I recall that
while I was occupying myself with the preceding experiments, I took note
of the remarkable experiments of M. Vogelsang on globulites (microscopic
drops suspended in a mixture of baum of Canada and carbon sulphide;
these drops consist of a supersaturated solution of dissolved sulphur in
carbon sulphide).

M. Vogelsang has described (Arch. Néerl., (1), 5, 166 etc.) the
motion of these drops in the liquids, motions such that they approach one
another until contact. An attractive action of these drops at appreciable
distance cannot be attributed to molecular attraction of the drops
themselves. In my opinion one is rather forced to search for a motive force
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in the liquid. It is thus that I thought to myself that each drop is a center of
concentration of sulphur, depleting sulphur from the liquid environment, so
that each drop will be surrounded by concentric layers in which the
percentage of sulphur in it diminishes with increasing radius. As long as
the sulphur poor hydrospheres of neighboring drops come into contact, if
there exists in reality a surface tension at the boundary of the two layers
of unequal concentrations, it is necessary that the tendency of this surface
of separation to become a minimum, brings about the fusion of the layers;
this will be caused because some new layers of more packed drops come
into contact until at the end the drops touch themselves.

I have thought that there is here a means to explain in an
analogous fashion the tendency to agglutination that one can observe with
small solid particles suspended in a liquid. These solid particles can more
particularly concentrate around themselves certain elements of the liquid
in which they are suspended.

The notion that capillary forces are responsible for the phenomena observed by

Bosscha is not shared by J.J. Thomson and H.F. Newall [1885] who appear to suggest

that such phenomena, which they observed independently and apparently without

knowledge of Bosscha’s work, are associated with instabilities of motion, and not with

capillarity. It is refreshing to see the pictures which they draw to represent what they

observe, at a time before the taking of photographs of these things was a common

practice. Their sketched pictures are art in science, emphasizing the scientifically

relevant details, suppressing the others.

J.J. Thomson and H.F. Newall, On the formation of vortex rings by drops falling into
liquids, and some allied phenomena, Proc. Roy. Soc. (London) 39 (1885)

If a tube be drawn out into a fine capillary and be filled with
sulphuric acid, and held so that its capillary end is just beneath the
surface of a column of water, a fine stream of acid flows down; and on it
marked beadings appear. Each bead gives rise to a vortex ring, and the
rings so formed behave in characteristic manner (fig. 9).Here there seems
strong evidence of a tension between the acid and the water, but the
appearances are to be explained by differences of velocity in the stream,
brought about by motion in the column of water, or by vibrations
communicated to the capillary tube. If the experiment be made with all
care to avoid vibration, the stream falls unbroken through a column of 8
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inches of water: whilst if a tap be given to the acid tube a break occurs in
the stream, in consequence of a momentary stop in the flow of acid, a
small bead is formed, and from it a ring. If no care is taken to avoid
vibration the beads will follow one another very rapidly. It may be objected
that if there existed a surface tension, it would only be when disturbances
were communicated that beading would appear. But in such a case, the
resolution into drops would be complete, and small spherules would be
formed between the larger drops. In fact, however, the connexions
between the beadings are fine filaments of acid, so that the beadings are
never really separated from one another. We have, moreover, convinced
ourselves of the correctness of this explanation, by allowing a stream of
cold water with lycopodium powder to flow from a fine tube into a column
of slightly warm water; similar cessations in flow and formations of
beadings may be observed; the rings are not well formed, but this is to be
expected, for the conditions are not nearly so favourable.

Figure 6 (their Figure 9)

In fact the citation does not really tell us what might be the real cause of the

capillary-like phenomena seen in their sketch. A theory in which stresses due to
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gradients of concentration and density are allowed, say the Korteweg’s theory, could

conceivably give rise both to the capillary phenomena and the deviations from classical

capillarity which are observed. Perhaps it is just this thought which motivated Korteweg

to remark that “… the question does not seem to us to be resolved …”.

3. Dynamic and instantaneous interfacial tension

H. Freundlich in his [1926] treatise on colloid and capillary chemistry in discussing the

methods of measuring interfacial tension between immiscible liquids and the theory of

the phenomenon, notes that

…, there is little new to be said …. We have only to remember here we
are in the end always dealing with solutions. For the one liquid will always
be soluble in the other to some degree, however small. Hence the
dynamic tension of liquids, when first brought into contact, is to be
distinguished from the static tension, when the two liquids are mutually
saturated. Not only do liquids which are not miscible in all proportions
have a mutual surface tension; even two completely miscible liquids,
before they have united to form one phase, exhibit a dynamic interfacial
tension. For we get by careful overlaying of any two liquids a definite
meniscus, a jet of one liquid may be generated in another, and so on. The
tension decreases rapidly during the process of solution, and becomes
zero as soon as the two liquids have mixed completely.

Freundlich [1926] cites the measurements of the dynamic tension by Quinke

[1902] of ethyl alcohol in contact with aqueous salt solutions (sulphates of zinc, copper,

etc.). These two liquids are miscible in all proportions. Quinke used the method of drop

weight to make his measurements. In these liquids the drop, as it emerges, does not

pass into streaks, but keeps at first its shape. He found values between 0.8 and 3

dyne/cm.

Smith, Van den Ven and Mason [1981] have reported a maximum value of

1 dyne/cm for the force corresponding to a “transient interfacial tension” between a

2000 cs and a 1 cs silicone oil. According to the authors, these are two mutually soluble
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liquids whose interdiffusion is sufficiently slow to enable this measurement to be made.

They note that

In principle there exists between any two separated fluid phases
which have a chemical potential difference, an instantaneous interfacial
tension which may or may not persist with time. We are unaware of
reports in the literature of measurements of interfacial tension between
two miscible liquids.

It is clear that in the case of two liquids miscible in all proportions we are not

dealing with an equilibrium situation; there is no equilibrium tension. Rather, we are

looking at stress effects due to differences in density and composition and possibly

even temperature which influence the positions occupied by interdiffusing fluids. One

could imagine that when the gradients of composition are large, as in the boundary

layer between two regions of different composition suddenly put into contact, that these

stresses give rise to an effect which might be called “transient interfacial tension.”

Smith, et al used the Wilhelmy plate method to measure the tension as a

function of time, which decreases with time because of diffusion. A solid sample

experiences a capillary force P due to the deformed interface which is given by

P = 2(l +d) S*cosθ (1)

where l is the length of the plate,d its thickness, S* is interfacial tension and θ the

apparent contact angle. Their experimental result is summarized in their figure 1,

reproduced below in Figure 7.
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Figure 7 (after Smith et al.)

They note that a theoretical description of the capillary force per unit length

F=P/2(l +d) is possible only if the variation of S* and θ with time are known. They

measure F(t) in their Fig. 1, but S*(t) and θ(t) are unknown.

Smith, Van den Ven and Mason [1981] present an expression for the chemical

potential based on expressions for the free energy in a nonuniform system given by van

der Waals [1893] and Cahn and Hilliard [1954] writing

S* ∝  
�
�
�

–x0

x0

�
�
�

�
�
	∂φ

∂x  
2
 dx (2)

where S* is the interfacial tension, φ is the local composition and x0 is the “interfacial

region.” The composition is assumed to satisfy a diffusion equation φt=Dφxx with



Fluid dynamics of two miscible liquids … D.D.Joseph

21

diffusion constant D. If at t=0+, φ=φ+ for x>0 and φ– for x<0 and thereafter φ is

continuous at x=0, then

φ(x,t) = [φ+–φ–]f(η) , f(η) = erfc η , η = x/2 Dt 

and S* is proportional to

[φ+–φ–]2 
��
�

–x0

x0
4
π   exp (–2η2) 

�
�
�

�
�
	∂η

∂x  
2
 dx  = 

2[φ+–φ–]2

π Dt  ��

–η0

η0
  exp (–2η2) dη. (3)

At small times the breadth of the diffusion layer scales with Dt . Then the gradient

theory (2) leads to a square root singularity for the dynamic tension. A finite tension as

t∅ 0 then implies θ∅ π/2. Figure 7(b) shows that F decays exponentially and does not

follow the t-1/2 decay that would be required by F=S* cosθ if θ were constant. It is

noteworthy that though the slopes in Figure 7(b) vary between 0.6 to 1.4, the

extrapolation to zero time does not vary and leads reproducibly to a force of ~1dyn/cm.

They conclude that “… present experiments do indeed confirm that an instantaneous

interfacial tension exists between mutually miscible liquids.”
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(a) (b)

Figure 8 Mobil 1 synthetic motor oil (0.83 g/cc at 77°) in mineral oil (0.82 g/cc at
77°). This looks like a pendant drop due to surface tension (see Figure
6). The three frames were photographed at four-second intervals. We
think that the side drift of the drop is due to convection and other
temperature effects induced by the hot lights used for illumination.
(continued next page)
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Figure 8 (c)

The measurements of Quinke [1902] using the drop weight method and those of

Smith et al appear to be the only ones so far reported. Smith et al remarked that the

Wilhelmy technique appears to be the most sensitive and that other surface tension

measuring techniques such as the pendant drop method were found to be unsuitable

due to the small magnitude and transient nature of the force involved. I looked at

pendant drops of some pairs of miscible liquids. They give rise at early times to shapes

similar to, but not the same as, pendant drops of immiscible liquids; compare Figures 8

and 9.
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Figure 9 Profile of a Benzene-water pendant drop.

4. Generalized incompressibility and Korteweg’s theory

It can be argued that the measurement of interfacial tension between miscible liquids is

not a viable proposition since there is no such thing as an equilibrium interfacial tension

between miscible liquids. The concepts of a dynamical and instantaneous interfacial

tension are certainly more useful but they are not fundamental. What is fundamental is

the study of the way in which differences of density, composition, and temperature

enter into the stress tensor in a fluid mixture. The parameters we shall need to measure

are ultimately to be defined by a theory giving the precise nature of general forces that

give rise to capillary like phenomena in particular situations. Korteweg’s theory,

discussed below, is perhaps an example of how such a theory might look. Certainly, the

expression (2) is far too special to be useful in a fundamental treatment.
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4.i Compressible fluids

Korteweg was motivated on the one hand by the work of van der Waals [1894] who

… has shown by theoretical considerations of great importance that
it is very probable that the hypothesis that the discontinuity at the surface
of a liquid and its vapor is only apparent and that there is a layer of
transition, very thin to be sure, but of a thickness much larger in ordinary
conditions than the radius of the sphere of action of the molecules, and
which can even grow indefinitely as one approaches the critical
temperature.

For this problem, Korteweg proposed a continuum approach with a compressible fluid

model with a stress T(1) of the usual Navier-Stokes type plus a part T(2) depending on

density derivatives alone:

Tij(1) = –pδij + µ 
�
�
�

�
�
	∂ui

∂xj
 + 
∂uj
∂xi

 + λ
∂ul
∂xl

  δij (4)

and

Tij(2) = (α∇ 2ρ + β∇ρ •∇ρ ) δij + δ ∂ρ∂xi
  ∂ρ∂xj

   + γ ∂
2ρ

∂xi∂xj
 (5)

where p and the coefficients α, β, δ, γ, µ and λ are functions say of the density ρ and

temperature θ.

Korteweg showed how his theory reduced to the classical theory of capillarity. He

looked at the layer between two smooth surfaces of equal and different density and he

calculated the difference in the normal stresses. He found that this difference is

proportional to the mean curvature, but only in a certain special sense. For example,

the equations of motion using (4) and (5) are satisfied when the velocity is zero and

body forces, density and pressure depend only on the radius in spherical coordinates.

He finds that the jump of Trr=er•T•er across the layer r=r1 and r=r2 is
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Trr 







r2

 
r1

  = –��
r1

r2
ρ brdr – 2γρ́

r  







r2

 
r1

  + 2 ��
r1

r2
    

–δ+dγ
dρ

r    ρ´ 2 dr (6)

where br is the radial component of the body force, bθ=bφ=0 and ρ´=dρ/dr. According to

Truesdell [1965],

If we suppose that the shell is a layer of transition between two
homogeneous fluids, so that ρ´=0 when r≤r1 and when r≥r2, the second
term on the right-hand side vanishes. To obtain results appropriate to a
thin shell of transition, we calculate the limit as r1∅ r0 and r2∅ r0. The first
integral on the right side vanishes. Under suitable assumptions of
smoothness, the remaining integral yields a term proportional to 2S*/r0
(where S* is the surface tension) as expected from the classical theory of
capillarity.

Actually, to get the classical theory we need to assume a lack of smoothness, that is,

�
�
�

�
�
	–δ + dγ

dρ    ρ´2 ∅  δ(r–r0) (7)

where δ(r–r0) is Dirac’s delta function. One defect of this derivation of capillarity is that

the equations motion, even at equilibrium, will not allow the compact support required to

put ρ´







r2

 
r1

 =0; this is a very small defect. Another problem is that we evidently need to

say that ρ´ goes to a singularity which looks like the square root of a Dirac measure. I

don’t know of any physical principle which would lead to such a strong result. A third

defect is that the relation of the density gradient theory to the usual molecular

interpretation of surface tension, based on the action of cohesive forces at a surface,

which are in equilibrium in the bulk, do not seem to have been worked out. Certainly

this theory could not apply to the surface tension which exists between density matched

immiscible liquids, nor was it meant to do so.
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There are a number of interesting papers on Korteweg-type theories for

compressible fluids (see, for example, Dunn [1986]). These theories rely strongly on

thermodynamic arguments for compressible fluids which evidently do not apply to the

incompressible fluids under discussion here.

4.ii Generalized incompressible fluids

On the other hand, Korteweg also thought that his theory might apply to the processes

of slow diffusion of miscible incompressible liquids such as were already described in

the previously cited account of the experiments of J. Bosscha. He says that

Let us suppose … that one must deal with two liquids miscible in all
proportions, or indeed, a solution with variable concentration. In this case
it cannot be a question of equilibrium, correctly speaking, before the
concentration has by diffusion become equal everywhere. Moreover, in
considering diffusion as a very slow process, one can deal with provisional
equilibrium, where equations {our (4) and (5) with u=0 and ρ replaced by
φ} are satisfied momentarily. In such equilibria, all possible distributions of
concentration, satisfying these equations, could rigorously occur, since the
distribution at a given moment depends on the initial distribution and the
laws of diffusion.

Provisional equilibrium of drops and bubbles require at least that the density of

the mixture be independent of the concentration. Otherwise the density will vary and

buoyancy will produce motion.

We did several bubble injection experiments like those described in Figure 1 but

with two fluids of matched density. In one case, we added just enough sugar to water to

match the density of glycerin. The density-matched sugar solution has a much higher

viscosity than glycerin. When injected into the glycerin, the sugar solution sometimes

appears to pull into a sphere; more often after a short time it splits into two segments:

one rises and one falls. These two segments then take a more pronounced spherical

shape. Perhaps this suggests that the spherical shape is more easily obtained by a
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drop and bubble in motion than by capillary forces at the surface. Glycerin injected into

a sugar solution did not pull into a sphere but maintained the thread-like shape it had in

the capillary tube. Evidence for capillary type phenomena here was that capillary-like

bulges developed on the thread before it lost its identity to diffusion.

We were never completely successful in matching the density and it may be

impossible to do so. The problem is that the volume of a mixture of two constituents

need not be the same as the sum of the volumes of the two constituents before mixing.

For example, small changes of the total volume VT of a mixture of glycerin and water at

20°C, with a maximum change of 1.1% for a mixture of 60% glycerin by weight, are

observed and reported by Segur [1953] in the data shown in figure 10. Suppose that

before mixing the volume of water is given by Vw=mw/ρw where mw is the mass and Vw

the volume of water and similarly, for glycerin VG=mG/ρG. After mixing, the density of

the mixture is

ρ = m
VT

   = 
mw+mG

VT
  

def
=   γw+γG = ρw 

Vw
VT

   + ρG 
VG
VT

  .

Now, if we ignore the small volume change, then

VT = Vw + VG (8)1

and

ρ = φρw + (1–φ) ρG . (8)2

where φ=Vw/VT. Equations (8)1 and (8)2 define a simple mixture, linear in the water

fraction. This is a good approximation of the actual mixture density with errors of less

than 1% over the entire range of concentration 0≤φ≤1. The fact that simple mixtures

arise only as an approximation means that the mixture of liquids with the same density

will not retain this density after mixing, because of the volume change. Therefore, the



Fluid dynamics of two miscible liquids … D.D.Joseph

29

density in a diffusion layer may vary from point to point, even though the density on

either side of the layer is the same.

There are other measures of composition and concentration. The mass fraction

say of liquid A in liquid B, φ̂ =mA/m where m=mA+mB, is a second measure and the

mole fraction ~φ  = nA/n, n=nA + nB, where nA is the number of moles of A, is a third

measure.

The relation between these three different volume measures is nonlinear. For

example,

φ̂  = 
mA

mA+mB
   = 

ρAVA
ρAVA+ρBVB

   = 
ρAφ

ρAφ+ρB(1–φ) 

and

φ̂  = 
nAMA

nAMA+nBMB
   = 

MA
~
φ

MA
~
φ+MB(1–~

φ)
 

where MA and MB denote the masses of one mole of constituents A, B respectively.

To allow for the possibility that composition gradients and density gradients can

both induce stress, we may generalize Korteweg’s formula, writing

T(2)
ij   = δ1 ∂ρ∂xi

  ∂ρ∂xj
   + δ2 ∂φ∂xi

  ∂φ∂xj
   + γ1 ∂

2ρ
∂xi∂xj

   + γ2 ∂
2φ

∂xi∂xj
   + ν 

��
�
��

��
�
��∂ρ

∂xi
 ∂φ∂xj

 + ∂ρ∂xj
 ∂φ∂xi

 (9)
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Figure 10 (after Segur [1953]) Volume contraction of glycerin and water. The graph

of figure 7.4 and the 6th column of table 7.12 show that the simple
mixture equation (8) holds to within an accuracy of about one percent.
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This is an isotropic expression, invariant to a change in the sign of the axis of reference.

In fact, it is the most general second order tensor composition of the first and second

gradients of ρ and φ. We allow δ1, δ2, γ1, γ2, ν to depend on ρ, φ and the temperature θ.

It is necessary to emphasize and to explain what we mean when we say that we

are here operating in the frame of incompressible fluids. We do not mean that the

density is a constant. In fact we like to assume that there is an equation of state

ρ = ρ(φ, θ) (10)

so that the density depends on composition and temperature, which may vary with

position and time. By an incompressible fluid we mean that the density cannot be

changed by pressure; the pressure does not have an equation of state. The pressure is

determined by the motion; in a system of equations with n–1 unknows, it is the nth

unknown.

The equation of state (10) implies that even though the fluid is incompressible to

squeezing, the velocity field is not divergence free. Indeed

dρ
dt    = ρθ dθ

dt    + ρφ dφ
dt    = –ρ div u . (11)

where

d
dt   = ∂∂t   + u • ∇  , ρθ = ∂ρ∂θ   , ρφ = ∂ρ∂φ   .

We have in general seven unknowns (u, p, ρ, θ, φ) and seven equations counted

as follows: Equations (10) and (11) are two equations. The conservation of momentum

gives three more equations

ρ du
dt    = –∇ p + 2 div (µD[u]) + ∇λ  div u + div T(2) + ρg (12)
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where µ and λ depend on θ and φ and div T(2) is a composition of derivatives of ρ and φ.

Two more equations can be found in diffusion equations for θ and φ:

dθ
dt    = div (κ∇θ ) + Φ , (13)

where κ is the thermal diffusivity and Φ is proportional to the dissipation function T(1)
ij   +

T(2)
ij  )ui,j and

dφ
dt    = div (D∇φ ) , (14)

where D is a diffusion coefficient.

Yih [1965] has given an interesting discussion of the effects of diffusivities on

gravitational instability in our frame of incompressibility in which div u≠0 is allowed. (I

changed Yih’s notation (C, T) for solute density and temperature, to (γ, θ).) He was

interested in dilute solutions, say salt water, and worked with γ=mA/VT, where mA is the

mass of solute, a small fraction of the total mass, and mB=m–mA is the mass of the

solvent and VT the volume of the mixture. Of course, there were no Korteweg-like terms

in his analysis. Without giving any derivation he writes that

dθ
dt    + θ div u = div (κ∇θ ) + Φ (15)

but neglects Φ, and

dγ
dt   + γ div u = div (κ´∇γ ) . (16)

He writes two forms for the continuity equation, (11) and

dρ
dt    + ρ div u = div (κ´∇γ ) (17)
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this last form again without derivation. He argues, I think incorrectly, that if (11) is

adopted div u is not the volume expansion, and he proceeds to work with (17),

eventually putting div u=0 as an approximation.

Equation (11) is certainly a correct statement which follows rigorously from the

transport theorem and the statement that the total mass in a material volume Ω across

which no mass passes is conserved. The same argument, which requires that we

differentiate the Jacobian of the transformation of volumes, shows that div u is the

volume expansion. If we now state, for example, that γ is also conserved if there is no

flux of solute across the boundary of Ω, then

d
dt  ��
Ω 

γdΩ  = – ��

∂Ω 
qγ•n ds (18)

where qγ is the flux of γ and if we let it be given by Fick’s law qγ=–κ´∇γ , then (16) follows

by the usual arguments. The total mass of solute plus solvent is conserved in Ω, but

solute and solvent diffuse in and out of Ω.

I can make sense of (17) if I imagine that u is the solvent velocity and Ω a

“material” volume of solvent in which the total mass is not conserved. Since I wish to

use the u(x, t) which I may actually measure, I will not use (17).

The equation (15) for θ also follows from a conservation argument in which we

suppose, without justification, that the temperature is conserved in the absence of heat

conduction and frictional heating:

d
dt  ��
Ω 

θdΩ   = ��
Ω 

ΦdΩ  – ��

∂Ω 
qθ • n ds (19)
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where qθ=–κ∇θ . This statement of conservation is not a physical principle and it seems

to be in conflict with the balance of energy. The energy equation for incompressible

mixtures in which the pressure is a dynamical variable has not yet been worked out.

We may work with the volume fraction φ=VA/VT which is related to γ=mA/VT=ρAφ.

We have useful simplifications under isothermal conditions in which we may suppose

ρ=ρ(φ)=ρAφ+ρB(1–φ) to a good approximation, with constant values for ρA and ρB. Then

equation (16) reduces to

dφ
dt    + φ div u = div (D∇φ ) (20)

replacing (14)* and

T(2)
ij   = δ̂ ∂φ∂xi

  ∂φ∂xj
   + γ̂ ∂

2φ
∂xi∂xj

 (21)

δ̂  = δ1ρ2
φ  + δ2 + 2νρφ + γ1ρφφ and γ̂ =γ1ρφ+γ2. (22)

The governing equations are

ρφ dφ
dt    + ρ div u = 0 , (23)

                                           

* Another diffusion equation for the volume fraction ε=1–φ=VB/VT follows from the same argument

    dε
dt   + ε div u = div (D´∇ε ) .

Of course, generally D´≠D, glycerin does not diffuse into water at the same rate that water diffuses

into glycerin.
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ρ du
dt    = –∇ p + 2 div (µD[u]) + ∇λ divu + div T(2) + ρg (24)

with T(2) given by (21), and (20) governs diffusion. If we suppose that ρ is a known

function of φ, say a simple mixture (8), then (23), (24) and (20) are five equations for u,

φ, p.

5. Motionless solutions and steady solutions

Motionless solutions with u=0 can persist only when curl(du/dt)=0. We can form an

expression for this by taking the curl of (12). This leads to the vorticity equations for the

incompressible Korteweg equation. If, for simplicity, δ1, δ2, γ1, γ2 and ν in (9) are

assumed to be constants, then

∇ρ   du
dt    – ρcurl du

dt    – 2 curl (µD[u]) + g  ∇ρ

  + δ1 ∇ρ   ∇  (∇ 2ρ) + δ2 ∇φ   ∇ (∇ 2φ)

  + ν [ ]ρ   ( 2φ) +    φ    ( 2ρ)   = 0 . (25)

In general motionless solutions require g ∇ρ =0 so that ∇ρ  is parallel to gravity or is

zero due to density matching. In the first case ρ=ρ(z, t) and if ρ=ρ(φ) is a function φ

alone, then φ=φ(z, t) is determined by the diffusion equation. We can imagine that ρ(φ)

is given by (8). Then ∇ρ =ûρô∇φ  where ûρô=ρA–ρB. Given this simple mixture equation,

the reader can return to (25) with φ=φ(z, t) and find a nonlinear equation for ρ(z, t) in a

static stratification.

If we imagine that density matching is possible, that ρ(φ)=ρc=φρA+(1–φ)ρB, with

ρA=ρB, then motionless solutions exist only if

∇φ   ∇ (∇ 2φ) = 0 . (26)
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This works for vertical stratification φ=φ(z, t) and for radial stratification in spherical polar

coordinates.

Steady solutions of (20), (21), (23) and (24) can be expected whenever the

boundary data is steady and suitable. For example, we could find the steady solution

for plane Couette flow between parallel plates when the bottom plate is stationary and

constant φ is prescribed there, and the top plate moves parallel to itself with constant

speed and φ is another constant there. The stability problem for a motionless solution

with ρ(φ) greater below (Korteweg-Benard problem) has some interesting features. A

general elementary mathematical formulation of the aforementioned problems can be

found in the paper by Galdi, Joseph, Preziosi and Rionero [1990].

6. Falling drops, rising bubbles and plumes

A basic and basically unsolved problem of fluid dynamics is to determine the evolution

of rising bubbles and falling drops of one miscible liquid in another. This problem is

unsteady as long as diffusion operates. An important question is whether it is necessary

to introduce a stress depending on gradients of concentration, temperature and density

in our equations to get results which agree with experiments like those shown in Figures

1, 2, 3, 4, 6, 7.

One method for doing such problems is to imagine that diffusion is so slow that it

can be neglected. Then the problem is treated as a free interface problem, using the

usual jump conditions at the interface, except that the interfacial tension is put to zero.

This is the method followed by Kojima, et al [1984], Koh and Leal [1989] and Pozrikidis

[1990]. However, if the interface was really that sharp, the gradients of composition,

density and temperature might be expected to induce strong capillary-like stress effects

across the interface. One question is whether it is necessary to introduce such gradient

stresses to explain the shape of drops, bubbles and plumes shown here and
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elsewhere. Another question, already framed, is how and when to take into account the

effects of diffusion.

One can argue about all this using the water bubble in glycerin shown in Figure 1

as an example. We don’t know what the streamline pattern around the water bubble

might be, but perhaps it is like the Hadamard-Rybczynski bubble with a tail.

As the bubble rises, its leading edge is pushed into fresh glycerin. This, together

with the circulation inside the bubble which brings fresh water up to the leading edge,

generates the sharpest gradients there with weaker gradients at the trailing edge.

Whether or not the Korteweg terms are actually important in sustaining the spherical

shape we see at the leading edge of the water bubble through the whole 48 seconds of

its rise is something I would like to know.

Kojima et al [1984] presented data for falling drops of miscible liquids, see figure

11(a),(b) and (c), and they carried out an analysis of the problem at vanishing Reynolds

numbers. They say that

… Under the assumptions of zero interfacial tension and creeping
flow, the theory provides a qualitative description for the initial stages of
the drop evolution … but is unable to account for the observed drop
expansion during latter stages of deformation …. On the other hand, if
small inertial effects are retained in the analysis, the theory predicts that a
slender open fluid torus possessing an arbitrary cross-sectional geometry
will expand without change of shape to first order in Reynolds number.
Quantitative comparisons of theoretically predicted rates of expansion
with experimental measurements suggest the possible existence of a
small, time-dependent interfacial tension across the drop interface.

The reader may compare the unstable miscible vortex ring shown in figure 11(c) with

the unstable immiscible vortex ring shown in figure 11(d).
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Figure 11 (After Kojima, Hinch and Acrivos, [1984]) Falling drops of aqueous corn
syrup of density 1.329 g/cm3 and viscosity 3.9 Poise into aqueous corn
syrup of density 1.264 g/cm3 and viscosity 0.51 Poise. (a) A depression
forms at the rear stagnation point, (b) a vortex ring forms, (c) the ring is
unstable. (d) (after Baumann, Joseph and Renardy [1990]) An unstable
vortex ring of silicone oil falling in safflower oil. the interfacial tension is
1.68 dyn/cm.
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The argument just given could conceivably be applied to thermal plumes; as a

plume rises its leading edge pushes always into a freshly cold part of the liquid. The

circulations in the plume could act to bring hot liquid to the leading edge giving rise to

sharp gradients of temperature and density there. Thermals, like buoyant miscible

bubbles, take on shapes which may be influenced by stresses associated with thermally

induced density gradients (see Figures 4, 12 and 13).

Figure 12 Thermal plumes in water (Sparrow, Husar and Goldstein, 1970)

A thermal drop (figure 13) was created by Kojima, Hinch and Acrivos [1984]

… by using the same fluid for the drop as for the bulk medium but
at a sufficiently low temperature such that the density difference was large
enough for the drop to fall in the continuum under the force of gravity.
Under these conditions, the effect of the interfacial tension should be
negligible, since the authors are unaware of reports in the literature which
suggests that a time dependent interfacial tension exists between two
identical fluids having different temperature.

A comparison of thermal plumes and drops shows a similar structure. The plume

shown in Figure 4 has a less diffuse structure.
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Figure 13 (After Kojima, Hinch and Acrivos, 1984). Cold drop initially –7°C falls into
the same liquid initially at 21°C.

Thermally induced density gradients will be sharper in relatively viscous drops

and plumes which are poor heat conductors and have large coefficients dρ/dθ of

thermal expansion. I do not know of any reason to reject the possible action of

thermally induced gradient stresses in some of these fluids.

7. The stress-diffusion function for incompressible miscible liquids

Galdi, Joseph, Preziosi and Rionero [1990] have observed that it is possible to

define a solenoidal field

W = Cu + D∇φ (27)

where C is a to be determined constant. Combining (20) and (23) we get

(–φ + ρ(φ)/ρφ) div u + div (D∇φ ) = 0 (28)



Fluid dynamics of two miscible liquids … D.D.Joseph

42

If ρ(φ) is linear in φ, then –φ+ρ(φ)/ρφ is constant. For example, in the case of a simple

mixture (8) we have

–φ + ρ(φ)/ρφ = ρB / (ρA–ρB) 
def
=   C (29)

Equations (27), (28) and (29) now imply that

div W = 0 . (30)

Another case in which (30) holds is when the conventional diffusion equation (14) is

adopted. Then instead of (28) we get

ρ(φ)
ρφ

   div u + div (D∇φ ) = 0 (31)

and (29) follows when

ρ(φ) = ρ0 exp 
�
�
�

�
�
	φ

C   . (32)

When (30) holds, we may apply well-known results for solenoidal vector fields.

For example in plane problems, where (x, z) are coordinates in the plane and (u, w) are

the associated velocity components, there is a function ψ, like a stream function, call it

a stream-diffusion function such that

– ∂ψ∂z  = Cu + D ∂φ∂x   = ex • W ,

 ∂ψ∂x   = Cw + D ∂φ∂z   = ez • W . (33)

In the cases where W can be defined we can employ numerical methods based

on the stream-diffusion function, vorticity and composition equations as well as

numerical methods based on velocity, pressure and composition.
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