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Abstract

We study the stability of a motionless liquid below its vapor between heated horizontal plates.
The temperature of the bottom plate is held below the vaporization temperature and the top plate is hotter
than the vaporization temperature. A water film is on the cold wall and a vapor film on the hot wall. We
find a basic solution depending only on the variable y normal to the walls with steady distributions of
temperature, a null velocity and no phase change. The linear stability of this basic state is studied in the
frame of incompressible fluid dynamics, without convection, but allowing for phase change.  An
ambiguity in the choice of the conditions to be required of the temperature at the phase change boundary
is identified and discussed. It is shown that the basic state of equilibrium is overstable under conditions
of large temperature gradient, when the other parameters have suitable values. An analysis of the energy
of the most dangerous disturbance shows that the source of the instability is associated with change of
phase.

1. Introduction
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There have been many studies on the stability problem of laminar film condensation or
evaporization (Nusselt’s solution) on an inclined cool or hot plate (see Unsal and Thomas [1980] for a
fairly thorough review of this literature) and of a falling film of liquid down an inclined plate, which was
decisively analyzed by Yih [1954,1963] and Benjamin [1957]. Yih's problem has been generalized to a
two-fluid channel flow problem for horizontal and vertical cases (Blennerhassett 1980, Renardy 1990).
Problems of the Yih type have fully developed basic flows but no phase change, and of course a
temperature equation is not needed.  The laminar film condensation problem is a phase change problem,
but it is posed in a semi-infinite region which excludes the existence of a fully developed steady flow; in
the basic flow there is continuous change of phase at the interface, so that the stability analysis of this
problem is difficult and is treated in a quasi-steady approximation. In many studies the vapor phase was
inactive. The study of Busse & Schubert (1970) is probably closest to ours. They generalized the usual
Rayleigh-Bernard problem by including a contribution of the latent heat from phase transformation in the
energy balance. They restricted their consideration to the case when the viscosity and thermal
conductivity of the two phases are the same, and they assumed that the variation of density is small
compared with the mean density and the interfacial mass balance (our equation (2.4)) is neglected.
Nevertheless their analysis shows that the fluid layer can be unstable even when the less dense phase lies
above the dense phase. They assumed exchange of instability in the analysis of their problem. In our
problem this assumption is not correct and the loss of stability occurs always as overstability.

In the course of our study we came to realize that the correct conditions on the temperature at a
phase change boundary are not known. There are different possibilities. If we require that the temperature
at a phase boundary is in thermodynamic equilibruim, then the saturation temperature is uniquely
determined by the pressure through the Clapeyron relation. If the pressure on water side is different than
on the vapor side as in our stability study, the temperature will be discontinuous. We can choose only
two conditions for the temperature at a phase change boundary, so that thermodynamic equilibrium (the
Clapeyron relation) excludes thermal equilibrium (continuity of temperature). This issue seems not to
have been addressed in the film condensation literature, where it is conventional to require thermal
equilibrium between water and its vapor together with thermodynamic equilibrium for the vapor, but not
the water; that is , the temperature of the water is at the saturation value appropriate to pressure in the
vapor (see Plesset and Zwick [1954], Gebhardt [1961], Ishii [1975]). In every study of this problem
known to us the two phases are required to be in thermal equilibrium, the temperature must continuous
across the phase change interface. But temperature discontinuities cannot be eliminated by rigorous
application of first principles. Schrage [1953] says "... There is no reason why the temperature of the gas
phase should necessarily be the same as that of the liquid or solid surface in all cases."  Indeed, classic
kinetic theory calculations (Pao [1971], Sone and Onishi [1978], Aoki and Cercignani [1983], Onishi
[1984] and Cercignani, Fiszdon and Frezzotti [1985]) indicate that for monatomic vapor large
temperature jumps exist at interfaces. Shankar and Deshpande [1990] have measured the temperature
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distribution in the vapor between an evaporating liquid surface and a cooler condensing surface in water,
Freon 113 and mercury. The temperature profiles obtained in mercury showed large jumps at the
interface as large as almost 50% of the applied temperature difference.

In the present study we allow phase change, and the vapor phase is active. The second wall
allows the system to attain a steady fully developed  basic state.  We are not in the frame of laminar film
condensation because phase changes do not occur in the basic flow. We carried out calculations for three
cases, when the water and vapor are at saturation values corresponding their own pressures
(thermodynamic equilibrium) and when the vapor or the water is at saturation and the temperature is
continuous (thermal equilibrium). The  results of stability analysis do not depend strongly on the choice
of the three aforementioned conditions for the temperature at the interface in the case of water and water
vapor.

2. Governing Equations and Basic Solution

We assume that physical properties of the fluids, i.e. the viscosity, density and conductivity of
the fluids are constants independent of pressure and temperature.  This neglecting is usually done in the
film condensation problems, and we follow this path. This means that the pressure will be a dynamical
variable uncoupled from thermodynamics and that convective currents set up by the working of gravity
on thermally induced variations of temperature will be ignored.

y Rδ T+

T-

vapor (1)

water (2)

x

Ho

Figure 1. The physical configuration of this two-phase flow problem.

We consider two dimensional flow. The velocities of both phases satisfy the incompressible
Navier-Stokes equations:

∇ . u = 0, (2.1)

ρ 
du
dt    = – ∇ p + ρg+ µ∇ 2u . (2.2)

In the temperature equation we shall neglect the dissipation term:
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ρCp 
dT
dt    = k∇ 2T . (2.3)

At the interface I(x,t) = y - H(x,t)=0 we have mass, momentum and energy balances:

Mass:  - 
.
m (x,t)  = ρ1 (u1 - u∑) • n12  = ρ2 (u2  - u∑) • n12 . (2.4)

Momentum:  
.
m  ûuô – ûpôn12 + 2 ûµD[u]•n12ô = 2Hσn12 , (2.5)

Energy: –ûk∇ Tô•n12 = 2 ûµ(u–u∑)D[u]•n12ô + 
.

m  ûh + 12  |u–u∑|2ô, (2.6)

with kinematic conditions:

u∑ • n12 = - 
∂I/∂t
|∇ I|

  , ûuô • t = 0 , (2.7)

where  n12 is the normal of the interface directed from vapor to water, and t is the tangent. We shall

consider three different choices of the interfacial temperature conditions, referred as case I, II,III.

(I) Thermodynamic equilibrium of  both phases:

Tsi = T(Pi); (2.8)

(II) Thermal equilibrium and thermodynamic equilibrium of vapor:

ûTô =0, T1 = T(P1). (2.9)

(II) Thermal equilibrium and thermodynamic equilibrium of water:

ûTô =0, T2 = T(P2). (2.10)

Boundary conditions are:

at   y = 0,  u2 = v2=0, T2=T-, (2.11)

at   y = R,  u1 = v1=0, T1=T+. (2.12)

There is a steady, developed, motionless solution

(u,v,p,T,H) = (0,0,P,T,H0) 

where H0 is a constant :

H0 = 
(Ts–T-)k2R

(T+–Ts)k1 + (Ts–T-)k2
  , (2.13)
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��
�
��T1(y) = T+ – (T+ – Ts) 

R - y
R - H0

 ∀  y∈ (H0, R)

T2(y) = Ts – (Ts – T–) 
y

H0
     ∀  y∈ (0, H0)

 , (2.14)

��
�
��P1(y) = - ρ1gy+C1   ∀  y∈ (H0, R)

P2(y) = - ρ2gy+C2   ∀  y∈ (0, H0)
 . (2.15)

At the vapor-water interface y=H0, T1=T2=Ts, and the pressure is continuous, the basic flow is in

thermodynamic equilibrium with

Ts = T(P(H0)) ,     
.
m  = 0 . (2.16)

So the different choices of interfacial temperature conditions give rise to the same basic state.

3. Perturbation equations and normal modes

To make our equations dimensionless we use following scales:

length: H0 ,

velocity: V0 = 
µ1ζ

ρ1H0m ,

time:
H0
V0

 ,

pressure: ρiV2
0 ,

temperature: Ts - T-

The dimensionless parameters listed below will appear in the dimensionless equations

ζ = 
ρ2
ρ1

  , Density ratio

m = 
µ2
µ1

  , Viscosity ratio

i = (
ζ
m )i, Reynold

Pri = 
µici
ki

  , Prandtl number
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Pei = iPri, Peclet number

W = 
σρ1H0m2

µ12ζ2   , Weber number

ξ = 
k2
k1

 , Thermal conductivity ratio

Γ = 
k1Tsm(1-τ2)

ζhfgµ1
 , Heat of vaporization number

Πi = 
ζ2ρiµ1 

hfgH2
0m2 (

1
ρ1

 - 
1
ρ2

 )
1

(1-τ2)  , 

G~  = 
gρ2

1H3
0m2

µ12ζ2   , Gravity number

τ1 = 
T+
Ts

  , Hot wall temperature ratio

τ2 = 
T–
Ts

  , Cold wall temperature ratio

r = 
R
H0

  = 1+ 
τ1-1

ξ(1-τ2) . Vapor gap ratio

If we specify the fluids as water and water vapor and take all their material parameters at their table
values at Ts = 100° C,

ρ1 = 0.59 g/m3,
ρ2 = 0.97 g/cm3,
µ1 = 0.0121 cp,
µ2 = 0.28 cp,
k1 = 2.5∞10-4 joule/cm sec °C,
k2 = 6.8∞10-3 joule/cm sec °C,
Cp1 = 1.96 joule/g °C,
Cp2 = 4.18 joule/g °C,
hfg = 2.257∞103 joule/g,

σ = 64.4 dynes/cm,

we are left with three independent parameters H0, r, τ2 , and

ζ= 1.69∞103,
m=22.47,
ξ= 27.25,
Pr1= 0.9825,
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Pr2 =1.7343,

1 =73.44, 2 =5393.43,
Pe1 =72.15, Pe2 =9353.83,

are constants and

 G~  =4.34∞106H3
0  , W = 4.84∞104H0, Γ = 4.6∞10-3 (1-τ2),

Π1 =1.0∞10-12H-2
0

1
(1-τ2) ,  Π2 =1.69∞10-9H-2

0
1

(1-τ2) ,

where H0  is measured in meters.

The basic temperature profile in dimensionless form is given by

T1(y) = 
τ1

(1-τ2)  – 
(τ1-1)
(1-τ2) 

r-y
r-1 , (3.1)

T2(y) = 
τ2

(1-τ2)  + y. (3.2)

Let u,v,p,θ,h be perturbations of basic state. Using the normal-mode decomposition of solutions

v(x,y,t) = {u(y),iv(y)}exp(iα(x-ct) ),
p(x,y,t) = p(y)exp(iα(x-ct) ),
θ(x,y,t) = θ(y)exp(iα(x-ct) ),
h(x,t) = h exp(iα(x-ct) ),

we get the following equations for the amplitudes:

αu + v´ = 0, (3.3)

- αcu  = - αp +  
i
 (α2u - u´´) , (3.4)

- αcv = p´+  
i
 (α2v - v´´) , (3.5)

αcθ + v T ´= - 
i

Pe (α2θ - θ´´) , (3.6)

together with boundary conditions:

u1(r)=v1(r) = θ1(r) = 0, (3.7)
and
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u2(0) = v2(0) = θ2(0) = 0, (3.8)

and interface conditions at y=1

v1- ζ v2 = α c(ζ -1)h, (3.9)

[u] = 0, (3.10)

[m(- αv + u´) ]=  0, (3.11)

2[
iζv´

 ] - [ζp] - (W α2 + G~(1-ζ) )h = 0, (3.12)

Γ[ξ θ´] - i (αch + v1) = 0. (3.13)

Temperature conditions will be chosen from following:

θi = Πi pi+ [- Ti´ - ΠiG
~

 ]h, (3.14)

[θ] +  �
�

�
�dT

dy   h=0. (3.15)

We can eliminate u and p from (3.3) through (3.6), and get following equations:

v(4) -2α2v´´+ α4v =  iαc (α2v – v´´),  (3.16)

θ´´- α2θ  - iPev T´ =  - iαcPe θ. (3.17)

We introduce α̂  and γ̂  by defining

 α̂ 2= α2 - iαc    and   γ̂ 2 = α2 - iαcPe.

The general solution of this system must have following form:

v(y) = Aeαy+Be-αy+Ceα̂  y + De- α̂  y, (3.18)

θ(y) = Eeγ̂ y + Fe- γ̂ y+ θ~(y) ,

where  θ~(y)  = 
T´
αc   [Aeαy+Be- αy+

Pe
Pe-  (Ceα̂y + De- α̂y) ].

Substituting these expressions into the boundary and interfacial equations forms an eigenvalue
problem of a 13X13 matrix:  the coefficients A,B,C,D,E,F for both vapor and water phase and the
interface position variable h. We can not solve this matrix analytically. However for each set of
parameters, we can get the eigenvalues of this matrix numerically.
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4. Long waves

For long wave disturbances (α=0) , the system is slightly different. We are able to calculate the
determinant of the 13X13 matrix and get an explicit equation for the zero-th order term of αc in the long
wave expansion, which agrees with the general solution (3.18)

Suppose vo(y),θo(y), ho are the zero-th order terms in the long wave expansion, and σo is the

leading order of αc in the expansion. At this order the system becomes:

v(4)o   =  - iσo  v´ó   (4.1)

θ´ó    - iPevo  
dT
dy  =  - iσoPe θo . (4.2)

This system admits a solution in following form:

vo (y) = Aeiβ̂  y + Be- iβ̂  y+Cy + D, (4.3)

θo (y) = Eeiφ̂ y + Fe- iφ̂ y+ θ~ o(y), (4.4)

where β̂ 2 = i σo  , φ̂ 2= iσoPe. Bringing this expression into the boundary and interface conditions, after
some manipulating  we found that the eigenvalue σo satisfies the following equation:

{(ζm)1/2(e2iβ̂ 1 (1- r) - 1)(e2iβ̂ 2+ 1) - (e2iβ̂ 1(1- r) + 1)(e2iβ̂ 2 - 1)}

{λ1/2(e2iφ̂ 1 (1- r) + 1)(e2iφ̂ 2 - 1) - (e2iφ̂ 1 (1- r) - 1)(e2iφ̂ 2  + 1)}=0,

where λ = ζ ξ 
Cp1
Cp2

  is a constant. Note that σo= 0 is a solution of above equation and only r appears as a

parameter in this equation. For any given r, we can solve this equation and get all the other eigenvalues,
and they are all negative. The results show that longwave disturbances are neutrally stable at zero-th
order.

5. Energy Analysis

 The key to understanding the predictions of the linear theory of stability is the determination of
the maximum growth rate in unstable cases. This gives rise to a distinguished length and wavespeed and
when combined with an energy analysis of this fastest growing mode, it can even be used to forecast the
flow type. The energy analysis in this problem is different than some other two fluid problems (see Hu &
Joseph, 1989) because the temperature or thermal energy equation is coupled to mechanical energy
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through the mechanism of phase change. In this case we may get two energy balances, one for
mechanical energy designated with a subscript M and another for thermal energy designated with
subscript T. Suppose (u,v,θ) are the components of an eigenvector associated with the maximum growth
rate,  multiplying  (3.4) and (3.5) by u* and v*, the complex conjugates of u  and v respectively, and
integrating  the sum of them over both the liquid and vapor regions, we get

- αc<(u2+v2)> = <1
(α2(u2+v2) +(

du
dy )2+(

dv
dy )2)>

- [ 
ζi

(u'u*+ v'v*) ] + [ζpv*] , (5.1)

where  <  > = 	

1

  
  +	


2

  
  , u2 = uu*, v2 = vv*  and we used the boundary and interfacial conditions to

evaluate the integrands. The imaginary part of the right hand side of (5.1) represents the growth of the
energy of the disturbance and the left side may be split into two parts

  
.
E M = BM - DM , (5.2)

where 
.
E M =  αci<(u2+v2)>,

DM = <1
(α2(u2+v2) +(

du
dy )2+(

dv
dy )2)>,           viscous dissipation rate,

BM =Im{[ 
ζi

(u'u*+ v'v*) ] - [ζpv*]},        energy production at the interface.

We may transform the last term of BM  as follows

 [ζpv*] =  [ζp]v2*+ [ζv*]p1, (5.3)

where  [ζp]  can be evaluated from the jump condition (3.12) as:

2[ 
ζi

 v'] - (α2W+ G~(1-ζ) )h.

Then BM  can be further decomposed into four parts:

BM = B1 + P + B2 + G , (5.4)

where

B1 =α2W Im(hv2*) (5.5)

can be regarded as the energy supply rate due to the surface tension;

P = - Im([ζv*]p1) = 
(ζ−1)Γ

ζ  Im([ξθ´]p1) (5.6) 

arises from phase change;

B2 = Im {[ 
ζi

(u'u*+ v'v*) ] - 2[ 
ζi

 v']v2*} (5.7)
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represents  interfacial friction  due to the viscosity difference; and

G = G~ (1−ζ)Im(hv2*) (5.8)

is the gravity term. So (5.2) becomes:
.
E M = B1 + P + B2 + G - DM . (5.9)

Similarly we get the energy balance for the temperature disturbance as

- αc<θ2> = < i
Pe (α2θ2+(

dθ
dy)2) > - <vθ*

dT
dy > - [ 

i
Pe  θ'θ*], (5.10)

which can be written as
.
E T = IT - DT + BT ,

where
.
E T =  αci<θ2>,

DT = < 1
Pe(α2θ2+(

dθ
dy)2) >,

IT =  Im<vθ*
dT
dy > ,

 BT =  R([ 
1
Pe  θ'θ*]).

6. Results and Discussions

We first compared  results for three different choices for the interfacial temperature. We found
that the difference for water and its vapor are rather small. Table 1 displays a comparison for some
typical parameter values. Case I  is the case when thermodynamic equilibrium is required for both
phases, case II is when temperature continuity is replaces water thermodynamic equilibrium in the water,
and case III  is when temperature continuity replaces thermodynamic equilibrium in the vapor. The fact
that the differences between the three cases are small is understandable because the parameters Π1 and
Π2 are  small. This implies  that the influence of saturation pressure on the saturation temperature is

negligible.
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Table1.  Comparison of the results from three different choices of interfacial temperature 
conditions.

                                                                                                                                                                             
   parameters eigenvalue with the maximum growth rate

                                                                                                                                             
case I case II case III

                                                                                                                                                                             
H0 = 0.001m
α =0.001
r =1.10 ±3.2593e-3,3.9424e-4i ±3.2592e-3,3.9430e-4 i ±3.2592e-3,3.9424e-4i
τ2 =0.99

                                                                                                                                                                             
H0 = 0.0001m
α =0.0005
r =1.10 ±1.8923e-3,-1.3569e-4i ±1.8916e-3,-1.3572e-4 i ±1.8921e-3,-1.3569e-4i
τ2 =0.99

                                                                                                                                                                               

In the following we shall present results only for case II, which is the case usually treated in
the literature on film condensation. We have three independent parameters H0, r , τ2. First we
consider the case when H0 and r are fixed, τ2 is the parameter. We get the neutral curve shown in

figure 2. The energy analysis (table 3) shows that the instability is solely caused by the phase change
term. Note that both parameters  Π1, Γ  change with τ2 , however, for this parameter range  Π1 is

usually rather small. It follows that in the range of parameters under consideration Γ is the main
stablity parameter. This can also be seen from (4.6) which shows that the phase change term is
"directly proportional to" Γ. The flow gets more unstable when Γ is larger.

We also considered the case when  H0 and τ2 are fixed and r varies. The result is shown as figure

3;  when r gets larger, i.e. the vapor layer is thicker, the flow is more stable. This conclusion is more
clearly seen in figure 4, which gives the neutral curve when H0 is fixed , r and τ2  are control  parameters.

Each point of the curve is a critical point .
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Figure 2. Neutral curve when H0=0.001m, r =1.3, G
~

  =0.00434 , W = 48.4, Γ, Π1 and Π2
change with (1-τ2).
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Figure3. Neutral curve when τ2 (i.e. the temperature of the lower plane) is fixed (0.95):  

H0=0.001m, G
~

  =0.00434 ,  W = 484,  Γ=0.231e- 3, Π1= 0.2e- 4, Π2 = 0.0338.
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Figure 4. Neutral curve when H0=0.001m, G
~

  =0.00434 ,  W = 48.4.

Table 2 and table 3 are results of the energy analysis of the mode with maximum growth rate.
Note that the mechanical energy terms are normalized so that the viscous dissipation term DM=1.The

phase change is dominant and destabilizing. Surface tension and gravity are stabilizing but of negligible
magnitude compared with the phase change term. The energy balance is essentially a balance between
the phase change term and the viscous dissipation. This also helps to explain the fact that the stability
does not change much with H0 (compare table 2 and table 3) when r and τ2 are fixed because H0 appears

through W and G~  which represent surface tension and gravity respectively, both of which are
insignificant in the energy balance.

Table 2.  Energy analysis for the mode of maximum growth rate in the case

when H0=0.01m, G
~

  =4.34 ,  W = 484 and τ1 =1.2. ~α  is the wave number

for which the growth rate is maximum.

                                                                                                                                                             

1- τ2 
~
α 

~
α ci E

.
 M B1 P B2 G E

.
 T BT IT - DT

                                                                                                                                                             
0.017 3.6e-5 1.3e-6 8.9e-4 -3.9e-16 1.00 1.8e-5 -4.5e-6 5.5e-6 1.0 -9.9e-1
                                                                                                                                                             
0.030 1.1e-4 5.0e-4 1.7e-1 -3.3e-13 1.17 -1.5e-6 -4.2e-4 6.9e-4 1.0 -9.9e-1
                                                                                                                                                             
0.040 1.9e-4 1.0e-3 2.3e-1 -1.2e-12 1.23    6.9e-6 -5.0e-4 8.2e-4 1.0 -9.9e-1
                                                                                                                                                             
0.070 5.7e-4 4.0e-3 2.8e-1 -1.1e-11 1.34 -3.0e-6 -5.1e-4 1.0e-3 1.0 -9.9e-1
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Table 3.  Same as table2 except  H0=0.001m, G
~

  =0.00434 ,  W = 48.4 and τ1 =1.2.

                                                                                                                                                             

1- τ2 
~
α 

~
α ci E

.
 M B1 P B2 G E

.
 T BT IT - DT

                                                                                                                                                             
0.017 3.6e-4 1.6e-6 1.2e-3 -4.6e-13 1.00 2.0e-5 -5.5e-7 7.1e-6 1.0 -9.99e-1
                                                                                                                                                             
0.030 1.1e-3 5.0e-4 1.6e-1 -3.4e-10 1.16 -1.5e-6 -4.2e-5 6.9e-4 1.0 -9.99e-1
                                                                                                                                                             
0.040 1.8e-3 1.1e-3 2.4e-1 -1.1e-9 1.24  4.6e-6 -5.2e-4 8.2e-4 1.0 -9.99e-1
                                                                                                                                                             
0.070 5.2e-3 4.0e-3 3.8e-1 -1.0e-8 1.38 3.5e-6 -5.6e-4 1.0e-3 1.0 -9.99e-1
                                                                                                                                                             

7. Conclusions

The influence on the flow stability of phase change has long been a major concern in the studies
of film condensation or evaporation. However it seems that previous studies (Bankoff, S.G.; Unsal &
Thomas; et al) were restricted to cases when the flow domain was semi-infinite. The basic flow in this
case(usually the Nusselt solution) is not steady, the water film is continuously evaporating or condensing
and it is found that condensation is stabilizing and evaporation is destabilizing (Unsal & Thomas). For
the case when there is a steady temperature distribution without motion, Busse & Schubert proved  when
the less dense phase lies above, the denser phase can be unstable provided the temperature difference is
large enough. We get the same conclusion from this work. Phase change is always destabilizing as can be
clearly seen from our energy analysis. However there are some major differences between our problem
and the problem treated by Busse and Schubert. They assumed that the variation of density was small
compared with the mean density, which is inappropriate for water and water vapor, in our case the
density difference between two phases is finite. They also assumed loss of stability occurs at real-valued
eigenvalue at criticality. In our problem instability occurs with complex eigenvalues( see table 1), which
means that either standing or traveling waves can be expected when the static state loses stability. The
decision between standing and traveling wave awaits further nonlinear studies of bifurcation.

The issue of interfacial temperature conditions we believe is an important one, which has
recently been considered for general phase problems by Truskinovsky [1990]. The problem arises
whenever a pressure jump across the interface is allowed even when the phases are solid or liquid.
Although in special cases treated here, water and its vapor, the stability results do not depend strongly on
the choice of conditions on the temperature at the interface, we do not expect weak dependence in
general especially when the dependence of the saturation temperature on the pressure is not small.  The
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choice of temperature conditions at a phase change boundary goes beyond continuum thermomechanics
and appears to require some form of molecular theory.
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