
1

Experiments and Direct Simulations
of Fluid Particle Motions

Howard H. Hu, Daniel D. Joseph
Department of Aerospace Engineering and Mechanics

University of Minnesota, Minneapolis, MN55455

Antonio F. Fortes
Department of Mechanical Engineering, University of Brasilia

70910 - Brasilia - DF, Brasil

Abstract

This paper and the accompanying video segment show how the motions of
sedimenting particles may be simulated by direct computations based on the Navier-
Stokes equations and the particles equations of motion. Sedimenting and fluidized
particles are confined by closely spaced walls to move essentially in two dimensions
under forces determined by three-dimensional motions of the fluidizing liquids. Attention
is confined to the case when there are only few particles, not more than four. The
experiments and simulations give rise to deterministic dynamics, to equilibrium positions
and steady flows, to Hopf bifurcation and wavy fall trajectories and to more chaotic
motions. It is shown that long bodies always turn to put their broadside perpendicular to
the stream. The same mechanism which causes long bodies to turn broadside-on causes
spherical bodies, which come into contact by wake interactions, to tumble, giving rise to a
flow induced anisotropy in which across stream arrangements are favored. The numerical
simulation, unlike the experiments, is strictly two-dimensional, but many of the observed
features of the experiments are predicted by the simulation.

The video segment on which this paper is based is a stand alone document. The
paper gives additional information which is not conveniently expressed in a video format.

This work was supported by the National Science Foundation, the Department of Energy
and the Army Research Office, Mathematics. Numerical simulations were done under
grants from  Minnesota Supercomputer Institute and Army High Performance Computing
Research Center (AHPCRC).
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The nonlinear properties of flow of a few fluidized particles can be discussed in
two different theoretical frameworks:

1. A natural frame for our studies of the motions of particles in fluids is in terms of the
principle of hydrodynamics, the roles played by stagnation points, separation points,
vortex shedding, wakes, turning couples on long bodies and bodies in momentary
contact. For example, we can determine the nature of the forces in two-dimensional
simulations which presumably drive spheres to the center of a two-dimensional bed
used in experiments. This kind of deterministic dynamics may play a role in lubricated
transport of solid particles.

2. A different and equally illuminating way to discuss the motion of particles is in terms
of bifurcation theory and dynamical systems. For example, take the case of a single
sphere sedimenting from rest in a viscous liquid between planes. At small Reynolds
numbers there is no vortex shedding and the sphere falls in a straight line under
gravity, and we found that the channel center is an equilibrium, apparently globally
stable since no matter how off center the sphere is initially, it will eventually drift to
the center. At higher Reynolds numbers, the central position of equilibrium loses
stability and undergoes a Hopf bifurcation in which the center is no longer an
equilibrium. The cause of the loss of stability of steady flows is vortex shedding. We
get a periodic solution in which the sphere oscillates with the same frequency as the
trajectory waves around its off-center mean position of equilibrium. When the flow
goes turbulent it is possible that the motion of the sphere will be chaotic.

There is a difference between the experiments in two-dimensional beds and the
numerical simulations which are confined strictly to two dimensions. The experiments
were done in a channel whose walls were separated by small gap slightly lager than the
smallest radius of the particle. In this way the centers of mass of the particles were
confined to move more or less in two dimensions, but the flow around the particle is
three-dimensional. The particle diameter in the experiments on sedimentation were about
1/4 inch, the fluid was aqueous glycerin, 50% water. The experiments on drafting, kissing
and tumbling in a fluidized bed were also carried out in a 50/50 glycerin water mixture
using 1/2 inch diameter spheres.

The numerical simulation is based on an extension of the code POLYFLOW
which was constructed by Howard Hu and is reported in a paper by Hu, Joseph and



3

Crochet [1992]. Some details of this code are given in a appendix to this paper. The
simulation is like a macroscopic molecular dynamics based on correct equations, the
Navier-Stokes equations for the fluid and the particles equations of motion for the solids
using forces computed from the stresses induced by the fluid motion.

A comparison of the direct strictly two-dimensional numerical solution with the
experiments in two-dimensional beds shows that kissing interactions are relatively
suppressed in the simulation. This may be a physically correct result reflecting a genuine
difference between two and three dimensions. Kissing bodies seen in two dimensions
have a line contact; in three dimensions kissing spheres have a point contact. The
numerical code cannot handle situations in which particles touch; when this happens the
simulation stops. In some cases the simulations did stop, but not in the ones seen in the
video.

We need to know if and how two-dimensional simulations represent the two-
dimensional motions of bodies in three dimensions. Perhaps in certain situations the
simulations represent features of the experiment, but at a different Reynolds number.

There are four different effects which are clearly developed in the video segment:
turning couples on long bodies; drafting, kissing and tumbling; the equilibrium positions
and stability and bifurcation of particle motions.

A four to one channel means that the width of the channel is four times the gap;
the eight to one channel is twice as wide. In the experiments the center of the channel is
an attractor for single particles, long bodies and spheres. Apparently the center is a
globally attractor since no matter how or where the particles are dropped, they appear
always to drift toward the center. At low Reynolds numbers, in the experiments the center
is an equilibrium; the flow is steady. This is seen clearly in the opening segment of the
video where a cylinder whose length is twice its diameter settles steadily in the channel
center at Reynolds number of 57. When the Reynolds number is increased to 350 steady
flow is unstable; it gives way to a periodic solution which can be viewed as arising from a
Hopf bifurcation. The center is still a mean position of equilibrium, but the particle rocks
and the trajectory waves around the mean position of equilibrium in lock step with the
periodic shedding of vortices from points of separation on the long body.

The broadside-on orientation of the long particle is a robust feature. No matter
how the particle is dropped it will very quickly put its broadside perpendicular to the
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stream. The natural orientation of long bodies is a key element in determining the kind of
flow-induced anisotropic structures which develop in beds of many spherical particles.

The robust tendency for long bodies to settle with their broadside perpendicular to
the stream is also evident in the direct simulation of a falling 2/1 ellipse. The ellipse
settles stably and steadily in the 8/1 channel at a Reynolds number of 17. The center is an
equilibrium and the broadside-on configuration is robustly stable. At this Reynolds
number and at a Reynolds number of 60 the center of the channel is an attractor and no
matter how or where the ellipse is dropped it will turn its broadside into the stream and
drift to the channel center. The steady fall of the ellipse seen at Re=17 gives way at Re=60
to a periodic solution driven by vortex shedding which can be seen clearly in the
simulation. The panel on the left of the simulation shows the streamlines; the panel on the
right shows the vorticity and the center panel shows the dynamic pressure.

The dynamics of the sedimenting ellipse started from rest can be generally
understood as being produced by turning at the stagnation points on an airship in potential
flow (figure 1).
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Figure 1. The high pressures at the stagnation points cause the airship to turn its broadside
to the stream, to stall.
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Some experiments were done by C. Sioutas [1989]. Long round cylinders of
diameter 0.5 cm and length 1 cm and 2.5 cm were dropped in water filling the gap
between glass plates. The gap size was slightly larger than 0.5 cm so that the motion of
the cylinders was confined to a plane. The cylinders were heavier than water. The flow
was steady and the cylinders settled broadside-on when the Reynolds number based on
0.5 cm was less than 57. The next data point at Re=211 was in strong unsteady flow,
oscillating around broadside-on. Hence the critical Re is between 57 and 211. This
compares with the critical values of 40 for flow over a cylinder. The Strouhal number is
nearly constant, about 0.21 for Reynolds numbers from about 300 to 200,000. These same
frequencies are observed in two-dimensional flow across cylinders, a very different flow.
We regard the experiments of Sioutas as preliminary. More and better experiments are
needed to determine the response of long particles in three regimes: (i) Stokes flow, (ii)
steady nonlinear flow with Re<Rc where Rc is to-be-determined Reynolds number
probably near 57, (iii) the post-stability regime where the rocking frequency is a quantity
of central interest.

Of course the sedimenting ellipse shown in the video is not in a potential flow.
Nevertheless a careful monitoring of high (yellow) and low (red and blue) pressures on
the ellipse show a very similar dynamics. The exact balance of forces which cause the
long body to turn broadside-on are contained in details which can be recovered from
simulation. The true dynamics are better represented by figure 2 and figure 3, from the
simulation than by figure 1 for potential flow. The stagnation pressure still operates on
the front side of the ellipse, but there is a "dead water" region on the back side which can
have large negative pressures, even larger than the positive pressures at the front
stagnation point. These large negative pressures occur in pairs at the separation points on
left and right of the back side of the ellipse as shown in figure 3 and they give rise to a
couple which control the turning of the ellipse. The "potential flow" stagnation pressure
at the front side controls the stability of the orientation of the ellipse which always has, on
the average, its broadside perpendicular to the stream.

The rocking amplitudes of the ellipse in the simulation at Re=60 are much greater
than the rocking amplitude of the 2/1 particles in the experiments at Re=350. It could be
argued that the vortex shedding which produces this rocking should be greatly different in
two than in three dimensions. The vortices must be shed from a generator of a cylinder in
two dimensions but could come off a region near a point in three dimensions.
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Figure 2. Pressure contour plots for a sedimenting ellipse during a cycle of rocking at
Re=60. (x,y,θ) indicates the position of the ellipse. pmax and pmin are the maximum and
minimum values of the dynamic pressure at each instant. From pmin to pmax there are
nine equally spaced iso-pressure lines in each plot with high pressure in front.
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Figure 3. Pressure distribution on the surface of the ellipse for the times shown in figure 2.
The two peaks of negative pressure on the back of the ellipse control the turning of the
ellipse.
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Another point of difference between experiments in two-dimensional beds and
simulations in two dimensions occurs in the equilibrium positions of a settling sphere in the
two-dimensional bed and a settling circular particle in two dimensions. In the experiments at
modest Reynolds numbers, even thousands, the center is a mean position of equilibrium. In
the simulation it appears that the channel center is an equilibrium when Re=40 and the fall of
the circular particle is steady. At Re=70 the fall is not steady; vortex shedding gives rise to a
periodic solution whose mean position of equilibrium is off center.

Local nonlinear dynamics associated with wakes and turning couples on long
bodies give rise to scenario which can be described as "drafting, kissing and tumbling".
This scenario is very robust and appears to control the dynamics of particles in suspension
at all but the smallest Reynolds numbers. There is a wake with low pressure at the back of
fluidized or sedimenting sphere in three dimensions or circular cylinder in two
dimensions. A second sphere will be sucked into the wake of the first, like debris behind
a fast moving car. This is called drafting, after the well-known bicycle racing strategy
which is based on the same principle. Drafting spheres are sucked into contact; they kiss.
Kissing spheres form a long body which is unstable when its line of centers is along the
stream. The same couples which force a long body to float broadside-on cause kissing
spheres to tumbling. Tumbling spheres induce anisotropy of suspended particles since on
the average the line of centers between spheres must be across the stream. If it is not
across the stream the spheres will draft, kissing and tumble again, or else they may not
interact. This escape scenario is in evidence at the end of the simulations of interacting
circular cylinders at Re=40 and Re=70. The interactions of spheres in the two-
dimensional bed seems to be more persistent though escape scenario can be seen in
experiments as well.

Very remarkable steady flows of fluidized 6.35 mm diameter spheres in a
fluidized bed with a 12.7 mm gap were observed in experiments by Fortes and Joseph
[1992]. Stable, steady nested wake clusters were observed in the range of Reynolds
number 22<Re<43. These arrangements are shown in figures 4-6. They are unstable and
they draft, kiss and tumble when the Reynolds number is smaller than 22 or larger than
43. All the observed arrangements are essentially planar, as the spheres rotate and
position themselves with centers in a vertical plane that is not in the center between the
two walls of the apparatus. We interpret this sideward displacement as a Segre-Silberberg
effect. The clusters always have a higher drag than a single particle, which means that the
stable architectures occur at fluid velocities always greater than the individual terminal
free falling velocities of spheres.
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The arrangements shown in figure 5 and 6 are often seen in the migrating birds in
flight. Maybe the arrangement used by birds is useful only for a certain range of speeds.
Singh et al [1989], showed that a cross-stream array of fluidized cylinders equally spaced
and all in a row was stable to different perturbations, but it is not yet known if these
stable arrays, of Fortes & Joseph [1992], can be obtained from strictly two-dimensional
dynamics simulations.

           

Figure 4. Visualization of the velocity
profiles as a stably locked pair of Teflon
sphere 6.35 mm diameter. Re=22.48. The
fluidized spheres are in perfect equilibrium
under weight and drag.

                            

Figure 5. Three Teflon spheres locked
together at Re=28.4, each at the edge of the
wake of the preceding sphere. These
staggered wake architectures are stable in
the range 22<Re<43.



10

                            

Figure 6. Four Teflon spheres locked
together, each at the edge of the wake of
preceding sphere. These staggered wake
architectures are stable in a small range of
Reynolds numbers. The nested wake
structures resemble some formations
which can be seen in migrating birds in
flight.
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Figure 7. The wake architecture with three particles. The rotations ω1 and ω2 around axis
normal to the walls are due to the velocity gradient of the wake and are such
that ω1≤ω2. The upstream (bottom) sphere rotates more slowly.
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Appendix

The numerical results shown in the video were obtained with an Explicit−Implicit
Scheme. At each time step the positions of the particles are updated explicitly, the
velocities of the particles are determined implicitly (or iteratively), coupled with the
solution of the flow. The iteration for the particle velocities is buried inside the nonlinear
Newton iteration of the Navier−Stokes solver for an increased efficiency. The details of
the scheme are described below.

Explicit−Implicit Scheme

(1). Initialization: t0=0, n=0 (index for time step); 
u(x(t0),0)=0,

and Xi(t0) =Xi0, Ui(t0)=0, fi(t0)=((ρs−ρf)/ρs, 0, 0),  for i=1,...,N.

(2). Updating 1: select an appropriate time step ∆tn+1,
tn+1 = tn+∆tn+1,
Xi(tn+1) = Xi(tn) + ∆tn+1 Ui(tn) ,  for i =1,...,N,
k=0 (index for iteration),

initially update the particle velocities U i
(0)(tn+1)  .
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(3). Remeshing and Projection:
generate a new mesh x(tn+1) based on Xi(tn+1),

 project velocity u(x(tn),tn)  to u(x(tn+1),tn).

(4). One step Navier−Stokes iteration: k     = k+1,
on the new mesh x(tn+1), with u(x(tn+1),tn) as the initial condition
and U i

(k-1)(tn+1)  as the boundary condition,  perform one  Newton
iteration in the Navier−Stokes solver to get u(k)(x(tn+1),tn+1),
p(k)(x(tn+1),tn+1) and calculate f i

(k)(tn+1) .

(5). Updating 2:
∆U i

(k)(tn+1)  = −U i
(k-1)(tn+1)  + Ui(tn) + ∆tn+1 f i

(k)(tn+1) ,
U i

(k)(tn+1)  = U i
(k-1)(tn+1)  + α∆U i

(k)(tn+1)  ,  for i=1,...,N,
where α is a relaxation parameter.

(6). Convergence Test:
ε1= ||∆U i

(k)(tn+1) ||  ,
ε2= ||u(k)(x(tn+1),tn+1)−u(k-1)(x(tn+1)tn+1)||.
If (max(ε1,ε2) ≥ ε ) go to (4) , otherwise
Ui(tn+1) = U i

(k)(tn+1) ,    fi(tn+1) = f i
(k)(tn+1) ,

u(x(tn+1),tn+1) = u(k)(x(tn+1),tn+1),
p(x(tn+1),tn+1) = p(k)(x(tn+1),tn+1).

(7). If the time tn+1 is less than T then n: : : : = n+1 and go to (2); otherwise stop.

In the above scheme, Xi, Ui and fi are the position, velocity and acceleration vectors of
the particle i, u and p are the velocity and the pressure of the fluid and x(tn+1) represents
the mesh nodes at time tn+1.


