
ENSEMBLE AVERAGED AND MIXTURE THEORY EQUATIONS

FOR INCOMPRESSIBLE FLUID-PARTICLE SUSPENSIONS

By

Daniel D. Joseph

and

Thomas S. Lundgren

with an appendix by

R. Jackson

and

D. A. Saville

IMA Preprint Series #515

April 1989



ENSEMBLE AVERAGED AND MIXTURE THEORY EQUATIONS

FOR INCOMPRESSIBLE FLUID-PARTICLE SUSPENSIONS

by

Daniel D. Joseph and Thomas S. Lundgren

Department of Aerospace Engineering and Mechanics

The University of Minnesota

110 Union Street

Minneapolis, MN 55455

with an appendix by

R. Jackson and D. A. Saville

Department of Chemical Engineering

Princeton University

Princeton, NJ 08544

Two fluid equations for flowing composites of solid particles in a liquid have been given by

mixture theory and by ensemble averaging.  The mixture theory equations are postulated and the

ensemble averaged equations are derived.  The ensemble averaged equations give rise to an

explicit form for interaction terms.  The equations obtained by the two methods are different.

The expression for the stress in a Newtonian fluid with rigid particles is the point at issue.

Jackson and Saville, in an appendix to this paper, introduce a method of soft spatial averaging

which yields the same result as in the case of ensemble averages.
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1.  Mixture theory

Mixture theories are based on an idea of interpenetrating continua in which actual

material points are no longer identifiable; the solid and liquid phases are both present at each and

every material point.  The ideas of mixture theory can be traced back to that branch of mechanics

which calls itself rational; an authoritative account is given by Bowen [1971], with more recent

developments reviewed in papers of Nunziato [1983] and Passman, Nunziato and Walsh [1984].

Related ideas based on ensemble averaging can be found in Drew [1983].

Let ρ, V, P, T* be the true density, velocity, pressure, and stress in our flowing

composite.  Let φ be the solids fraction and ε = 1 – φ the fluids fraction.  In mixture theory

equations of balance are postulated for interpenetrating fields with variables γf, vf, pf, Tf, γs, vs,

ps, Ts where γf = ρfε, γs = ρsφ are partial densities.  No algorithm is presented for computing

interpenetrating fields in the classical approach, say in the approach of Bowen [1971] or

Passman, Nunziato and Walsh [1984].  Other authors, Anderson and Jackson [1967] and Drew

[1983, 1986] notable among them, generate mixture theories from different kinds of averaging,

but spatial averaging is most popular.  Jackson and Saville have carried out a derivation of local

average stresses using a method of soft spatial averaging in the appendix to this paper.

The classical equations of mixture theory for incompressible constituents are:
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t
f

∂
∂γ

+ vf • ∇γ f + γf div vf = 0 , (1)

t
s

∂
∂γ + vs • ∇γ s + γs div vs = 0 , (2)

γf ��
�

�
��
�

�
∇⋅+

∂
∂

ff
f

t
vv

v
= mf + γf bf + div Tf , (3)

γs �
�

�
�
�

� ∇⋅+
∂

∂
ss

s

t
vvv = ms + γs bs + div Ts , (4)

mf + ms = div S (5)

where

bf and bs are body force per unit mass,

for example, bf = g, gravity,

m is the force of interaction between constituents,

S is an interaction stress.

The quantities m and S are unknown, and are arguably unknowable.  They are the basic

quantities which need to be modeled in the theory.

We note next that equations (1) and (2)  may be written

∂ε
∂t    + div εvf = 0 , (6)

∂φ
∂t    + div φvs = 0 . (7)

Hence, by adding them,

div vc = 0 (8)

where

vc = εvf + φ vs . (9)
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is the composite velocity.

We may use (6) and (7) to write (3) and (4) in conservation form

ρf ��
�

�
�
�∂εvf

∂t   + div ( )ε vf vf   = mf + ερfbf + div Tf , (10)

ρs ��
�

�
�
�∂φvs

∂t   + div ( )φ vs vs   = ms + φρsbs + div Ts . (11)

We may regard (6), (7), (10), (11) and (5) as the basic system for mixture theories.

2.  Ensemble averaged equations

Two fluid equations for incompressible fluid-particle suspensions can be generated by

ensemble averaging.  The techniques for doing this were set down by Saffman [1971] in his

study of flow through porous media and by Lundgren [1972] in his study of dense suspensions

and porous media, and in a review article by Drew [1983].

We define an indicator function

H (x) = 
�
�
�0  if x is in the solid
1  if x is in the fluid  

and let < > designate the operation of taking the average.  The average is over many identical

trials.  We think of an experiment which is started at a certain time.  At a later time and at a

certain place, we record the value of some flow variable.  We repeat the experiment, wait the

same time, look at the same place and record again.  After many trials we average the values by

summing and dividing by the number N of trials, then we let N∅ ∞.  In this manner, we generate

a function < > (x, t).

Now we get some identities using ensemble averaging and the indicator function.  First

<H> = ε(x, t) = 1 – φ(x, t)

is the fluids fraction and
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<1 – H> = 1 – <H> = φ(x, t)

is the solids fraction.  Recall that V (x, t) is the true velocity.  We define an average fluid velocity

Vf (x, t) = 
<HV>
<H>    = 

<HV>
ε  (13)

and an average solid velocity

Vs (x, t) = 
<(1–H)V>
<(1–H)>    = 

<(1–H)V>
φ   . (14)

The composite velocity is

Vc (x, t) = <V> = <HV> + <(1–H)V> = ε Vf + φ Vs . (15)

We may define composite averages and mass averages of any quantity f by

fc = <f> = ε ff + φ fs ,

fm = 
<ρf>
<ρ>    = 

(ρf)c
ερf + φρs

   ,

In particular the mass averaged velocity is

Vm = 
<ρV>
<ρ>    = 

ρfVf ε + ρs Vs φ
ε ρf + φ ρs

   .

We next note H(x,t) is a material variable for materials which do not change phase,

always one following fluid particles, always zero following solids.  That is

∂H
∂t    + V • ∇ H = 0 .

Using this, and div V = 0, we find

0 = <
∂H
∂t    + V • ∇ H> = <

∂H
∂t    + div HV>

= 
∂<H>
∂t    + div <HV>
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= 
∂ε
∂t    + div ε Vf .

In the same way, we may show that

∂φ
∂t    + div φVs = 0. (19)

These are the equations of mass balance assumed by mixture theory.  It follows that

div Vc = 0. (20)

The reader can prove that

∂ρc
∂t    + div (ρc Vm) = 0 . (21)

We turn next to the momentum equations.  Since

∂H
∂t    + (V • ∇ ) H = 0   and   div V = 0 , (22)

we have the identity

H �
�

�
�
�

� ∇⋅+
∂
∂ VVV ][

t
= 

t
H
∂

∂ V + div H VV. (23)

The momentum equation for the fluid and the solid is

ρ �
�

�
�
�

� ∇⋅+
∂
∂ VVV ][

t
= div T* + ρb . (24)

Multiply (24) by H and ensemble average, using (23),

ρf 
∂
∂t  <HV> + ρf div <H VV> = <H div T*> + ρf bf ε . (25)

Now we differentiate by parts

<H div T*> = div <HT*> – <∇ H • T*> (26)
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where

∇ H = δΣ (x) n , ∇ <H> = <∇ H> = <δΣn> = ∇ε  (x, t) , (27)

δΣ (x) is a one-dimensional Dirac’s delta function across the solid-
fluid interface,

n is the outward normal to the solid.

We next note that n • T* = t is the traction vector at a point xΣ on the interface.  From the

definitions of Tf* we have

<HT*> = ε Tf* (x, t) . (28)

Using these relations, we may write (25) as

ρf ��
�

�
�
�∂

∂t  εVf + div <HVV>    = div εTf* – <δΣ (x) t> + ρf ε bf . (29)

Using the same method, we find a momentum equation for the solid in the form

ρs �
�
	



�
�∂φVs

∂t  + div <(1–H)VV>   = div φ Ts* + <δΣ (x)t>  + ρs φ bs . (30)

3.  Comparison of the ensemble averaged and mixture theory equations

If we suppose that the equations of these two theories are the same, we may conclude that

εTf* = Tf , Vf = vf ,

φTs* = Ts , Vs = vs ,

mf = ρf div [ε vf vf – <H VV>] – <δΣ t > , (31)

ms = ρs div [φ vs vs – < (1–H) VV>] + <δΣ t > , (32)

div {S – ρf ε vf vf – ρs φ vs vs + <[ρf H + ρs (1–H)] VV>} = 0 . (33)

Equations (31, 32, 33) are previously unknown relations between the interaction terms and the

“Reynolds stresses.”  The interaction stress S in (33) cannot be taken to be zero because of the
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fact that the ensemble average of a dyadic product is not the product of ensemble averages.  At

this stage, there is no contradiction between the equations of mixture theory and the ensembled

averaged equations.

Let us assume now that the fluid phase is Newtonian,

T* = –P1 + 2µD [V]  in the fluid, (34)

and the solid phase is a rigid body for which

D [V] = 0 on solids. (35)

where

D [V] = )][(
2
1 TVV ∇+∇ (36)

is the rate of strain.

The stress for the fluid phase in mixture theory is given by Nunziato, Passman, Givler,

MacTigue and Brady [1986].

Tf = –ε pf 1 + 2ε µD [vf] . (37)

This differs from the fluid stress arising from ensemble averaging

Tf = εTf* = <HT*> = <H (–P1 + 2µD [V])>

= –ε Pf 1 + 2µ <(H–1) D [V]> + 2µ <D [V]>

= –ε Pf 1 + 2µ D [<V>]

= –ε pf 1 + 2µ D [vc] (38)

where we have put Pf = pf, <V> = Vc = vc, and

<(H–1) D [V]> = 0 (39)
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0

because H–1 is zero in the fluid and D[V] = 0 in the solid.  The step

<D[V]> = D[<V>] is true because V is continuous, D[V] is uniformly bounded.

The stresses given by (37) and (38) are generally different because

D [vc] = D [ε vf + φ vs] (40)

is different than ε D [vf].

Another expression for the stress in the fluid phase of Newtonian fluid, based on volume

averaging (Ishii [1975]), has been given by Drew [1983, 1986].

Tf = –ε pf 1 + µ {2D [vf] + (∇φ)  [vf – vs] + [vf – vs] (∇φ) } . (41)

This expression also differs from the one (38) which arises from ensemble averaging.  Yet

another expression for the stress in the fluid phase which agrees with ensemble averaging is

derived from spatial averaging by Jackson and Saville in the appendix to this paper.

In the modeling of multiphase flows of rigid particles, it is convenient to write

T* = –P1 + ττττ (42)

where P is the mean normal stress.  The ensemble average of this is

Ts = φ Ts* = –φ ps 1 + <(1–H)τ τ τ τ > (43)

where we have assumed that Ps = ps and

φ Ps = <(1 – H) P > . (44)

The expression (43) with τ=0 is frequently postulated in mixture theories (e.g., Nunziato, et al.

[1984, 1986]).  Givler [1987] argues that ps may be interpreted as the average of the local

pressure field around an isolated particle.  Perhaps it is justified to think of the components of the

deviatoric stress as a perturbation of ps which scales with the particle size.
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If we assume (38), (39), and (43), and manipulate the inertia terms to a more elegant

form, we get the following system of ensemble averaged equations.

∂ε
∂t    + div ε vf = 0 , (50)

∂φ
∂t    + div φ vs = 0 , (51)

ρf ε ��
�

�
��
�

�
∇⋅+

∂
∂

ff
f

t
vv

v
+ ρf div <H (V – vf) (V – vf)>

= –∇  (εpf) + µ∇ 2vc – <δΣ (x) t > + ε ρf bf , (52)

ρs φ �
�

�
�
�

� ∇⋅+
∂

∂
ss

s

t
vvv + ρs div <(1–H) (V – vs) (V – vs)>

= –∇  (φps) + <δΣ (x) t > + div <(1–H) ττττ > + φ ρs bs . (53)

The addition of a constant pressure to the system as a whole, to pf, ps and t simultaneously, has

no dynamic consequence.  The proof of this uses (27).

When we add (50) and (51), we get

div vc = 0 , (54)

Equations (52), (53), and (54) can be regarded as effective equations for the composite media.

The boundary conditions between the fluid and the particle takes form in the traction vector term

in (52) and (53) and it is probably best not to combine the two equations.

The existence of two fluid equations even when one of the fluids is solid is perfectly

justified by ensemble averaging.  These equations, like other two fluid models, are not closed and

methods of closure, or constitutive models for the interaction terms, are required to put the

equations into a form suitable for applications.  Moreover, since averaging over repeated

identical trials is not a realizable proposition, the ensemble averaged variables are conceptually

abstract and their relation to more physically intuitive variables, like the ones which arise from

spatial averaging, is uncertain.
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There are many problems of mechanics in which averaging of any kind is inappropriate,

leading to correct but irrelevant statements, like “the average weather is widely scattered

showers” or “the average gender is slightly female.”

Finally, we shall list a summary of the results presented in this note.  The relation (27) is

new and leads to the proof (under (53)) that the addition of a constant pressure to the system does

not change the ensemble averaged equations.  The relations (31), (32), and (33) between the

interaction force and stress and the Reynolds stresses which arise in ensemble averaging are new.

The demonstration (38) that the viscous part of the ensembled averaged stress in a Newtonian

fluid with rigid particles is determined by the fluid viscosity times the symmetric part of the

gradient of the composite velocity is new and different than equivalent expressions which arise

from mixture theory and volume averaging.  The expressions for the Reynolds stresses in terms

of dyadic products of the differences between the fluid velocity and various average velocities are

new, as are the equations (55) for the composite material.
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Appendix

LOCAL AVERAGE STRESSES

IN AN INTERDISPERSION OF TWO NEWTONIAN FLUIDS

by

R. Jackson and D. A. Saville

Department of Chemical Engineering

Princeton University

Princeton, NJ 08544

We consider a dispersion of drops of a fluid of viscosity µd in a second fluid of viscosity

µc.  If a denotes some physical property, measurable at each point of either fluid, then intrinsic

local average values of this quantity for each phase, denoted by {a}d and {a}c, are defined by

φ(x, t){a}d(x, t) = �
Vd 

 
  g(|x – y|) a (y, t) dVy

ε(x, t){a}c(x, t) = �
Vc 

 
  g(|x – y|) a (y, t) dVy

Here φ and ε denote the volume fractions of the respective phases, Vd and Vc are the regions of

space occupied by them, and g(r) is a weighting function which defines the size of the averaging

region.  The sum V=Vd+Vc represents the entire region occupied by the system of interest, and

the boundary of V will be denoted by S.
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The weighting function g(r) is positive, monotone decreasing, and tends to zero as r tends

to infinity.  It may be required to be differentiable up to any desired order, and each derivative is

integrable over the semi-infinite interval of positive r.  It is also normalized so that

4π�
0 

∞
  g(r) r2dr = 1

and its radius, r0, is defined by

4π�
0 

r0

  g(r) r2dr = 4π�
r0 

∞
  g(r) r2dr = 1/2

A characteristic dimension L of the region V defines the scale of the system as a whole,

and we assume that there is a second scale l, large compared with the spacing of the drops of

dispersed phase but very small compared with L, such that the values of local average quantities

are essentially independent of r0 and the particular algebraic form of g(r), provided l«r0«L and the

distance of x from the nearest point of S is much larger than r0.  If these conditions are not

satisfied, values of the local average variables, even at points remote from the system boundary,

are sensitive to details of the weighting function, and the procedure is inappropriate.  g(r) will

usually be chosen to fall to zero quite rapidly when r exceeds r0, and the limiting case of a

Heaviside function of r0–r gives the usual average over a hard sphere.

We consider the case in which the property a is a component of the fluid velocity u, when

∂
∂xj

 [ ]φ{ui}d(x, t)  = �
Vd  

 ∂∂xj
  g(|x–y|)ui(y, t) dVy = – �

Vd  

  ui(y, t)
∂
∂yj

  g(|x–y|) dVy

= – �

Vd 

 ∂∂yj
 [ ]g(|x–y|)ui(y, t)  dVy + �

Vd 

  g(|x–y|)
∂
∂yj

  ui(y, t)dVy

There is an obvious similar expression for ∂/∂xj[ε{ui}c )(x, t)] and, combining this with the

above and with the corresponding two expressions with the suffixes i and j interchanged, we find
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∂
∂xi

 [ ]φ{ui}d   + 
∂
∂xi

 [ ]φ{uj}d   + 
∂
∂xj

 [ ]ε{ui}c   + 
∂
∂xi

 [ ]ε{uj}c  

= �
Vd 

  g
�
�
	



�
�∂ui

∂yj
 + 
∂uj
∂yi

  dVy + �
Vc 

  g
�
�
	



�
�∂ui

∂yj
 + 
∂uj
∂yi

  dVy – �
V  

 
�
�
�

�
�
�∂

∂yj( )gui  + 
∂
∂yi( )guj   dVy

The last term in this can be written as a surface integral

�

s 
  g(uinj + ujni) dS ,

where n is the unit outward normal to the system at its boundary.  This integral is clearly

negligibly small when the shortest distance of x from the surface S is much larger than r0.  Then,

since ∂ui/∂yj + ∂uj/∂yi is equal to Eij/µd is the disperse phase and Eij/µc in the continuous phase,

where E is the stress tensor, the above relation can be written

∂wi
∂xj

  + 
∂wj
∂xi

   = 
φ
µd

  {Eij}d + 
ε

µc
  {Eij}c

where w = φ{u}d + ε{u}c.

This is the final result.  The case of solid particles dispersed in a Newtonian fluid is

approached in the limit as µd∅ ∞, and the result is seen to be the same as in the case of ensemble

averages.


