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Abstract

We study the stability of a two-phase flow between heated inclined plates. The

temperature of the bottom plate is held below the vaporization temperature and the top plate is

hotter than the vaporization temperature. A water film is on the cold wall and a vapor film on the

hot wall. The flow is driven down the walls by gravity. We find a basic flow with steady

distributions of temperature but no phase change. The linear stability of this basic state is

studied in the frame of incompressible fluid dynamics, without convection, but allowing for

phase change at the interface between the two phases. An ambiguity in the choice of the

conditions to be required of the temperature at the phase change boundary is identified and

discussed. Three different instabilities were found, one due to the Reynolds stress when

Reynolds number is large, one due to interfacial friction which is associated with the viscosity

difference of the two phases, and another due to phase changes at the interface.

1. Introduction
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The problem we are considering is related to the problem of stability of laminar film

condensation (Nusselt’s solution) on an inclined cool plate (see Unsal & Thomas [1978] for a

fairly thorough review of this literature) and the problem of a falling film of liquid down an

inclined plate which was decisively analyzed by Yih [1963]. Yih’s problem was generalized to

two-phase Poiseuille flow between parallel plates (Blennerhassett [1980], Renardy [1987] ).

It is necessary that we explain how our problem which is being considered here differs

from those mentioned in the foregoing paragraph and allied studies. Problems of the Yih,

Renardy type have fully developed basic flows but no phase change. In the present study we

allow phase changes but cannot accommodate applied pressure gradients; Poiseuille flow

cannot be treated rigorously in our frame. Our problem differs from the ones on laminar film

condensation because the second wall and the vapor are active and the basic flow is fully

developed and not of boundary layer type. The second wall allows the system to attain a steady

fully developed temperature profile in the basic state which cannot exist in a semi-infinite

region. The fully-developed basic flow which we study is particularly convenient for a

computational study of stability since approximations are not required, and the flow could

conceivably be attained in experiments. We are not in the frame of laminar film condensation

because phase changes do not occur in the basic flow.

We could not obtain a steady fully developed flow for core-annular flow because there is a

pressure jump across the cylindrical interface due to interfacial tension which interdicts the

existence of a common saturation temperature there. For a similar reason, there are no

developed steady flows with phase change which are driven by pressure gradients. On the

other hand, developed steady flows in free fall between heated inclined plates can be

considered if the change of density with temperature is neglected. This neglecting is usually

done in the film condensation problems, and we follow this path, assuming in all that follows
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that the densities of the water and vapor are fixed constants independent of pressure and

temperature.

2. Governing equations

 We are going to assume that the density of the vapor and the density of the water are

constants independent of variation of temperature or pressure across the channel. This means

that the pressure will be a dynamical variable uncoupled from thermodynamics and that

convective currents set up by the working of gravity on thermally induced variations of

temperature will be ignored. It is conceivable that thermally induced buoyancy could produce

some important effects, but Spindler [1982] did allow for these effects and they were not

important.

The velocities of both phases satisfy the incompressible Navier-Stokes equations:

∇ . u = 0, (2.1)

ρ du
dt    = – ∇ p + ρg+ µ∇ 2u . (2.2)

In the energy equation we shall neglect the dissipation term:

ρCp dT
dt    = k∇ 2T . (2.3)

At the interface I(x,t) = y - (R-δ(x,t))=0 we have mass, momentum and energy balances:

Mass:  - 
.
m (x,t)  = ρ1 (u1 - u∑) • n12  = ρ2 (u2  - u∑) • n12 . (2.4)

Momentum:  
.
m  ûuô – ûpôn12 + 2 ûµD[u]•n12ô = 2Hσn12 , (2.5)

Energy: –ûk∇ Tô•n12 = 2 ûµ(u–u∑) • D[u]•n12ô + 
.
m  ûh + 12  |u–u∑|2ô, (2.6)

with kinematic conditions:

u∑ • n12 = - 
∂I/∂t
|—I|  , ûuô • t = 0 , (2.7)
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where n12 is the normal of the interface directed from vapor to water, and t is the tangent. The

saturation temperature at equilibrium is determined as given by the Clapeyron equation as a

function of pressure

T = Ts = 
~
T(p)  . (2.8)

By equilibrium we mean the condition in which there is no evaporation or condensation, 
.
m =0.

This means that the pressure across a phase change boundary must be continuous. Obviously,

if the pressure is different on the two sides of the interface, Ts1=
~
T(ps1) ≠

~
T(ps2) =Ts2, the

temperature cannot be the same in the water and water vapor. There will be a temperature

discontinuity

T1 = 
~
T(pv)  ,   T2 = 

~
T(pw)  . (2.9)

This shows that thermodynamic equilibrium means that the water and its vapor are not in

thermal equilibrium. The existence of a temperature discontinuity evidently cannot be eliminated

by rigorous application of first principles. Schrage [1953] says "... There is no reason why the

temperature of the gas phase should necessarily be the same as that of the liquid or solid

surface in all cases." Indeed, classic kinetic theory calculations (Pao[1971], Sone and

Onishi[1978], Aoki and Cercignani[1983], Onishi [1984] and Cercignani, Fiszdon and Frezzotti

[1985]) indicate that for monatomic vapor large temperature jumps exist at interfaces. Shankar

and Deshpande [1990] have measured the temperature distribution in the vapor between an

evaporating liquid surface and a cooler condensing surface in water, Freon 113 and mercury.

The temperature profiles obtained in mercury showed large jumps at the interface as large as

almost 50% of the applied temperature difference.

The usual approximation made in the study of phase changes of liquid and vapor is to

require thermal equilibrium

ûTô = T1 – T2 = 0, (2.10)1
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together with thermodynamic equilibrium in the vapor

T1 = 
~
T(pv)  , (2.10)2

(See Plesset and Zwick [1954], Gebhardt [1961], Ishii [1975]). In general, pw ≠pv, so that the

water is not in thermodynamic equilibrium.

The choice of temperature conditions at the phase change boundary appears to be an

unresolved question of physics. Two of the possibilities are expressed as (2.9) and (2.10).

There are many other possibilities.

The enthalpy h of water and water vapor are determined by the temperature and density

and the difference between them is called the heat of vaporization

hfg = ûhô . (2.11)

At Ts=100° and atmosphere pressure, hfg is 2.257∞106 joules per kilogram.

The values of the parameters which shall be taken as constants in the analysis to follow are

their table values at T = Ts = 100° C,

ρ1 = 0.585 g/m3,
ρ2 = 0.965 g/cm3,
µ1 = 0.0125 cp,
µ2 = 0.28 cp,
k1 = 2.5∞10-4 joule/cm sec °C, (2.12)
k2 = 6.8∞10-3 joule/cm sec °C,
Cp1 = 1.96 joule/gm °C,
Cp2 = 4.18 joule/gm °C,
hfg = 2.257∞103 joule/gm,

σ = 64.4 dynes/cm.
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 3. Governing equations for the inclined channel

We now write the governing equations for flow down an inclined channel, figure 1,

restricting the analysis to two space dimensions.

y

x
R

δ

ω

T+
T-

vapor

water

Figure1. Schematic of free fall of water(2) and vapor(1) down an inclined channel of
height R. The interface is at y=R−δ(x,t). ω is the angle of inclination from horizontal.

The interface is represented by

I(x,y,t) = y − (R - δ (x,t)) = 0 . (3.1)

Then

- n12 = n21 = 
—I
|—I|   = 

ey + exdx
1+d2

x
  , (3.2)

- t12 = t21 = 
- eydx+ex

1+d2
x

  . (3.3)

The equations of motion and energy are resolved in the usual way after noting that

g = - ezg =  - g[ ](ex•ez)ex + (ey•ez)ey   = - g [ ]sinw ex - cosw ey  . (3.4)

Then

ρ du
dt    = ρg sinω - ∂f∂x   + µ∇ 2u , (3.5)
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ρ dv
dt    = - ∂f∂y   + µ∇ 2v , (3.6)

where

φ = p + ρgy cosω, (3.7)

and (2.3) governs T. These equations hold both in the water and vapor phase with appropriate

values for the constants.

The interface conditions (2.4) through (2.10) may be expressed in coordinate form using

(3.7) and

2H = - 
dxx

 (1+ d2
x)3/2  . (3.8)

The continuity of the tangential component of velocity (2.7) implies that on y=R - δ

û- vδx + uô  = 0 . (3.9)

The normal and tangential component of (2.5) can be written, using (3.7), as

- ûφô + ûρôg(R-δ) cosω – 
.
m 

ûv+dxuô
(1+d2

x)1/2  + 2
1+d2

x
 

    û ôµ 
�
�

�
�∂v

∂y  + dx �
�

�
�∂v

∂x  + ∂u∂y  + d2
x ∂u∂x   = - 

sdxx
(1+d2

x)3/2   , (3.10)

and

(1- δ2
x ) û ôµ �

�
�
�∂u

∂y + ∂v∂x   - 2δx û ôµ �
�

�
�∂v

∂y – ∂u∂x   = 0 . (3.11)

Then, since the tangential component of velocity is continuous across y=R - δ

(u–u∑) = [ ](u–u∑) • n12   n12 = [ ](u–u∑) • n21   n21,

and

(u–u∑) • n21 = (v+δxu+δt) / (1+δ2
x )1/2 . (3.12)
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It follows that

.
m  = ρ(v+δxu+δt) / (1+δ2

x )1/2, (3.13)

and the energy balance (2.6) reduces to

û ôk�
�

�
�-dx ∂T∂x – ∂T∂y

(1+d2
x)1/2    =  

•
m  ûhô + 

 
•
m û(v+dxu+dt)2ô

(1+d2
x)  

    + 2
(1+d2

x)3/2 û ôµ(v+dxu+dt) 
�
�
�

�
�
�∂u

∂y + dx �
�

�
�∂v

∂x + ∂u∂y  + d2
x ∂u∂y  . (3.14)

We have already mentioned that we do not know what temperature conditions to apply at the

phase change boundary. We could demand that the temperature be at the saturation values in

the water and water vapor. If the pressure is not continuous, then the temperature will not be

continuous. We could also require that either water or its vapor be at saturation and enforce the

continuity of temperature. Then the second phase will not be at saturation.

4. Basic flow

There is a steady, developed, solenoidal solution

(u,v,φ,T,δ) = (U(y),0,0,T,δ0), (4.1)

in the form

��
�
��U1(y) = - 

ρ1gsinω
2µ1

 (R–y)2 + C1(R–y)     ∀ y ∈  (R–d0, R)

U2(y) = - 
ρ2gsinω

2µ2
 (R–y)2 + C2(R–y) + C3 ∀ y ∈  (0, R–d0)

 , (4.2)

where

δ0 = 
(T+–Ts)k1R

(T+–Ts)k1 + (Ts–T–)k2
  def=  βR  , (4.3)

defines β, the vapor volume fraction or relative thickness of the vapor layer and
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C1 = 
gsinwR[b2(r1µ2–2r1µ1+r2µ1) + 2bµ1(r1–r2)+µ1r2]

2µ1(µ1+b(µ2-µ1))   ,

C2 = 
gsinwR[b2(2r2µ2–r2µ1+r1µ2) + r2µ1]

2µ2(µ2+b(µ2–µ1))   , (4.4)

C3 = 
gsinwR2[r2b(µ2–µ1) – b2(2r2µ2–r2µ1–r1µ2)]

2µ2(µ1+b(µ2–µ1))   .

The temperature is given by

��
�
��T1(y) = T+ – (T+ – Ts) R–y

d0
     ∀ y∈ (R–d0, R)

T2(y) = Ts – (Ts – T–) 
R–y–d0
R–d0

  ∀ y∈ (0, R–d0)
 , (4.5)

At y=R - δ0, T1=T2=Ts, and

��
�
��P1 = - r1 g y cosw + A1   ∀ y∈ (R–d0, R)

P2 = - r2 g y cosw + A2    ∀ y∈ (0, R–d0)
 , (4.6)

with A1 and A2 selected so that

ûpô = - ûρôg(R - δ0 )cosω + ûAô = 0 . (4.7)

i.e. the pressure at the vapor-water interface is continuous, the basic flow is in thermodynamic

equilibrium with

Ts = T(P(R-δ0)) ,    
•
m  = 0 . (4.8)

5.  Linearized equations

Let u,v,p,θ,h be perturbations of U,0,0,T,δ0. The linearized equations for the

perturbations are

ux + vy = 0 , (5.1)

ut + Uux + vU´ = - 1r   φx + ν∇ 2 u , (5.2)
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vt + Uvx = - 1r   φy + ν∇ 2 v , (5.3)

ρcp (θt + Uθx + vT´) = k∇ 2θ . (5.4)

u,v and θ vanish on y=0 and y=R. The interface conditions are evaluated on y=R - δ0.

 
.
m  = ρ1(v1 - U1hx -ht) = ρ2(v2 - U2hx - ht) , (5.5)

ûu + Uyhô = 0 , (5.6)

- ûφô + ûρôgh cosω + 2ûµvyô = σhxx , (5.7)

ûµ(uy + vx + Uyyh)ô = 0 , (5.8)

ûkθy ô + 
.
m hfg = 0 . (5.9)

We have to choose a temperature condition at the phase change boundary.

We require saturation in vapor or side 1,

θ1 = 
~
T ´ (ps) p1+ [- T1´ + 

~
T ´ (ps) P1´]h. (5.10)

Then either

θ2 = 
~
T ´ (ps) p2 + [- T2´ + 

~
T ´ (ps) P2´]h, (5.11)1

or

[θ] +  	



�
�dT

dy   h=0. (5.11)2

We do not know which of the two choices (5.11)1 or (5.11)2 better represents conditions to be

described at a phase change boundary.

6. Perturbation equations and normal modes

To make our equations dimensionless we use following scales:

length: H0  def=  R - δ0 ,
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velocity: V0= 
(r2+b(r1-r2))gsinw
 2(µ1+b(µ2-µ1))   δ0H0,

time:
H0
V0

 ,

pressure: ρ2V2
0 ,

temperature: Ts-T-,

where V0 is just the velocity at the interface.

We shall use the same letters for dimensional and dimensionless variables. The

dimensionless parameters listed below appear in the dimensionless equations and i=(1,2) =

(vapor,water).

i = 
riV0H0

µi
  , Reynolds number

Pri = 
µici
ki

  , Prandtl number

Pei = iPri, Peclet number

W = s
r1H0V2

0
  , Weber number

ξ = 
k2
k1

 , Thermal conductivity ratio

Γ = 
k1(Ts-T-)

 hfgµ1
 , Phase change number

Π i = 
riTsV2

0
hfg(Ts-T-) (

1
r1 - 1

r2)  , Dynamic pressure over latent heat

~G = 
coswgH0

V2
0

  , Gravity number

ζ = 
r2
r1  , Density ratio

m = 
µ2
µ1

  , Viscosity ratio
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τ1 = 
T+
Ts

  , Hot wall temperature ratio

τ2 = 
T–
Ts

  , Cold wall temperature ratio

r = R
H0

  , Relative distance between the two walls.

If we specify the fluids as water and its vapor then all their material parameters are determined.

We are left with four independent parameters 2, r, τ2, ω and

ζ = 1.6502∞103,

m = 22.47,

ξ = 27.25.

The basic flow in dimensionless form is given by

U1(y) = a1(r-y)2 + b1(r-y) , (6.1)

U2(y) = a2(r-y)2 + b2(r-y) + c2 , (6.2)

T1(y) = 
t1

1-t2  - 
t1-1
1-t2 r-yr-1 , (6.3)

T2(y) = 1
1-t2  - (1-y), (6.4)

where a1= 
( )( )( )

( )( )βζβζ
ββ

−+
−−+−

1
111 m

,         a2 = z
m a1,

b1= (b
2(z+m-2)+2b(1-z)+z)

b(z+b(1-z))  ,

b2= (b
2(2zm-z-m)+z)
bm(z+b(1-z)) , 

c2= (z(m-1)-b(2zm-z-m)+z)
 m(1-b)(z+b(1-z)) . 

Let u,v,p,θ,h be perturbations of U,0,0,T,H0. In terms of normal modes
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v(x,y,t) = {u(y),iv(y)}exp(iα(x-ct)),

p(x,y,t) = p(y)exp(iα(x-ct)),

θ(x,y,t) = θ(y)exp(iα(x-ct)),

h(x,t) = h exp(iα(x-ct )),

we get equations for u(y),v(y), p(y),θ(y) and h:

αu + v´ = 0, (6.5)

α(U – c)u + v  dU
dy  = -αp + i  (a2u – u´´) , (6.6)

α(U – c)v = p´+ i  (a2v – v´´) , (6.7)

α(U – c)θ + v dT
dy  =  i

Pe(a2q – q´´) , (6.8)

together with boundary conditions:

u1(r) = v1(r) = θ1(r)  = 0, (6.9)

u2(0) = v2(0) = θ2(0) = 0. (6.10)

After p(y) and h have been eliminated, the jump conditions at the unperturbed interface y=1 can

be expressed as

α[u] (U1- ζ U2) + (v1 - ζv2) 	



�
�dU

dy   = αc(1 - ζ)[u], (6.11)

�

�

�
�
�d2U1

dy2  - m
d2U2
dy2  u1 - 

�

�

�
�
�d2U1

dy2  - m
d2U2
dy2  u2 + u1´	



�
�dU

dy   - mu2´	



�
�dU

dy  

     - αv1	



�
�dU

dy   + αmv2	



�
�dU

dy   = 0, (6.12)

i
a 1

  u1´´	



�
�dU

dy   - iz
a 2

  u2´´	



�
�dU

dy   - 
�
�
�

�
�
�

�

�

�
�
�ia

1
 - U1  	



�
�dU

dy  + Wa2+(1- z)~G  u1

    + 
�
�
�

�
�
�

z
�

�

�
�
�ia

2
 - U2  	



�
�dU

dy  + Wa2+(1- z)~G  u2 + 2 	



�
�dU

dy ( i
1
 v1´  - zi

2
 v2´ )+

�

�

�
�
�dU1

dy   
v1
a  - z

dU2
dy  

v2
a 	



�
�dU

dy   = (u1 - ζu2)c	



�
�dU

dy  , (6.13)

- (αu2 - αu1)U1+ v1	



�
�dU

dy   - 
iG

2
  θ1´	



�
�dU

dy   + iG
2
  ξθ2´	



�
�dU

dy   = α(u1 - u2)c. (6.14)
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The condition (5.10) that the temperature on the vapor side of the interface is at saturation can

be written as

Π1 �
�
�

�
�
�

iu1´´-(ia2-a 1U1)u1+ 1v1 
dU1
dy   + α 1(θ1 - (T1´+Π1

~G ))
[u]
[U´]  = αΠ1 1 u1c.

(6.15)

Similarly for water side

Π2 �
�
�

�
�
�

iu2´´-(ia2-a 2U2)u2+ 2v2 
dU2
dy  +α 2 (θ2 - (T2´+Π2

~G )) 
[u]
[U´]  = αΠ2 2 u2c.

(6.16)

The continuity of temperature requires that

	



�
�dU

dy    [θ] - 	



�
�dT

dy   [u] = 0. (6.17)

(6.15), (6.16) and (6.17) can not be enforced simultaneously. A choice must be made.

7. Two different Interfacial Temperature Conditions

When (6.15) and (6.16) are adopted, the thermodynamic equilibrium is required at the

interface, consequently the temperature continuity is not guaranted. This closes the

mathematical formation of the eigenvalue problem. We shall designate this problem as case I.

Alternatively we can satisfy thermal equilibrium, namely (6.17) and require that one of the

phases, say, the vapor phase be at saturation temperature. We designate this problem as case

II.

These two different systems of equations differ only on one equation, although generally

it should be expected that they will give different results, for the water-vapor case, the

differences are insignificant ( table 1). Hence, only the results of case II will be reported.

Table1. A comparison of the results from different choices of interfacial temperature conditions 
for typical parameters in the vertical case, ω =90�.

                                                                                                                                                         
   parameters eigenvalue with the maximum growth rate

                                                                                                                             
case I case II
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2 = 10
~
a  =0.0130,

~
a  =0.0131,

r =1.5
~
a c=1.040555,0.152185i

~
a c=1.040536,0.152197i

τ2 =0.97
                                                                                                                                                         

2 = 1000
~
a  =0.250,

~
a  =0.249,

r =2.0
~
a c=0.266496,0.0072672i

~
a c=0.265408,0.0072667i

τ2 =0.97
                                                                                                                                                           

8. Energy Analysis

The temperature or thermal energy equation is coupled to mechanical energy through

the mechanism of phase change. In this case we may get two energy identities, one for

mechanical energy designated with a subscript M and another for thermal energy designated

with subscript T. The mechanical energy equation is obtained as follows. Suppose (u,v,θ) are

the components of an eigenvector associated with the maximum growth rate of one of the

problems satisfying the equations (6.5) to (6.15) and one of the equations of (6.16) or (6.17). To

get the equation governing the evolution of the mechanical energy of the disturbance, we

multiply (6.6) and (6.7) with u* and v*, the complex conjugates of u and v respectively, then

integrate the sum of them over both the liquid and vapor regions

<α(U-c)(u2+v2)> = 1 <α2(u2+v2)+(du
dy )2+(dv

dy )2> - <ζvu*dU
dy >

- [ zi(u'u*+ v'v*) ] + [ζpv*]   (8.1)

where <  > = ��
1

  
  +��

2

  
  , u2 = uu*, v2 = vv* and we used the boundary and interfacial conditions

to evaluate the integrands. (8.1) is the energy balance for the small disturbance, every term in it

can be interpreted as some kind of energy. The imaginary part of the right hand side represents

the growth of the energy of the disturbance and the left side may be split into three parts

  
.
E M = IM - DM + BM (8.2)

where 
.
E M =  αci<(u2+v2)>,
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IM =  Im<ζvu*dU
dy >, energy production from the basic flow

DM = 1 <α2(u2+v2)+ (du
dy )2+(dv

dy )2>,  viscous dissapition rate

BM =Im{[ zi(u'u*+ v'v*) ] - [ζpv*]},  energy production from interface.

We may transform the last term of BM as follows

 [ζpv*] =  [ζp]v2*+ [ζv*]p1, (8.3)

where [ζp] can be evaluated from the jump condition as

2[ zi v'] - (α2W + (1- ζ)~G ) [u]

 [dU
dy ]

  .

Then BM can be further decomposed into four parts

BM = B1 + P + B2 + G (8.4)

where

B1 =α2W Im(
[u]v2*

 [dU
dy ]

 )

can be regarded as the energy supply rate due to the surface tension;

P = - Im([ζv*]p1)

arises from the change of phase;

B2 = Im {[ zi(u'u*+ v'v*) ] - 2[ zi v']v2*}

represents interfacial friction due to the viscosity difference;

and

G = ~G(1- z)  Im(
[u]v2*

 [dU
dy ]

 )

is the gravity term.

To get the equation governing the production of thermal energy we multiply (6.8) by θ*,

and integrate over both vapor and water regions

<α(U-c)θ2> = < i
Pe (a2q2+(dq

dy)2) > - <vθ*dT
dy >



Stability of Two-Phase Flow With Phase Change

17

- [ i
Pe  θ'θ*] .     (8.5)

(8.5) can be written as follows
.
E T = IT - DT + BT (8.6)

where
.
E T =  αci<θ2>,

 IT = < 1
Pe (a2q2+(dq

dy)2) >,

DT =  Im<vθ*dT
dy > ,

 BT =  R([ 1
Pe  θ'θ*]).

9. Horizontal Case

The horizontal case deserves special treatment because in this case gravity does not

drive the flow. The basic state is motionless with a linear temperature profile and zero velocity.

Since there is no prescribed velocity a different unit of velocity scale, 
m1z

r1H0m  is used to make

the equations dimensionless. The governing equations then become:

v(4) -2α2v´´+ α4v =  iαc (α2v – v´´),  (9.1)

θ´´- α2θ  - iPev T´ =  - iαcPe θ. (9.2)

The general solution of this system can be expressed as

v(y) = Aeαy+Be-αy+Ceâ  y + De- â  y, (9.3)

θ(y) = Eeĝ y + Fe- ĝ y+ q~(y) , (9.4)

where q~(y)  = T´
ac   [Aeαy+Be- αy+ Pe

Pe-  (Ceây + De- ây) ], and â 2= α2 - iαc ,

 ĝ 2 = α2 - iαcPe.

Substituting (9.3) and (9.4) into the boundary and interface conditions, we are lead to an

eigenvalue problem for a 13X13 matrix acting on a vector whose 13 components are the
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coefficients A,B,C,D,E,F for both vapor and water phase and the interface position variable h.

This system can not be solved analytically. However for each set of parameters, we can find the

eigenvalues numerically. There are three independent parameters H0, r and τ2. Figure 2

displays the neutral curve when H0 and r are fixed, τ2 varies. It shows that when 1-τ2 = (Ts-T-

)/Ts  increases at a fixed value of α  the basic state becomes unstable. The case in which τ2

and H0 are fixed and r changes is represented in figure 3 which shows that the basic state is

more stable when vapor layer is thicker.
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0.08

0.1

0.12

0 0.0005 0.001 0.0015 0.002 0.0025 0.003
αwavenumber

1- τ 2

U S

Figure 2. Neutral curve when H0=0.001m, r =1.3, G
~

  =0.00434 , W = 48.4, Γ, Π1, and Π2

change with (1-τ2).
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Figure3. Neutral curve when τ2 (i.e. the temperature of the lower plane) is fixed (0.95):  

H0=0.001m, G
~

  =0.00434 ,  W = 484,  Γ=0.231e- 3, Π1= 0.2e- 4, Π2 = 0.0338.

The energy analysis (table 2) shows that phase change term is the dominant

destablizing term in the energy balance, surface tension and gravity are stablizing but of small

magnitude. The instability is solely caused by the change of phase.

Table 2.  Energy analysis : H0=0.001m, G
~

  =0.00434 , W = 48.4 and τ1 =1.2.

                                                                                                                                           

1- τ2 
~
a 

~
a ci E

.
 M B1 P B2 G E

.
 T BT IT - DT

                                                                                                                                           
0.017 3.6e-4 1.6e-6 1.2e-3 -4.6e-13 1.00 2.0e-5 -5.5e-7 7.1e-6 1.0 -9.99e-1
                                                                                                                                           
0.070 5.2e-3 4.0e-3 3.8e-1 -1.0e-8 1.38 3.5e-6 -5.6e-4 1.0e-3 1.0 -9.99e-1
                                                                                                                                           

10. Vertical Case

In the general case an analytic form for the eigenfunction cannot be found and the finite

element code of Hu & Joseph [1989] was used to solve the eigenvalue problem. Figure 4

displays neutral curves in the vertical case when r=2.0,τ2 =0.97.

100

1000

0.001 0.01 0.1 1

R

α

2

S

U

I

II

Figure 4. Neutral curve when r=2.0, τ2 =0.97.
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The neutral curve consists of two branches, each of which represents a different

mechanism of instability. The energy analysis of this case (table 3, where the viscous

dissipation term DM is used to normalize (8.4) and DT is used to normalize (8.6)) shows that in

region I the instability is caused by the interfacial friction B2 together with the phase change

term P when Reynolds number is small. On the other hand the instability in region II arises from

the Reynolds stress in the water layer. There is a overlaping region where two unstable modes

exist , and a mode jump is observed at 2 about 1130.

Table 3. Energy analysis for the mode of maximum growth rate in the vertical case:
(r , τ2 ) = (2.0,0.97).

                                                                                                                                              

2 
~
a 

~
a ci E

.
 M IM-DM B1 P B2 E

.
 T    BT IT - DT

                                                                                                                                              
86.7 0.198 1.40e-5 8.2e-5 -0.997 - 2.1e-3 0.546 0.427 5.7e-6 0.72 -0.720

                                                                                                                                              
900 0.243 7.43e-3 1.2e-1 -0.998 -1.0e-1 0.072 1.130 3.2e-2 0.57 -0.537

                                                                                                                                              
1200 1.491 2.07e-2 2.16  3.26 -0.873   -0.002 -0.225 4.2e-2 0.71 -0.672

                                                                                                                                              
 2000  1.176 3.50e-2 2.96   3.29 -0.314    0.002  -0.012 1.4e-2 0.72 -0.683
                                                                                                                                              

When the vapor layer is thinner (figure 5, where r =1.5, τ2=0.97 ), another instability

appears in the longwave range. Energy analysis (table 4) shows that this instability arises from

phase change. We can also see that the maximum growthrate decreases as Reynolds number

increases and at 2 about 670, a mode jump occurs. The new mode of instability is associated

with the Reynolds stress with phase change playing only a minor role.
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Figure 5. Neutral curve for vertical case ω =90�: (r,τ2 )= (1.5,0.97).

Table 4. Energy analysis for the mode of maximum growth rate in the vertical case (figure 5) :
(r , τ2 ) = (1.5,0.97).

                                                                                                                                           

2 
~
a 

~
a ci E

.
 M IM-DM B1 P B2 E

.
 T    BT   IT - DT

                                                                                                                                           
100 0.0060 1.52e-2 6.9e-2 -1.000 - 6.8e-8 1.07 3.5e-3 1.7e-3 0.96 -0.962

                                                                                                                                           
300 0.0041 5.12e-3 6.9e-2 -0.999 -2.2e-8 1.06 7.9e-3 1.7e-3 0.96 -0.962

                                                                                                                                           
650 0.0031 2.28e-3 6.9e-2 -0.998 -9.4e-9 1.05 1.4e-2 1.7e-3 0.96 -0.962

                                                                                                                                           
 700  1.041 5.67e-3 6.7e-1   1.09 -3.1e-1 0.11  -0.21 3.4e-3 1.24 -1.239
                                                                                                                                           
 2000  1.065 8.11e-2 5.61    6.06 -4.8e-1 0.07  2.6e-2 0.121 1.40 -1.280
                                                                                                                                           

Figure 6 displays the neutral curves when Reynolds number and r are fixed ( 2=1000,

r=1.5) and τ2 varies. Three different instabilities can be identified. For long waves there is an

unstable mode associated with phase change, consistent with the results for the horizontal

case, this mode goes unstable when 1-τ2 = (Ts-T-)/Ts increases at a fixed α . However in this

case the mode with the maximum growthrate is associated with the Reynolds stress, which is

always unstable (right most region of figure 6), while the unstable region resulted from the

interfacial friction is split into two parts.
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Figure 6. Neutral curve when Reynolds number and r are fixed: 2 = 1000, r=1.5.

Finally we briefly discuss the effect of the inclination angle ω. Notice that in our

dimensionless form ω only appears in the gravity parameter, and from the energy analysis we

see, as can be expected when the vapor lies above the water, that gravity is stabilizing,

however when phase change is the dominant destabilizing factor, the influence of the gravity is

almost negligible. In the inclined cases, there is an unstable mode caused by the interfacial

friction, in these cases the gravity term is larger but not large enough to stabilize the flow (table

5).

Table 5. Critical points in the case when r=2.0,τ2 = 0.97 with different inclination angles.
                                                                                                                                                         

 ω critical Reynolds number, 
~

 2 critical wave number, ~a wavespeed,real(~a c)
                                                                                                                                                         

90� 86.7 0.198 0.305
                                                                                                                                                         

30� 93.4 0.186 0.296
                                                                                                                                                         

10� 106.1 0.169 0.272
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11.  Conclusions

The problem of stability of fully developed flow of liquid and its vapor under gravity

between heated and cold parallel plates was considered. The water and its vapor were

assumed to be incompressible, but vaporization and condensation at the water-vapor interface

could occur. In the fully developed case there is no phase change at the flat interface but the

perturbation induces phase changes under the condition that the total volume of vapor and the

total volume of liquid is conserved. Three kinds of instability can arise, an instability due to the

Reynolds stress at higher Reynolds numbers, an instability due to interfacial friction which is

associated with the viscosity difference and will arise even in the absence of phase change and

a strong phase change instability at the interface which can occur even between horizontal

plates heated above with no basic motion. All these instabilities arise as overstability so that

Hopf bifurcation into periodic solutions is expected. Analysis of bifurcations, presently

underway, should reveal whether periodic solutions are stable, can be observed, and decide

when the waves propagate.

The issue of temperature conditions at a phase change interface is an important one.

The problem arises whenever a pressure jump across the interface is allowed even when the

phases are solid or liquid. If the pressures on each side of the interface are different and the

temperature is at saturation, then there must be a discontinuity of temperature. Different

choices of thermal interface conditions are possible. Although in special cases treated here,

water and its vapor, the stability results do not depend sensitively on the choice of conditions of

the temperature at the interface we do not expect weak dependence in general especially when

the dependence of the saturation temperature on the pressure is not small. The choice of

temperature conditions at a phase change boundary goes beyond continuum thermomechanics

and appears to require some form of molecular theory.
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