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Abstract

This paper presents results of a series of experiments on the settling velocity of spheres in two-

component solid-liquid suspensions. Particular emphasis has been given to the effective values of

density and viscosity of the mixture which allows us to describe the settling of the spheres in the mixture

using appropriate modifications of the equations valid for the settling of spheres in pure fluids.
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Introduction

In this paper we give the results of modeling a monodisperse suspension of spheres as an

effective, pure fluid with properties computed from the suspension.  Particular emphasis has been given

to the effective values of density and viscosity of the mixture which allows us to describe the settling of

single spheres in the mixture using appropriate modifications of the equations valid for the settling of

spheres in pure fluids.  The idea explored here is motivated by the work of Di Felice, Foscolo, Gibilaro

and Rapagna [1991].  They consider a binary-solid suspension idealized by two particle diameters with

the fluid plus small particles modeled as an effective or pseudo-fluid.  The density and combined flux of

the fluid plus smaller particles were modeled as simple mixtures, using well-known linear weights for

the constituents, and the viscosity of the pseudo-fluid was modeled with the cell model of Happel

[1957].  They then tested the pseudo-fluid concept against four different experiments.  The first

experiments were on the settling velocity of a single particle in a fluidized bed in which the fluidized

suspension was represented as the upward motion of the pure pseudo-fluid and the terminal velocity of

the falling sphere was computed from the Dallavalle correlation with velocities measured relative to the

pseudo-fluid velocity.  The second type of experiment was on the fluidization of two distinct sizes of

particles of the same density with predictions for the upward velocity of the large particle modeling the

small particles plus fluid as a pseudo-fluid using the monocomponent correlation of Rapagna, et al.

[1989] with the terminal settling velocity of a single large particle in the pseudo-fluid.  A third set of

experiments focused on the circulation of a bidisperse suspension in a circulating fluidized bed, and the

fourth set focused on the sedimentation of binary-particle mixtures, modeled as sedimentation of the

large particles through the pseudo-fluid.  In all cases, the effective equations for the pseudo-fluid yielded

predictions which are in remarkably good agreement with experiments.

Kothari and Turian [1983] considered the settling of particles of different sizes with the same

density.  They used the Richardson-Zaki correlation for the slip-velocity of the particles relative to the

fluid and proposed that the Stokes settling velocity for a particle of species i be modified by replacing

the fluid density ρw  in buoyancy force with the average density of a suspension consisting of the fluid

and the particles smaller than that of species i.  They found very good agreement between their model

and experiments.
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Sengun and Probstein [1989] modeled a polydisperse coal slurry as a bimodal dispersion in

which the fluid and colloidal particles are regarded as a single composite, non-Newtonian fluid, and the

large non-colloidal particles as a monodispirse (polydisperse), non-colloidal dispersion.  Since the

colloidal particles tend to be in suspension by Brownian motion, the composite fluid is something like a

mixture of miscible liquids or more like a polymeric surfactant solution.  They found excellent

agreements between the predictions of their theory and experiments on coal slurries.  They did not

introduce the notion of an effective density probably because the motion of slurries is not driven by

gravity, but the fluid plus colloidal particles do form an effective fluid with a composite density.

The present work differs from others in several ways.  We are able to back out an effective

viscosity µe  and density ρe  of a fluidized suspension by linear regression of measured values of the fall

velocity of test spheres and rise velocity of test bubble through the suspension, fitting the experimental

data to an empirical formula of Francis [1933] for the sedimentation of a single particle in a channel

filled with pure fluid with the fluid viscosity µ f  and density ρ f  replaced µe  and ρe .  When the test

particle is large relative to the suspended particle, the measured values of µe  and ρe  are just the ones

which are expected from the empirical formula of Thomas [1965] for viscosity and the composite

density of the mixture is linear in the volume fraction.  Moreover, using the same effective values of the

viscosity and density, we are able to modify the correlation between the drag coefficient and Reynolds

number given by Barnea and Migrahi [1973], which applies in fluidization and sedimentation to describe

the settling of particles in a fluid-solid suspension.  Again, the agreements are good when the test

spheres are rather larger than the suspended spheres, but the discrepancies increase as the ratio of

diameters of test to suspended spheres decreases.

A proper theory of the effective density of a mixture ought to identify the borders of the

applicability of the theory and the ratio of the sizes of test to suspended particles is one such border.  The

concept of effective density is an interpretation of Archimedes’ principle and the different interpretation

of it are controversial.  Suppose we have two fluids and they are arranged in layers as in Figure 3.  Never

mind that the heavy fluid will sink.  It may sink very slowly relative to the time scale of the thought

experiment described in the caption to Figure 3.
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The layered configuration is not completely appropriate to fluidized beds and suspensions.  For

these we may think of small particles giving rise to a relatively smooth pressure gradient close to the

mean pressure gradient, as in Figure 4.

In a fluidized bed, one wants a formula for the drag on a particle.  If the particle is fluidized in

the compositive fluid under steady conditions, then the drag D on a particle is equal to the effective

weight We,

D = We = ρP − ˜ ρ ( )gVP (1)

where ρP  is the particle density, VP  is the particle volume and ˜ ρ  is the effective density of the

composite fluid.

There is a controversy about the effective density in the case when the fluidized solid particles

have the same volume VP  and density ρP  as the test particle with drag D given by (1).  Foscolo, Gibilaro

and Waldram [1983] claim that

˜ ρ = ρ = ρ fε + 1 − ε( )ρP (2)

where ρ f  is the fluid density, ε is the fluid fraction or voidage and ρ  is the mass average density.  Since

ρP − ρ = ε ρP − ρ f( ), we have

ρP − ρ ( )gVP = DG = ε ρP − ρ f( )gVP = εDc (3)

where Dc is the correct drag according to Clift, et al. [1987], who claim that ˜ ρ = ρ f .

The point of controversy appears at first glance not to have substance.  It depends on a decision

about the decomposition of the total weight of a particle into buoyancy and drag

ρPVPg = ˜ ρ VPg + ρP − ˜ ρ ( )VPg (4)

where ˜ ρ = ρ  for Gibilaro and ˜ ρ = ρ f  for Clift.  Since DG = ε Dc, both choices are correct within the

context of their own definitions.  The choice ˜ ρ = ρ  made in the decomposition becomes important in

deriving approximate theories in which the drag formula depends on the choice.  Foscolo and Gibilaro

[1984, 1987] generalized the Richardson-Zaki correlation into an unsteady drag law DPG = D(uP, ε)
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depending on the particle velocity uP and fluid fraction ε.  They used this drag to get an expression for

bubbling in a fluidized bed.  Clift et al. [1987], choosing ˜ ρ = ρ f , find a drag DC = DPG/ε and an

expression for bubbling which also differs by a factor of ε.

(Figure 3 from “Studies of Two-Phase Flows of Solids and Liquids [Joseph])

Figure 1.  The dark layers are of heavy fluid, the light areas are of light fluid.  A large sphere will be buoyed up by the
effective density of the composite fluid.  There is a mean pressure gradient made of steps.  If the small sphere moves
relative to the media, it will sometimes be buoyed up by light fluid and sometimes by heavy fluid.  The small sphere in
the picture is buoyed up by the light fluid.

(Figure 4 from “Studies of Two-Phase Flows of Solids and Liquids [Joseph])

Figure 2.  The particles are heavier than the fluid.  They fall unless fluidized by a stream moving up against gravity.
A large sphere will be buoyed up by the effective density of the composite fluid.  What will happen to a small sphere?
Will it be buoyed up as an effect of the mean pressure gradient?

There is therefore a genuine issue in the controversy about effective density.  We are dealing with

approximate theories in which the 3-D dynamic is replaced by an equivalent 1-D theory, based entirely

on an expression for the drag on a particle in a fluidized suspension.  The question is:  What is the best

equivalent?  Here the choice makes a difference and there is a “best” choice, where best need not be all

that good.  There will be an error due to approximation, and the smallest error could be large in some

problems.

Experimental

Low Reynolds numbers

An effective fluid was created by suspending glass beads in a highly-viscous liquid.  The liquid

(Dow Corning 200 oil) had a viscosity of 12.2 Pa s and a density of 975 kg m-3.  The diameter of the
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suspended particles was approximately 800 µm and each one weighted 2,140 kg m-3.  These suspended

particles settled only a few centimeters in one hour, in sharp contrast to the settling velocity of

centimeters per second achieved by the test particles.  The vertical sedimentation channel used in these

experiments was of Plexiglas, 37-cm high and of rectangular cross-section, 8.5-cm wide and 5.5-cm

deep.  Each concentration of glass beads in Silicon oil was thoroughly mixed in a separate container and

poured into the sedimentation channel just prior to each experiment.  Tests were started some minutes

later after allowing entrained air to rise.

The solid fluid mixtures used had a certain degree of opacity and therefore strong back lighting

was provided to track the settling particles and measure their falling velocity.  A certain care had to be

given to the duration of the lighting time.  Long exposure to light caused overheating of the system and

the reduction of the fluid viscosity, in spite of the small thermal sensitivity of the viscosity of the Dow

Corning 200 fluids to temperature.

The test particles were made of different materials with a high degree of sphericity and a narrow

diameter tolerance.  Other experiments were carried out using bubbles of fluid as test particles.  Bubbles

of watered colored with blue ink were injected in the channel with calibrated pipet.  The precision of the

injected volume was ±0.05 ml.  The weight was measured in advance for each dropped particle.  Settling

velocities were evaluated either by measuring the time for the particle to pass by a fixed reference

position with a stopwatch or by following the particle from the image taken with a high-speed video

recording system.

High Reynolds number

Sedimentation of particles at higher Reynolds numbers was carried out in water-fluidized beds.

The column used was 1-m high and 5.17-cm ID, made of transparent plastic material.  The distributor

was made with a 2-cm high fixed bed of 3-mm lead shots held down by a steel net and a fabric cloth.

The water outlet was on one side of the column, 10-cm below the top, which was open to allow the

dropping of test particles.  Glass beads of 6.35-mm diameter and 2,453 kg m-3 density and glass beads of

800µm and 2,410 kg m-3 density were fluidized.  The same kind of test particles and the same kind of
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measurement techniques were used in the fluidized bed and sedimentation bed.  The expansion curves of

the two beds are given in Figure 3.  According to Richardson and Zaki [1954]

U
uo

= ε n (5)

where uo  is the terminal velocity of one sphere when the solid fraction is zero and ε =1 − φ  is the fluid

fraction.  From a regression of our experimental data we obtained values of n = 2.26 and uo = 0.375 m

s-1 for the 0.635 cm beads and n = 3.09 and uo = 0.120 m s-1 for the 800 µm beads.  Solid test particles

and measurement techniques similar to those used in the sedimenting bed were used in the fluidized bed.

Theoretical equations

Low Reynolds numbers

The terminal velocity, up , of a single spherical particle at low Reynolds numbers in an infinite

fluid is given by the Stokes equation

up =
g(ρp − ρ f )dp

2

γ µ f
(6)

where g  is the acceleration due to gravity, ρ p  is the particle density, ρ f  is the fluid density, dp  is the

particle diameter, µ f  is the fluid viscosity and γ is a coefficient which depends on the fluid and particle

viscosity:  γ = 12 µ f + 3
2 µp( ) µ f + µ p( )[ ].  γ =18 in case of solid particles (µ p = ∞ ) and γ =12 in the

case µ p <<µ f , as in the case of the water bubble that we injected in silicon oil and silicon oil-glass

mixtures.  This means that in our experiments γ  was always known and independent of the medium and

the particle viscosity.  It is well known that when the particle is confined in a small channel, the fall

velocity of the particle is smaller due to the displacement of the fluid in the direction opposite to the

particle motion.  A modification of (6) proposed by Francis [1933] for small containers can be used to

account for the back flow on the particle fall velocity

up =
g(ρp − ρ f )dp

2

γ µ f
1 −

dp

Dc

� 
� 
� � 

� 
� 

2.25

(7)
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where Dc  is the channel diameter.  Equation (3) can be used to measure the viscosity of a fluid of known

density.  If both density and viscosity are unknown, more than one experiment is required.  To facilitate

the interpretation of experiments, it is convenient to rearrange (7) in the following way:

ρ p = ρ f + µ f
γ up

gdp
2 1 −

dp

Dc

� 
� 
� � 

� 
� 

−2.25

(8)

We can plot the data from experiments using different particles in a diagram were the abscissa is given

by γ up g dp
2 1 − dp Dc( )2.25

 and the ordinate is the particle density.  Equation (8) shows that data should

fall on a line whose slope is the fluid viscosity and the intercept is the fluid density. Equation (8) can be

also used to correlate the sedimentation of particles in solid-fluid mixtures.  In this case, however, values

of ρ f  and µ f  should to be replaced with effective values ρe , the effective density of the mixture, and

µ e , the effective viscosity of the mixture.

Many authors (i.e. Richardson and Meikle 1961, Barnea and Mizrahi 1973, Di Felice et al. 1991)

have suggested and shown that with some fitting of experimental results, the effective density of a

suspension is given by the mean density of the mixture

ρm = ρ f 1 − φ( )+ ρs φ (9)

where ρs  is the density of the solid and φ is the solids fraction.   Brenner [1958] has shown that in

creeping motion ρe = ρm  only when particles are uniformly distributed in the channel cross section.

Several equations have been proposed for the mixture viscosity µm . An extensive review of the

subject is given by Barnea and Mizrahi [1973].  The Einstein equation for dilute suspensions of spherical

particles is well known, but its validity cannot be extended to solid concentrations of order 0.1 or higher.

For φ  < 0.25, Thomas [1965] showed that the mixture viscosity could be calculated with the equation

µm = µ f 1+ 2.5φ +10.05φ2( ) (10)

with an accuracy of over 97.5% of the measured value of the viscosity of the mixture.
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All Reynolds numbers

Barnea and Mizrahi [1973] proposed a model to describe the expansion of the fluidized bed. In

that model, the Reynolds number-drag coefficient relationship for a single solid particle

CDo = CDo(Reo)  is extended to a particle falling in a suspension of other similar particles.  Corrected

expressions for the Reynolds number Reφ  and the drag coefficient CDφ are used to account for the

different fluid dynamic conditions to which the particles are subjected.  The expression for the Reynolds

number is

Reφ =
uφ ds ρ f

µm
= Reo

uφ

Uo

� 
� 
� � 

� 
� 1

exp 5φ 3 1− φ( )[ ]
� 
� 
	 


 
� 
� 

(11)

where uφ is the relative average interstitial velocity between the suspended particles and the fluid and ds

is the diameter of the suspended particles. The term in round brackets in (7) is the correction term for the

actual fluid velocity, while the term in curly brackets accounts for the modified fluid viscosity. Barnea

and Mizrahi [1973] obtained the numerical coefficients for the viscosity term from a regression of

experimental data on the expansion of fluidized beds and sedimenting velocities of settling beds in

creeping flow. The drag coefficient for a particle subject to gravity is given by

CDφ =
4ds ρs −ρm( )g

3ρm uφ
2

� 

� � 
� 

� � 
1

1+ φ1 3{ } = CDo
uφ

Uo

� 
� 
	 
 

� 
� 

−2 ρs −ρm( )
ρs −ρ f( )

� 

� 
� 

� 

� 
� 

1
1+ φ1 3{ } (12)

where the term in round brackets has the same meaning as before, the term in square brackets account

for the effective density of the mixture and the term in curly brackets accounts for the wall effect

generated by the surrounding particles.  Equations (11) and (12) were tested by Barnea and Mizrahi

[1973] on fluidization and sedimentation data found in literature and the tests showed good agreement

between measured values and in a range of Reφ  between 10-4 to 103 using the empiral drag law

CDφ = 0.63 +
4.8
Reφ

� 

� 
� 

� 

� 
� 

2

(13)
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Equations (11) and (12) can be modified to describe the settling of solid particles in two-component

suspensions by replacing ds  and ρs  in (11) and (12) with the test particle diameter dp  and density ρ p

and by replacing uφ  in (11) and (12) _________.  After making these replacements, we find that

Re p =
up − uf( )dp ρ f

µm
= Reo

up − uf

Uo

� 
� 
	 
 

� 
� 1

exp 5φ 3 1− φ( )[ ]

 
� 
� 

� 
� 
� 

(14)

CDp =
4dp ρ p −ρe( )g
3ρm up − uf( )2

� 

� 
� 

� 

� 
� 

1
1+ φ1 3{ } = CDo

up − uf

Uo

� 
� 
	 
 

� 
� 

−2 ρp −ρe( )
ρ p −ρ f( )

� 

� 
� 

� 

� 
� 

1
1+ φ1 3{ } (15)

where uf = U ε .  Equation (15) is coupled with an empirical drag law of the form

CDp = 0.63 +
4.8
Rep

� 

� 
� 

� 

� 
� 

2

(16)

Equations (14) and (15) with ρe = ρm  is one estimate of the settling velocity of solid particles in

effective fluid models of solid-fluid mixtures at any Reynolds number.  In creeping flow, the main

difference between (8) and (14) through (17) is the wall correction.  In (8) the velocity is corrected for

wall effects by the coefficient 1 − dp Dc{ }−2.25
 while in (14) through (16) it is corrected for similar

effects from other particles by the coefficient 1 + φ1 3{ }.  If we replace the last factor in (15) with a wall

correction factor, we find that

CDp = CDo
up − uf

Uo

� 
� 
� � 

� 
� 

−2 ρp −ρe( )
ρp −ρ f( )

� 

� 
	 


 

� 
� 1 −

dp

Dc


 
� 
� 

� 
� 
� 

2.25

(17)

Equations (14), (16) and (17) with ρe = ρm  is a possible variant of our theory (14), (15) and (16) for

settling velocity.

Experimental Results

Equation (8) was tested against a preliminary set of experiments in pure silicon oil.  The results

are given in Figure 4.  Near the intercept, data points for experiments with water bubbles overlap with

data points for experiments for plastic particles.  A linear regression of the data gives values of fluid

density ρ f = 969  kg m-3 and of fluid viscosity µ f = 12.1 Pa s, which are very near to the actual values.
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The linear correlation coefficient r = 999 shows that the linear model describes fairly well the

experimental data in the conditions tested.

Two mixtures of glass beads and silicon oil were tested, one at φ = 0.1 and the other at φ = 0.2.

The results are given in Tables 1, 2 and 3 and Figures 5 and 6.  Hollow circles in Figure 4 represent

experiments carried out with water bubbles (Table 3).  Water bubbles rise and solid fall in our mixtures.

For φ = 0.1 (Figure 5, Table 1) values of fluid properties from the linear regression are ρe = 1.11 ⋅103  kg

m-3 and µ e = 14.4 Pa s.  These values compare with ρm = 1.10 ⋅103  kg m-3 and µm = 16.5  Pa s evaluated

from (9) and (10).  For φ = 0.2 (Figure 6, Tables 2, 3), regression values of fluid properties are

ρe = 1.27 ⋅103  kg m-3 and µ e = 20.2  Pa s.  These compare with ρm = 1.21 ⋅103  kg m-3 and µm = 23.2

Pa s.  These compare with  ρm =1.21 ⋅103 kg m-3 and µm = 23.2 Pa s from (9) and (10).

For all the data with φ = 0.1 and φ = 0.2, Re p  and CDp  were evaluated first using (14), (15) and

(16), and then using (14,) (16) and (17).  A comparison of these two methods of evaluation is shown in

Figure 9.  The agreement seems satisfactory.  It appears that in the conditions tested (15) and (17)

produce similar results, and we differentiate between the two on the basis of our experimental results.

Values of Re p  and CDp  evaluated according to (14) and (15) are reported in Tables 1 and 2 as well.

Data from experiments carried out in the fluidized bed are given in Tables 4 and 5.  Evaluation of

this data using (14) and (15) are compared with (16) in Figures 8 and 9 and in Tables 4 and 5.

Agreement between theory and experiment for fluidized beds of spheres is better for the 800 µm glass

beads (Figure 8) than for the 0.635 cm glass beads (Figure 9).  A possible interpretation of this

difference in behavior may be found in the different in the diameter dp of test particles and the diameter

ds of suspended particles.  When  dp ds ≅  10-20 and when ds = 6.35 mm, dp ds ≅  1-2 with ds = 800

µm.  This suggests that the earlier model may be valid only in the limiting case dp ds >>1.  Inspection

of (15) indicates that the big discrepancy between the model and the data in the bed of 6.35 mm particles

cannot be simply overcome with the use of an effective density  ρe ≠ ρm , which varies in the range

ρ f ,ρm[ ].  This implies that in the conditions tested, there is a failure of the whole model.
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In Figures 8 and 9, experimental results interpreted by (14) and (17) are reported as well. The

difference between (15) and (17) is small, although results obtained with (17) appear to be slightly more

scattered.

Discussion and Future Developments

Experiments on the settling of particles in fluidized suspensions correlate fairly well with (8) and

(17) when ρ f  and µ f  are replaced with effective value ρm  and µm .

Results of experiments at low Reynolds number tend to sustain the hypothesis that the effective

density experienced by the falling particles is the average density of the suspension expressed by (9

nevertheless scatter of data is considerable and likely to affect values of the effective density

extrapolated with (8).  Experiments carried out with rising water bubbles help in the evaluation of the

intercept by placing points near to the intercept of (8).

A possible effect of the diameter ratio of sedimenting to suspended particles has been highlighted

by sedimentation experiments in water fluidized beds.

Work will proceed completing experiments with water bubbles in silicon oil mixtures and trying

to better assess the effect of the dp ds ratio by using different and as big as possible particles to make the

silicon oil-solid mixtures.
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Particle
up

(10-3 m s-1)

18up

gdp
2 1−

dp

Dc

� 
� 
� � 

� 
� 

2.2

(102 s m-2)

Re p

(10-3)
CDp

(103)

teflon 1.14 0.651 0.480 46.9
dp =6.35 mm 1.06 0.606 0.447 54.5

ρ p  =2150 kg m-3 1.18 0.627 0.496 44.2
1.54 0.877 0.649 26.0
1.19 0.681 0.502 43.6

aluminum 1.80 1.03 0.758 30.4
dp =6.35 mm 1.97 1.12 0.830 25.6

ρ p  =2790 kg m-3 2.09 1.19 0.880 22.7
2.02 1.15 0.852 24.3
2.01 1.15 0.848 24.5

aluminum 7.52 1.01 7.98 4.16
dp =16.0 mm 8.80 1.18 9.34 3.05

ρ p  =2700 kg m-3 9.07 1.22 9.62 2.85
8.46 1.13 8.98 3.30
8.85 1.19 9.39 3.01

ceramic 7.46 1.68 5.51 4.99
dp =11.1 mm 8.50 1.91 6.28 3.85

ρ p  =3820 kg m-3 9.14 2.06 6.75 3.33
8.09 1.82 5.97 4.23
8.91 2.01 6.58 3.50

steel 7.32 4.18 3.09 7.13
dp =6.35 mm 7.82 4.47 3.30 6.24

ρ p  =7660 kg m-3 8.25 4.71 3.48 5.60
7.66 4.38 3.23 6.52
8.30 4.74 3.50 5.56

Table 1. Sedimentation data in glass-silicon oil mixtures, φ  = 0.1.
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Particle
up

(10-3 m s-1)

18up

gdp
2 1−

dp

Dc

� 
� 
� � 

� 
� 

2.2

(101 s m-2)

Re p

(10-3)
CDp

(103)

teflon 0.996 5.69 0.333 50.9
dp =6.35 mm 0.983 5.62 0.329 52.3

ρ p  =2150 kg m-3 1.00 5.74 0.336 49.7
aluminum 1.36 7.77 0.455 45.8

dp =6.35 mm 1.46 8.33 0.488 39.9
ρ p  =2790 kg m-3 1.15 6.58 0.385 63.9

1.20 6.86 0.402 59.1
1.14 6.54 0.383 64.8
0.970 5.54 0.324 90.2
1.01 5.77 0.338 83.7

aluminum 5.03 6.76 4.23 7.99
dp =16.0 mm 5.77 7.74 4.86 6.09

ρ p  =2700 kg m-3 5.78 7.77 4.86 6.05
5.93 7.97 4.98 5.75
5.39 7.24 4.53 7.02
5.35 7.20 4.50 7.12

aluminum 6.98 7.59 7.00 5.29
dp =19.1 mm 7.32 7.96 7.34 4.81

ρ p  =2800 kg m-3 7.45 8.11 7.48 4.63
7.09 7.71 7.11 5.12

ceramic 5.85 13.2 3.42 7.17
dp =11.1 mm 4.83 10.9 2.83 10.5

ρ p  =3820 kg m-3 5.79 13.0 3.39 7.31
6.35 14.3 3.72 6.09
5.58 12.5 3.27 7.88
5.65 12.7 3.31 7.68
5.98 13.4 3.50 6.87

steel 3.56 20.4 1.19 27.3
dp =6.35 mm 4.58 26.2 1.53 16.5

ρ p  =7660 kg m-3 4.55 26.0 1.52 16.8
5.96 34.1 1.99 9.76
4.89 27.9 1.64 14.4
5.51 31.5 1.84 11.4

steel 17.0 38.2 9.94 2.15
dp =11.1 mm 16.7 37.5 9.77 2.21

ρ p  =7790 kg m-3 14.6 32.7 8.52 2.91
12.7 28.5 7.43 3.83
14.8 33.2 8.65 2.82
15.6 35.0 9.07 2.59
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Table 2. Sedimentation data in glass-silicon oil mixtures, φ  = 0.2.

Volume
(ml)

up

(10-3 m s-1)

12up

gdp
2 1−

dp

Dc

� 
� 
� � 

� 
� 

2.25

(101 s m-2)
0.310 -0.486 -1.14
0.560 -0.692 -1.18
0.560 -0.731 -1.25
0.810 -0.922 -1.30
1.06 -0.951 -1.17
1.06 -1.01 -1.24
1.31 -1.19 -1.32
1.56 -1.25 -1.28
1.56 -1.03 -1.06
1.81 -1.45 -1.39
2.06 -1.48 -1.35
2.31 -1.61 -1.40

Table 3. Sedimentation data for bubbles of water, ρp =990, in glass-silicon oil

mixtures, φ  = 0.2. Negative velocities are directed upwards.

Particle
φ
(-)

uf

(10-2 m s-1)
up

(10-1 m s-1)
Re p

(103)
CDp

(10-1)
teflon

dp =6.35 mm
ρ p  =2150 kg m-3

0.66 3.31 1.90 0.646 4.73

aluminum 0.66 3.31 2.84 0.899 5.28
dp =6.35 mm 0.79 5.77 3.26 1.62 4.68

ρ p  =2700 kg m-3

aluminum 0.66 3.31 5.31 3.93 4.10
dp =16.0 mm 0.66 3.31 4.54 3.41 5.45

ρ p  =2700 kg m-3 0.79 5.77 5.15 6.01 5.10
0.79 5.77 5.60 6.47 4.40

aluminum 0.66 3.31 6.56 5.69 3.59
dp =19.1 mm 0.66 3.31 5.53 4.86 4.93

ρ p  =2800 kg m-3

ceramic 0.66 3.31 6.15 3.13 4.31
dp =11.1 mm 0.66 3.31 5.58 2.86 5.16

ρ p  =3820 kg m-3 0.79 5.77 6.51 5.15 4.26
0.79 5.77 6.94 5.46 3.80

steel 0.66 3.31 6.73 1.94 5.67
dp =6.35 mm 0.79 5.77 7.37 3.29 5.00

ρ p  =7660 kg m-3 0.79 5.77 7.56 3.37 4.77
steel 0.66 3.31 11.0 5.41 3.99
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dp =11.1 mm 0.66 3.31 11.4 5.58 3.75
ρ p  =7660 kg m-3 0.79 5.77 9.38 7.20 5.70

Table 4. Sedimentation data in a bed of 800 µµµµm glass beads fluidized by water.
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Particle
φ
(-)

uf

(m s-1)
up

(m s-1)
Re p

(103)
CDp

(10-1)
teflon

dp =6.35 mm
ρ p  =2150 kg m-3

0.75 0.20 0.0086 0.986 9.99

aluminum 0.80 0.23 0.305 6.18 5.38
dp =16.0 mm 0.80 0.23 0.222 5.38 7.30

ρ p  =2700 kg m-3 0.77 0.23 0.267 5.17 6.15
0.77 0.23 0.276 5.25 5.97
0.77 0.23 0.274 5.24 6.00
0.70 0.17 0.234 3.71 7.10
0.70 0.17 0.219 3.60 7.56
0.70 0.17 0.254 3.87 6.51
0.58 0.11 0.111 1.43 14.6
0.58 0.11 0.123 1.49 13.4
0.58 0.11 0.112 1.43 14.4

aluminum 0.80 0.23 0.412 8.71 4.91
dp =19.1 mm 0.80 0.33 0.353 8.07 5.88

ρ p  =2800 kg m-3 0.77 0.21 0.354 7.16 5.83
0.70 0.17 0.284 4.89 7.46
0.58 0.11 0.134 1.83 16.3

ceramic 0.80 0.23 0.325 4.44 6.26
dp =11.1 mm 0.80 0.23 0.320 4.41 6.37

ρ p  =3820 kg m-3 0.80 0.23 0.296 4.23 6.90
0.80 0.23 0.300 4.31 6.80
0.80 0.23 0.286 4.21 7.15
0.77 0.21 0.292 3.76 7.09
0.77 0.21 0.346 4.13 5.90
0.77 0.21 0.282 3.69 7.36
0.70 0.17 0.244 2.64 8.88
0.70 0.17 0.233 2.58 9.29
0.70 0.17 0.246 2.65 8.79
0.58 0.11 0.160 1.16 15.1
0.58 0.11 0.149 1.12 16.1
0.58 0.11 0.156 1.14 15.4

steel 0.74 0.19 0.200 1.60 15.3
dp =6.35 mm 0.74 0.19 0.200 1.65 15.2

ρ p  =7660 kg m-3 0.77 0.21 0.235 1.93 12.8
0.77 0.21 0.253 2.00 12.0

dp =7.14 mm 0.77 0.19 0.273 2.17 12.9

Table 5.  Sedimentation data in a bed of 6.35 mm glass beads fluidized by water.


