
Mathematical problems for miscible, incompressible fluids
 with Korteweg stresses

P. Galdi1, D.D. Joseph2, L. Preziosi3, S. Rionero4

Abstract.  It is shown that the equations governing the motion and diffusion of miscible
liquids can be reduced to a form like the Navier-Stokes equations when the equation of
state is for the density of a simple mixture.  In particular, in this case, W=Cu+Dρφ where
C and D are constant, is solenoidal.  This allows one to introduce a generalized stream
and diffusion function which may be useful in the study of two-dimensional problems.
Problems of unidirectional shearing flows in the presence of gradients of composition
are briefly considered.  Korteweg terms do not enter these problems.  We consider the
problem of the stability of a vertically stratified incompressible motionless Korteweg fluid
of variable concentration analogous to the classical Bénard problem.  In general the
stability problem is not self-adjoint and it may be possible to have complex eigenvalues
at criticality.  One and only one Korteweg constant enters into this calculation.
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1. Introduction

There are a number of papers which are related to Korteweg’s theory of

compressible fluids.  A fairly complete list of references to this work can be found in the

[1986] paper of J.E. Dunn.  These theories rely strongly on thermodynamic arguments

which do not seem appropriate to the incompressible case.  As far as we know, the

paper “Fluid dynamics of two miscible liquids with slow diffusion and gradient stresses”

by Joseph [1990] which precedes this paper and this paper are the first to explore

Korteweg’s ideas in the setting of generalized incompressible liquids whose density and

volume change with composition and temperature, but not with pressure.

2. Equations governing a simple mixture

The aim of this section is to write Korteweg’s equations (24J*), (25J) and (20J) in

terms of a solenoidal vector field W.  This can be done provided that ρ(φ) satisfies the

equation (8J) governing a simple mixture.  Specifically, we are able to introduce a new

velocity field W, linearly related to u and ρφ, which is divergence-free and to which it is

possible to associate a pressure field P in such a way that the functions W, P, φ obey a

set of equations (2.8), (2.9) and (2.10) which resemble the Navier-Stokes equations in

several respects.  We observe that, in such a case, the pressure P can be interpreted

as the usual dynamical variable corresponding to the constraint div W=0.  We may also

find a solenoidal field W in the case that (14J) instead of (20J) is assumed to govern

provided that the equation of state (8J) is replaced by ρ(φ)=exp(φ/C) with a constant C.

First consider the case in which (20J) is assumed to hold.  Subtracting (20J) from

(24J) divided by ρφ we have

                                           

* The notation (17J), etc. refers to equation (17) in the preceding paper by Joseph.
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�
�
�

�
�
�ρ(φ)

ρφ
  – φ   div u + div (Dρφ) = 0 . (2.1)

From (8J) it follows that

ρ(φ)
ρφ

   – φ = [ ]ρAφ + (1–φ)ρB   / (ρA–ρB) – φ

                = 
ρB

ρA–ρB
   + C‡ (2.2)

and (2.1) reduces to

div (u + ββββ) 
def
=   div W = 0 . (2.3)

where

ββββ 
def
=  DC  ρφ . (2.4)

and

u = W – ββββ . (2.5)

Now we may use (2.5) to eliminate u with W from (20J) and (24J).  We find that

Dφ
Dt   = (C+φ) div ββββ + CD   |ββββ|2 (2.6)

where

D
Dt  

def
=  ∂∂t   + (W•ρ) (2.7)

and

                                           

‡ The equation of state (8J) for a simple mixture assume that φ [0, 1] is a volume fraction.  Equation
(2.2) holds also when φ is interpreted as a mass fraction, provided that ρ(φ) is linear.
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ρ DW
Dt    = –ρP + 2 div ( )µD[W]   + ρg

             – 2 div ( )µ D[ββββ]   + ρ Dββββ
Dt    + ρ (ββββ•ρ) (W–ββββ)

             +  div T(2) (2.8)

where P=p–λ div u, D[f] is the symmetric part of ρf for any vector f and

T(2) = δ̂ ρφ  ρφ + γ̂ ρ  ρφ (2.9)

where, after using (8J),

δ̂  = (ρA–ρB)2 δ1+δ2 + 2ν(ρA–ρB) ,

γ̂  = γ1(ρA–ρB)2 + γ2 .

If γ̂  is independent of φ, then the second term on the right hand side of (2.9) can be

expressed as a gradient and folded into the pressure.  Then the only active Korteweg

coefficient is δ̂ .

Equations (2.3), (2.6), (2.8) and (2.9) are the dynamical equations governing our

simple mixture (8J).

The reader may observe  that (2.3) and (2.8) resemble the Navier-Stokes

equations for an incompressible fluid with suitable coupling to the concentration field φ.

Moreover, the pressure field P given by (2.7) is associated with the solenoidal velocity

field W.  This may be said to give rise to a “concentration pressure” which is to be

added to the dynamical variable p.

From now on we shall suppose that δ̂  and γ̂  are constants.  Then

–ρP + div T(2) = –ρπ + δ̂ ρφρ2φ (2.10)

where π = P – γ̂ ρ2φ – δ̂2   |ρφ|2
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If, instead of (14J), we adopt (20J) as the law of diffusion, then from (20J) and

(23J) divided by ρφ we deduce

ρ(φ)
ρφ

   div u + grad (Dρφ) = 0 (2.11)

and so the field W= ρ(φ)
ρφ

  u+Dρφ is solenoidal, provided ρ(φ)/ρφ=C,that is, ρ=ρ0 exp

(φ/C).  In such a case, one can show that W, φ verify equations similar to (2.6) and (2.8).

In two-dimensional problems and in axisymmetric problems we may introduce a

stream and diffusion function ψ arranged so as to satisfy div W=0 identically.

If (x, z) is the plane of our problem, then

W = j   ρψ ,
∂ψ
∂z   =  u + DC  ∂φ∂x   , (2.12)

∂ψ
∂x   = –w – DC  ∂φ∂z   . (2.13)

where j is in direction y, out of plane, and y=(u,v,w).  Similar expressions for ψ in

axisymmetric flow can be written down in different coordinate systems.  Using these

relations we may satisfy (2.6) identically and eliminate W in (2.6) and (2.8) with ψ.  Then

(2.6) and (2.8) are three equations for three scalar fields ψ, φ and P.

3. Some mathematical problems

Many of the problems of classical incompressible fluids can be reworked in the

present setting.  Suppose our problems are two-dimensional, in the x, z plane, with

u = iu(x, t) ,    φ = φ(x, t) ,    g = –kg
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where k is a unit vector in the direction z.  Then div u, u•ρu and u•ρφ are identically

zero.  Equation (20J) then shows that φ=Ex+F with a time-independent E and F.  We

may therefore write φ(x)=Ex, E=1/L where φ(0)=0 and φ(L)=1 is prescribed.  We may

now calculate the entries in the matrix T(2) giving the compositional stresses; T(2)
xx =δ̂ E2

and the other three entries are zero.  The density of our simple mixture is

ρ(φ) = ρAφ + (1–φ)ρB = EρAx + (1–Ex)ρB . (3.1)

Recalling now the u=ku(x, t) we deduce

ρ(φ) ∂u∂t    = –P´ + ∂∂x  
��
�

��
�µ ∂u∂x    – ρ(φ)g (3.2)

with suitable conditions on u at x=0 and x=L.  Various elementary problems, Couette

flow, Poiseuille flow, etc. are contained and generalized in the unidirectional problems

which satisfy (3.1) and (3.2).

More interesting, but more difficult problems can be found for motions such that

div u≠0 but div W=0.  An interesting example of this is the problem of dispersion of

soluble matter flowing slowly through a tube which was studied in two asymptotic limits

by G.I. Taylor [1953].  Taylor considers the problem of pipe flow of a pure liquid in which

initially a slug of another miscible liquid is located.  He works with div u=0 and the usual

equation of diffusion assuming that the velocity profile in the pipe is given by u0(1–r2/a2)

where a is the radius of the pipe and u0 is independent of x.  In fact u0 cannot be

independent of x because the viscosity µ depends on the concentration c, in his

notation, which varies with x, so that the formula relating u0 to the pressure gradient in

Hagen-Poiseuille flow will involve an x dependence through the viscosity.  This is not

necessarily a small effect; for example, we could think of the problem for two silicone

oils with a viscosity ratio of 104 or more.  If then the axial velocity depends on x, the div

u will not vanish on the basis of a kinematic assumption, and since dρ/dc≠0 and ∂c/∂t≠0
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then div u≠0, in general.  Of course, Taylor did not include Korteweg-type forces and

we certainly do not yet know if they should be included.  The approximations introduced

by Taylor, as well as the ones he did not explicitly acknowledge, are evidently

appropriate for the description of the dispersion of the 1% aqueous potassium

permanganate which was used in his experiments.  The neglected effects should be

more important in experiments in which concentration, density and viscosity gradients

are stronger.  In these cases we might expect to see secondary motions resembling

those generated by immiscible displacements (see Kafka and Dussan V [1979]).

Another class of important problems which might be reworked are those

associated with miscible displacements in porous media and Hele-Shaw cells.  These

problems have heretofore been treated under the assumption that div u=0 and with a

modified form of the classical diffusion equation (see Homsy [1989]).

4. Dimensionless equations for the stability of motionless solutions

Before introducing a dimensionless form of our equations suitable for studying

the stability of motionless solutions it is useful to remove the hydrostatic pressure πs

from (2.8) and (2.10) by writing π=π*+πs and

–ρπ + ρg = –ρπ* – ρπs + [ρB + (ρA–ρB)φ]g = –ρπ* + (ρA–ρB)φg . (4.1)

Motionless solutions have no intrinsic scale of velocity and it is appropriate to use L/D

as the scale for velocity.  We are now assuming that D is a constant independent of φ.

Then (2.8), (2.9) and (2.10) may be written in terms of dimensionless variables (with a

hat)
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W = DŴ/L , u = Dû/L , x = Lx̂ , t = L2t̂/D ,

φ = ∆φφ̂ , ββββ = Dββββ̂/L , ββββ̂ = 1E ∇̂ φ̂ , E = ∆φ/C ,

ρ = ρBρ̂ , ρ̂ = 1+φ̂/E , µ = µBµ̂(φ̂) , π* = 
µBD
L2   π̂

 (4.2)

where L is a reference length and ρB and µB are the density and viscosity of the fluid B

and νB=µB/ρB and C=ρB/(ρA–ρB)>0.  The dimensionless equations (with hats omitted)

are

W = u + 1E   ρφ 
def
=   u + ββββ , (4.3)

ρ = 1 + φ/E , (4.4)

div W = div u + 1E   ρ2φ = 0 , (4.5)

∂φ
∂t    + [ ](W–ββββ) •∇  φ = 

�
�
�

�
�
�1 + φE   ρ2φ , (4.6)

ρ
S  

��
�
��

��
�
��D(W–ββββ)

Dt  – (ββββ•∇ ) (W–ββββ)  

    = –ρπ + 2 div [ ]µD(W–ββββ)  

    + K1(ρφ) (ρ2φ) + R2φ g/|g| (4.7)

where D/Dt is defined by (2.7).

The dimensionless variables of our problem are

E = ∆φ(ρA–ρB) / ρB , (Inhomogeneity number) ,

S = νB / D , (Schmidt number) ,

K1 = δ̂(∆φ) 2 / µBD , (Korteweg number) ,

R = 
�
�
	



�
�(ρA–ρB)gL3∆φ

DνB
 1/2 , (“Rayleigh” number) . (4.8)
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Equation (4.7) shows that the only coefficient of the Korteweg tensor T(2) entering the

equations of motion is δ̂ , through the Korteweg number K1.  The other coefficients are

in gradient form embedded in the “dynamic pressure” π*.

The Navier-Stokes equations are recovered in the cases in which the fluid is

well-mixed so that prescribed concentration differences are zero and φ=constant

everywhere.  There is another case of fast mixing which is of interest characterized by a

large diffusion coefficient D.  In this case the scale we have chosen for t, W, u should

be based on νB rather than D.  We would change variables again, writing

W = S ~W  ,    u = S u~  ,     t = ~t  /S  . (4.9)

Then (4.6) becomes

∂φ

∂~t
   + ( ~W •ρ) = 1

S   ��
�
��

��
�
��

�
�
�

�
�
�1 + φE  ∇ 2φ + 1E |∇φ |2  (4.10)

Since S∅ 0 as D∅ ∞, we get ρ2φ=0 and |ρφ|=0 everywhere except in boundary layers in

which more careful analysis is required.

We call the equations which arise from (4.3)–(4.6) when E∅ 0 and

R2=ρBgL3E/DνB and K1=δ̂(∆φ) 2/µBD are finite, Korteweg-Boussinesq equations.  This

means that density differences are negligible except when multiplied by the large value

of gravity.  In this limit ρ∅ 1, ββββ∅ 0, W∅ u, D/Dt∅ d/dt, and

div u = 0 , (4.11)
dφ
dt    = ρ2φ , (4.12)

1
S  du

dt    = –ρπ + 2 div µD[u] + K1(ρφ) (ρ2φ) + R2φ g / |g| (4.13)



Math problems for miscible, incompressible fluids         Galdi, Joseph, Preziosi, Rionero

10

The effects of gradients of the composition in the Korteweg term could be important say

when the two different and miscible liquids have nearly or exactly the same density.

When they have the same density they will usually have different viscosities so that the

variation of µ(φ) cannot be neglected.

5. Stability of a vertically stratified incompressible motionless Korteweg fluid

of variable concentration

We could have called the problem being studied here a Korteweg-Bénard

problem.  This short name for our problem might remind the reader of the Oberbeck-

Boussinesq (OB) equations which do not apply here.  There are two important

differences between equations (4.3) through (4.7) and the analogous OB equations.

First and foremost, our fluids may undergo volume changes by diffusion of species with

different densities.  In this case div u≠0 and ρφ = dρ
dφ  is not small, but may be of the

same order as ρ, as is true of glycerin and water mixtures.  In addition, Korteweg terms

are missing from OB equations.

Assume we have a layer of Korteweg fluid between horizontal planes g/|g|= –k

separated by a dimensionless distance of one.  The bottom plate at z=0 has φ=0,

corresponding to ρ=ρB there.  The top plate has more of fluid A, ∆φ>0 there.  This is a

top heavy situation.  There is a steady diffusion solution with no motion of (4.3) through

(4.7)

u = 0 ,    φ = z ,    ρ = 1+z/E ,    dπ/dz = R2z (5.1)

We linearize these equations around (5.1) using u´, φ́ , π´´ as perturbations which

satisfy, dropping primes,

div u + 1E  ρ2φ = 0 , (5.2)
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∂φ
∂t    + (k•u)φ = 

��
�

��
�1 + zE   ρ2φ , (5.3)

1+z/E
S   ∂u∂t    = –ρπ + 2 div (µ(z)D[u]) + (K1ρ2φ – R2φ)k (5.4)

where µ(z)=µ̂(φ̂)  with φ̂ =z according to recipe (4.2).  These are five equations for u, φ,

π and they can be studied for different boundary conditions, say for Dirichlet conditions

(φ,u)=(0,0), z=0 and z=1.

We draw the reader’s attention to the fact that the system (5.2)–(5.4) is not

generally self-adjoint even when the Korteweg effects are absent, K1=0.  It may be that

for some values of the parameters, this system with K1=0 gives rise to complex

eigenvalues, overstability leading to Hopf bifurcation.  Another possible case of

overstability at the other extreme of parameter values, when the non-Boussinesq terms

are inactive E∅ ∞ but the Korteweg terms are active K1≠0, is considered below.

The reader will notice that the system (5.2)–(5.4) is more complicated than in the

Boussinesq case (div u=0) partly because the coefficients of some terms are z-

dependent.  This z-dependence also arises in the classical case of a fluid layer heated

from below when the Boussinesq approximation is relaxed, as the following argument

shows.  Suppose the fluid is homogeneous of constant composition, φ=constant, but

ρ=ρ(θ̂ ) where θ̂(z) =Θ0(z)+θ is the temperature and Θ0(z) is the temperature field of the

motionless solution and θ(x, t) is a small perturbation.  The linearized continuity

equation,

ρθ[Θ0(z)] 
��
�
��

��
�
��∂θ

∂t   + wΘ´
0(z)   + ρ[Θ0(z)] div u = 0 (5.11)

where ρθ=dρ/dθ̂  evaluated at Θ0(z), has z dependent coefficients even when ρ is a

linear function of θ̂ .  We are aware of two different mathematical papers which lay

down conditions under which the Oberbeck-Boussinesq equations are a valid
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approximation (Mihaljan [1962], Spiegel and Veronis [1960]).  In general it is required

that ρθ be small, and other things, which may hold up well in some cases and less well

in others.  When all is said and done, we have to recognize that the approximations of

Oberbeck and Boussinesq were introduced long before the use of computers as a

pragmatic procedure to make tractable problems which now border on trivial.

6. Stability of a vertically stratified Korteweg-Boussinesq equation of variable

concentration

Nothing is yet known about the Korteweg coefficients.  Their sign has not been

determined, and it is not even known if any of them are different from zero.  Some

information may be obtained from doing simple studies to see if implausible physical

results can be eliminated by putting suitable restrictions on the range of the Korteweg

constraints.  Now we are going to prove an unusual result, namely that the motionless

solution (5.1) is unconditionally stable provided that K1<–R2/π2.  We may avoid this

unusual conclusion by requiring that

K1 + R2 / π2 > 0 . (6.1)

We are going to perturb the system (4.11), (4.12) and (4.13) around (5.1), but we

do not linearize.  Thus

div u = 0 , (6.2)

∂φ
∂t    + (u•ρ)φ = –u•k + ρ2φ , (6.3)

1
S  

�
�
�

�
�
�u

∂t + (u•∇ )u   = –ρπ + div ( )µ(φ)D[u]   + K1(ρφ)(ρ2φ) – (R2φ–K1ρ2φ)k . (6.4)
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The spectral problem corresponding to (6.2, 3, 4) is obtained by linearizing for

small disturbances proportional to exp(σt).  The functions of proportionality are again

called (u, φ, π) but are functions of x alone, and not of t.  Thus, we have (6.2) and

σφ = –u•k + ρ2φ , (6.5)

σ
S   u = –ρπ + 2 div { }µ(z)D[u]   – (R2φ–K1ρ2φ)k . (6.6)

Let Ω be any domain with flat top and bottom and vertical side-walls compatible

with the motionless solution (5.1).  A plane layer with specified cells of periodicity is one

such domain.  Multiply (6.5) by φ– , the complex conjugate of φ, and integrate over Ω

–σ• |φ|2  = •φ– w  + • |ρφ|2 (6.7)

where w=u•k and the boundary conditions on φ are such that •φ
–

 ρ2φ =• |ρφ|2 , for

example, φ=0 on ∂Ω.  Now multiply the complex conjugate of (6.6) by u and integrate

over Ω0.  Thus

σ
–

S   • |u|2  = •µ(z)|D[u]|2  + R2•φ
–

 w  + K1•ρφ
–

 •ρw  . (6.8)

To deal with the last term at the right hand side of (6.8) we form one more identity

multiplying (6.5) by ρ2φ
–  and integrating over Ω.  This gives

–σ• |ρφ|2  = •ρw•ρφ
–

   + • |ρ2φ|2 (6.9)

Now multiply (6.7) by R2 and (6.9) by K1.  Then we subtract this weighted sum of

R2(6.7) + K1(6.9) from (6.8) and get

– σ
–

S   • |u|2  = + R2σ• |φ|2  + K1σ• |ρφ|2

   = •µ(z)|D[u]|2  – K1• |ρ2φ|2  – R2• |ρφ|2 (6.10)
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Hence

Imσ 
��
�
��

��
�
��1

S • |u|2  + R2• |φ|2  + K1• |∇φ |2   = 0 (6.11)

–Reσ = 
•µ(z)|D[u]|2  – K1• |∇ 2φ|2  – R2• |∇φ |2

• |u|2  – R2• |φ|2  – K1• |∇φ |2  (6.12)

The Poincaré inequalities (see Galdi [1985])

• |ρ2φ|2  ≥ π2• |ρφ|2  ≥ π4• |φ|2 (6.13)

imply that

–R2• |ρφ|2  – K1• |ρ2φ|2  ≥ – 
�
�
�

�
�
�R2

π2 + K1   • |ρφ|2 (6.14)

and

–R2•φ2  – K1• |ρφ|2  ≥ – 
�
�
�

�
�
�R2

π2 + K1   • |ρφ|2 (6.15)

If

K1 ≤ –R2/π2 , (6.16)

then Reσ<0 and the basic state is stable.  In other words, a sufficiently negative

Korteweg constant can always stabilize an otherwise unstable motionless solution.

If K1≥0, then Imσ=0 for all eigenvalues.  The form of (6.11) suggests that Imσ=0

for all eigenvalues even when K1≤0.  Put σ=0 in (6.5) and (6.6), replace ρ2φ in (6.6) with

w=u•k from (6.5) and write φ=ψ/R.  Then we have

Rw – ρ2ψ = 0 , (6.17)

ρπ – 2 div { }µ(z)D[u]   + (Rψ–K1w)k = 0 . (6.18)
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Equations (6.17) and (6.18) are the Euler equations for the variational function

R[u, ψ] = 
•µ(z)|D2[u]|  + • |∇ψ |2  – K1•w2

–2•wψ  (6.19)

on solenoidal vector fields u, for u and ψ which satisfy suitable boundary conditions.

Equation (6.17) shows the R•wψ = –• |ρψ|2  is negative.  We may seek R as a

minimum value on a space H of functions.  If

~R(K1)  = min
u,ψ H

   R[u, ψ] = R[~u , ~ψ ] (6.20)

then

d~R
dK1

   = •w2
2•wψ    = – •w2

2R• |∇ψ |2   . (6.21)

This shows that the stability limit is a decreasing function of K1≥0.  The Korteweg terms

are destabilizing.

7. Energy stability of the Korteweg-Bénard problem

We shall now perform a nonlinear energy stability theory of the Korteweg-Bénard

problem, limiting ourselves to the case when the Korteweg number K1 satisfies

K1 ≤ – R
2

π2   . (7.1)

Specifically, we shall prove that if (7.1) holds with the strict inequality sign and,

moreover

µ(φ) ≥ µ0 > 0 (7.2)

for some constant µ0, the basic state (5.1) is unconditionally, asymptotically stable.  If,

otherwise, at least one of the following relations holds
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K1 = – R
2

π2

or
µ0 = 0

 (7.3)

we only have that (5.1) is monotonically stable.  However, in all cases, we recover

nonlinearly the same result proved in the previous section by means of the linearized

theory.

To show all the above, we introduce the following generalized energy (Lyapunov)

functional:

E = 12 

�
�

Ω 
�
�
�

�
�
�1

S u2+λφ2+σ|∇φ |2   dΩ (7.4)

where λ, σ are parameters to be chosen appropriately.  We evaluate dE /dt along (6.2),

(6.4) and use integration by parts together with the Dirichlet conditions (say) (u,φ)=(0,0)

at z=0,1 to obtain

dE 
dt   = (I–1) D(u,φ) + N(u,φ) (7.5)

where

          I = – 
(R2+λ)•φw  + (σ+K1)•∇φ •∇ w

D(u,φ)  

D(u,φ) = •µ(φ)|D[u]|2  + λ• |ρφ|2  + σ• |ρ2φ|2

N(u,φ) = (K1+σ) •u•ρφρ2φ  . (7.6)

Choosing

λ = –R2 ,    σ = –K1 ,

from (7.6), it follows I = N = 0 and the energy identity (7.5) reduces to
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dE 
dt    = –D(u,φ) . (7.7)

We next observe that, since u is divergence-free and vanishes at the boundary, it

obeys the well-known identity:

• |D[u]|2 = • |ρu|2 .

Thus, from (7.1) with the strict inequality sign, from (7.2), and from the Poincaré

inequality (6.13), we recover

2E ≥ 1S   • |u|2  + δ•|φ|2

D(u,φ) ≥ µ0• |ρu|2 + δ• |ρφ|2

where δ= –K1π2–R2(>0).  Therefore, E and D are always positive definite and,

furthermore, by (6.13) (applied to φ and u) it follows

D(u,φ) ≥ 2γE

with

γ = min 
��
�
��

��
�
��µ0π2S1 – δ

K1
  . (7.8)

The energy identity (7.7) and this latter inequality yield

dE
dt    ≤ –2γE

which, upon integration, in turn implies

E(t) ≤ E(0)exp{–2γt} ,     for all  t>0 ,

implying unconditional and exponential stability.
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If we now assume that at least one of conditions (7.3) is satisfied, by (7.8) it is

γ=0 and we can no longer deduce asymptotic stability.  Nevertheless, (7.6)2 and (7.7)

still furnish monotonic stability

dE
dt    = –D(u,φ) ≤ 0 .

We conclude by observing that, following the recent methods introduced by

Galdi and Rionero [1985] and Galdi [1985], an energy theory could possibly be

developed also in the case K1>0, by selecting other suitable values of the parameters,

λ, σ.  As a consequence, in this case, the nonlinear term appearing in the energy

identity (7.5) would no longer be identically zero and therefore it is very likely that the

type of nonlinear asymtotic stability one should obtain is conditional, and subcritical

instabilities are therefore not excluded.
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