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ABSTRACT
Oil and water in equal proportion are set into motion between horizontal concentric
cylinders when the inner one rotates. In a range of speeds where the water is Taylor
unstable and the oil Taylor stable, we get Taylor cells. The main focus of this paper is the
mathematical description of the apparently chaotic trajectory of a small oil bubble moving
between an eddy pair in a single Taylor cells trapped between the oil bands of a banded
Couette flow. We define a discrete autocorrelation sequence on a binary sequence
associated with left and right transitions in the cell to show that the motion of the bubble
is chaotic. A formula for a macroscopic Lyapunov exponent for chaos on binary
sequences is derived and applied to the experiment and to the Lorenz equation to show
how binary sequences can be used to discuss chaos in continuous systems. We use our
results and recent results of Feeny and Moon (1989) to argue that Lyapunov exponents
for switching sequences are not convenient measures for distinguishing between chaos
(short range predictability) and white noise (no predictability).

EXPERIMENTS
Experiments were carried out between two concentric cylinders with axis horizontal,

perpendicular to gravity. The outer cylinder and end plates are plexiglass, while the inner
cylinder is alumninum. The inside diameter of the outer cylinder is 2.495 inches; the

outside diameter is 2.986 inches. The inner cylinder has a diameter of 1.985 inches, and a
length of 11.985 inches. The outer cylinder is fixed and the inner one rotates with angular

velocity Ω.



Our Taylor apparatus uses two neoprene lip seals to prevent leakage. The shaft
driving the inner cylinder is connected to a torque meter which has a provision for
counting rpm. The torque meter is connected to a mechanical-digital converter which
displays the value of the torque and rate of rotation. The laboratory is temperature
controlled at 25° Celsius. We used Mobil heavy duty oil with density of 0.97 g/cm3 and
viscosity 0.95 poise, and tap water. The interfacial tension between Mobil heavy-duty
motor oil and tap water is 30.00 dyne/cm. The major effect of the density difference
occurs in slow or lubricated flow in which the oil floats up. When the angular velocity is
smaller than 500 rpm, the two fluids are arranged in alternating bands. When rpm is
greater than 10 the water bands are Taylor unstable whereas the oil bands are Taylor
stable. The Taylor instability leads to the formation of two counterrotating vortices in the
water band.

CHAOTIC TRAJECTORIES OF OIL BUBBLES IN AN UNSTABLE WATER CELL
At sufficiently high values of the angular velocity prior to emulsification of motor oil, the
secondary motion appears to be chaotic. In some situations we were able to get one small
oil bubble into a Taylor cell. This oil bubble is carried round and round by water and is
dragged around in the secondary motion due to Taylor instability. The accompanying
videotape contains segments of a recording made of one such bubble. The small oil
bubble on the left is the one for which the binary sequence is studied. Each time the oil
drop goes around it is either in the left eddy or in the right eddy. We monitored about
3000 terms in the sequence LRLL… and assigned number minus one to left and one to
right. It is difficult to get revealing still photographs of the motion of the small bubble in
the leftmost water cell shown in Figure 10. However, the large bubble in the center water
cell also executes a chaotic motion of a slightly different type as can be seen in the
photographs.

Binary sequences
We are going to apply methods of estimation theory (see Singh and Joseph, 1989) to
characterize the chaos in the binary number sequence generated by the bubble in our

experiments. Consider a sequence   of binary numbers. We assume that the
sequence is ergodic so that time averages are the same as ensemble averages. In our
experiment the average

E u(n)[ ] = 1
N u(n)

n =1

N

� → 0  

when N is large, left and right or ±1 are equally probable.



Singh and Joseph (1989) showed how to generate a binary sequence for chaotic

trajectories of the Lorenz system   for (σ, b, r) = (10, 8
3, 28)  . The binary

sequence is generated by projecting the trajectories into the xz plane, as shown in Figure
11, and monitoring the crossing points of trajectories on the segments AB and CD of the
line AD. The crossing times are put into correspondence with the sequence n of integers,
left crossings on AB are recorded as u(n) = 1 , and the right crossings of CD,
as u(n) = −1 . The time averages of these sequences vanish for large N, independent of
initial condition, so that left and right crossings are equally probably and we may assume
that the sequences are ergodic.

Autocorrelations
An estimate of the autocorrelation function on an ergodic binary sequence can be
obtained as follows:

r(n) = 1
N u(k + n)u(k)

k =1

N

� , n = 1, 2,… N >> n . (7)

The value r(1) represents the correlation between immediate neighbors (1, 2), (2, 3), (3,
4), etc. Value r(2) gives the correlation between separated pairs (1, 3), (2, 4), etc. A

chaotic response is one for which   and   for large n.
For the oil bubble autocorrelation values r(n)’s, for large n, are not uniformly close to
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Fig. 11. The projected trajectories of the Lorenz attractor remain inside the butterfly region
and outside the ovals around the fixed points.



zero because of the relatively small length of the sequence,  (Figure 12) .
We tried sequences of different length and found that r(n)’s, for large n’s, approached
zero uniformly as the length of the sequence was increased.
The Lorenz equations were integrated numerically using the NAG library. Subroutine

DO2BBF was used for different tolerance levels in the range   to 10−10  .
We projected into the xz plane and formed a binary number symbol sequence with 76,000
entries. The autocorrelation function is shown in Figure 13. The tolerance level in the
numerical scheme had absolutely no effect on the nature of autocorrelation sequence,
even though sequences generated were quite different for different tolerance levels. For
large n, r(n) approached zero uniformly with the increase in length of the sequence, N.
In both cases the decay in the autocorrelations value is very rapid. For large n,
autocorrelation values decrease monotonically with the length of the sequence. The decay
of autocorrelation for the bubble is essentially complete after n = 2  , a substantial
correlation exists only for r(1). The decay of correlation is slower for the Lorenz system
with nonzero r(n) for n < 6  . We could say that the Lorenz system is less random.

Lyapunov exponents
Singh and Joseph (1989) derived a macroscopic Lyapunov exponent for binary sequence.
Lyapunov exponents for continuous times are locally defined quantities which measure
the tendency for chaotic trajectories to diverge exponentially for small time, on the
average. One can define the first exponent by

λ = 1
t N+1 − t 1

log 2

d t k +1( )
d 0 t k( )k =1

N

�  (8)

where   is the initial distance between two trajectories at time
  and   is the distance between these two trajectories at time

t k +1 > t k  . In the continuous case   
and   are infinitesimal and N → � .
The concept of distance is not natural to binary sequences. Two trajectories correspond to
two strings of binary symbols. We replace the condition that the initial distances between
trajectories is small with the condition that we shall only compare strings of symbols
which start with the same symbol. We can compare the “distance” between two strings of
symbols which both start with u = 1 or both with –1, but not with starting values of +1 for
one string and –1 for the other.
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Fig. 12. The autocorrelation sequence for the oil bubble, N = 3000.

Another condition we need for comparing two strings of symbols is statistical

Fig. 13. The autocorrelation sequence for the Lorenz attractor, N = 76,000.



independence. We want uncorrelated sequences so that theorems requiring ergocity, the
use of “time” averages, will be appropriate. This requirement is easy to fulfill for our
binary sequence symbol string. We compare two strings u(k), k = 1, 2, … with u(k + M)

where M is larger than the correlation time for the autocorrelation,   for the

chaotic bubble,   for the Lorenz attractor.
We can replace (8) with

λ t N +1 − t 1( ) = log 2
d(k + 1)

d 0(k)k =1

N

�  (9)

where   is the average “distance” between two statistically independent
strings at the kth observation. If the two symbols at the k + 1 st observation have the
same sign we say that the “distance” is unchanged, on the average

d(k + 1) = d 0(k) . (10)

If the two symbols have different signs after one observation, then

d(k + 1) = c 1d 0(k)  (11)

where   is the constant average change of distance. It follows from (10)
and (11) that

log 2
d(k + 1)
d 0(k)

=
0 same sign

α sign change after iteration

��
�
��

 (12)

where α = log 2 c 1  .

We now define the set   of ergodic initial distance between strings of
symbols

S1 = k : u(k)u(k + M) = 1{ }  . (13)



The complementary set is

S 2 = k : u(k)u(k + M) = −1{ }  . (14)

Hence, we may write

log 2
d(k + 1)
d 0(k)

= α
2 1 − u(k + 1)u(k + 1 + M){ }  

for all symbol sequences which have the same sign at the time k for all k ∈ S 1  . Hence,

log 2
d(k + 1)
d 0(k)k =1

N

� = α
2 1 − u(k + 1)u(k + 1 + M){ }

k∈ S
1

�  . (15)

The total number of k is N. Let   be the number of k’s in the sets S1, S 2  ,
and N1 + N 2 = N  . We have also that

N r(M) = u(k)u(k + M)
k =1

N

� = u(k)u(k + M)
k∈ S

1

�

+ u(k)u(k + M)
k∈ S

2

� = N 1 − N2 = 0 .
 (16)

Since   when M is larger than the correlation “time.” Hence
N1 = N 2 = N

2  .
We next define the macroscopic Lyapunov exponent as the average value

λ m = 1
N1

log 2
d(k + 1)

d 0(k)k∈ S
1

�

= α
N 1 − u(k + 1)u(k + 1 + M){ } .

k∈ S
1

�
 (17)

This is related to the average Lyapunov exponents by

λ(t N +1 − t 1)
N = λ M . (18)

Singh and Joseph (1989) showed that



λ m = α
2 1 − r2(1)[ ]  . (19)

Lyapunov exponents and white noise
Singh and Joseph (1989) calculated the macroscopic Lyapunov exponent for the Lorenz
system described in the section, “Binary sequences.” They calculate α as follows. The

average distance between starting trajectories on the line   of Figure 11 is

AB
3 = d 0(k)  .

The switching distance is AD − AB = d(k + 1)  . Hence

d(k + 1)
d 0(k)

= 3
AD
AB − 1���

���
 .

They found that AD = 4.31 AB  . Then from (12) we calculate α = 3.3 . The relation
(18) between the average Lyapunov exponent λ and the macroscopic exponent

  may be simplified by putting   where ∆T is the average
period. Then

λ =
λ m
∆T = α

2∆T 1 − r(1)2( )  

where   sec. We get

λ m = 1.618 bits/period .

The largest Lyapunov exponents computed directly for the Lorenz attractor is

λ = 1.30  bits/period .
Feeny and Moon (1989) have studied a chaotic dry friction oscillator using the method of
binary sequences of Singh and Joseph (1989). They did an experiment with sliding
friction in which an imposed change of the normal force caused the slider to stick. They
also modeled their experiment with a second order forced ODE involving friction
coefficient and normal load functions. They did Poincaré sections for the experiments
with 2,048 symbols and for the differential equation with 10,000 symbols. The symbols
form a string of binary numbers ±1 corresponding to whether the motion is sticking or
slipping at each pass through the Poincaré section. They measure distance on the Poincaré
plot:

d 0(k) = 1
3 , d(k + 1) = 1 .



Hence, using (19), they get α = log 2 3 = 1.585  .
Feeny and Moon studied the tent map and logistic map using the formula (19) with

α = 1.585  . They calculated r(1) for   and N = 2048  . The theoretical

value of the largest Lyapunov exponent is   for both the tent map and the
logistic map. They compute

��

��

λ m =
0.787515 (105 symbols)

0.787705 (2048 symbols)

��
� tent map

λ m =
0.791578 (105 symbols)

0.791116 (2048 symbols)

��
� logistic map

 

A binary autocorrelation was obtained for their experiments and numerically from the
differential equation for a symbol string with N = 2048  . In both cases the
autocorrelation r(1) is very small, less than ±0.05. They calculate

λ m =
0.79055 experiment

0.79219 numerical integration

��
�
��

 .

The calculation of the exponent for the Poincaré map from the equations of motion gives

λ = 0.77 . 
We draw the reader’s attention to the fact that for all the calculations done by Feeny and
Moon, they get

λ m = α
2 1 − r(1)2�� �� = 0.7925 1 − r(1)2�� ��.  

This shows that   is very small in the examples of the tent map, logistic
map and experiments.



Short range predictability requires that r(1), r(2), …, r(M) ≠ 0 for small M,   
for large n. For white noise, we have r(1) = 0  . The autocorrelation is good for
distinguishing short range predictability and white noise. The macroscopic Lyapunov
exponent is not useful for making this important distinction. In fact, the macroscopic

Lyapunov exponent depends on distance through α, but   is universal, does
not depend on distance and may be a more intrinsic measure of chaos. Certainly r(1) has a
lot less information than the graph of r(n).
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