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Abstract

New experiments on the orientation of a cylinder settling in viscoelastic and pseudoplastic fluids
are described in an attempt to identify the main mechanisms which control the orientation of the cylinder
as it falls.

1. Introduction

Liu and Joseph [1993a] have done experiments on the settling of long cylinders in aqueous
solutions polyox and polyacrilamide, and in solutions of polyox in glycerin and water.  The tilt angles of
long cylinders and flat plates falling in these viscoelastic liquids were measured. The effects of particle
length, particle weight, particle shape, liquid properties and liquid temperature were determined. In some
experiments, the cylinders fall under gravity in a bed with closely spaced walls. No matter how or where
a cylinder is released the axis of the cylinder centers itself between the close walls and falls steadily at a
fixed angle of tilt with the horizontal. A discussion of the tilt angle may be framed in terms of
competition between viscous effects, viscoelastic effects and inertia. When inertia is small,
viscoelasticity dominates and the particles settle with their broadside parallel or nearly parallel to the
direction of fall.  When inertia is large the particles settle with their broadside perpendicular to the
direction of fall. The tilt angle varies continuously from 90o, when viscoelasticity dominates, to 0o, when
inertia dominates. The balance between inertia and viscoelasticity was controlled by systematic variation
of the weight of the particles and the composition and temperature of the solution. Particles will turn
broadside-on when the inertia forces are larger than viscous and viscoelastic forces. This orientation
occurred when the Reynolds number  was greater than some number not much greater than one in any
case, and less than 0.1 in Newtonian liquids and very dilute solutions. In principle, a long particle will
eventually turn its broadside perpendicular to the stream in a Newtonian liquid for any >0, but in a
viscoelastic liquid this turning cannot occur unless >1. Another condition for inertial tilting is that the
elastic length λU  should be longer than the viscous length ν U  where U  is the terminal velocity, ν  is
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the kinematic viscosity and λ = ν c2  is a relaxation time where c  is the shear wave speed measured
with the shear wave speed meter (Joseph, [1990]). The condition M = U c > 1 was provisionally
interpreted by Liu and Joseph [1993] as a hyperbolic transition of solutions of the vorticity equation
analogous to transonic flow. They showed that strong departures of the tilt angle from q=90o begin at
about M = 1 and ends with q=0o when 1 < M < 4 .

The fluids used in the experiments of Liu and Joseph [1993a] are standard viscoelastic test fluids
with non-zero normal stresses and power law exponents between 0.38 and 0.54.  The more elastic fluids
are also more shear thinning with a smaller exponent.  All these fluids climb a rotating rod strongly and
have substantial normal stresses in shear.  We were persuaded that elasticity rather than shear thinning
was the controlling factor at small speeds when the cylinders turn their long side parallel to gravity, in
the direction of fall.  Such turning is predicted by asymptotic analyses by Leal [1975] and Brunn [1977]
for slow motions which perturb rest with inertia neglected.  This kind of analysis leads asymptotically to
a second order fluid for which shear thinning is absent.  We were and are persuaded that the orientation
of long bodies is a key to understanding flow induced microstructures of spherical bodies, and we found
that when long bodies put their nose down, spheres chain to form long bodies, and that when the long
bodies are titled broad-side on by inertia, the chain of spheres break up and tend to disperse into cross-
stream arrangements.

B. Van den Brule and G. Gheissary [1993] saw a videotape of our experiments on sedimenting
spheres, which form long chains in all viscoelastic liquids at the slow fall speeds in which long bodies
rotate their long side parallel to the fall.  This stimulated them to undertake experiments on sedimenting
spheres of their own.  They attempted to isolate the effects of shear thinning and normal stresses by
using test fluids which have one and not the other of these properties.  They dropped spheres in aqueous
polyacrilamide which is an ordinary viscoelastic fluid with large normal stresses and strong shear
thinning and found results identical to ours.  Then they did experiments in "shellflow"  which is an
aqueous Xanthan solution which has no measurable normal stresses in shear but is strongly shear
thinning.  They found that the spheres chained in this fluid in much the same way that they did in the
aqueous polyacrilamide.  This suggests that shear thinning is the important parameter.  They then did
experiments in a Boger fluid which they prepared with small amounts of polyacrilamide (100 ppm) in
glycerin and water.  This is a very viscous fluid with large but saturated normal stresses, which lead to
constant values of the recoverable shear at high rates of shear.  They did not observe chaining in this
Boger fluid, and they concluded that shear thinning and not elasticity is the mechanism controlling the
chaining of spheres.

The aforementioned results do seem to contradict theoretical results for very slow motions, and
they are not consistent with results which can be observed in other pseudoplastic and Boger fluids which
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we have studied and which will be discussed here.  Nevertheless, the results of Van den Brule and
Gheissary are of considerable interest and need further interpretation.  According to our idea their
observations ought to be extended to the problem of the tilting of sedimenting the cylinder which was
discussed by Liu and Joseph [1993a].  These considerations have led us to undertake new experiments
and the ones on the tilting of sedimenting cylinders, together with interpretations will be reported here.

2. Material and dimensionless parameters

The material parameters which were measured in the liquids used in the experiments are the
density ρ  , viscosity η = k Ý γ n −1, where Ýγ  is the shear rate in reciprocal seconds, the climbing constant

ˆ β  measured on a rotating rod viscometer (Beavers and Joseph [1975]) and wave speed c . To compute
ˆ β  from measured values of the climb we need the interfacial tension which we measured with a

spinning drop tensiometer (Joseph, et al [1992]). The value of 
ˆ β  is insensitive to a small change of

surface tension (chap.16 in [J1990]).  In this paper we shall also present graphs of the dynamic moduli
and other  standard rheological properties which may be obtained on an RSF2 Rheometrics fluids
rheometer.  Tables and graphs of material parameters will appear where they are first used.

The climbing constant 
ˆ β  is related to the limiting (zero shear) value of the first and second

normal stress differences

(n1,n2 ) =
Ý γ →0
lim(N1( Ý γ ), N2 ( Ý γ )) Ý γ 2 (2.1)

by

ˆ β = 1
2

n1 + n2
. (2.2)

The climbing constant

ˆ β = 3α1 + 2α 2 (2.3)

may also be expressed in terms of quadratic constants

(α1,α 2 ) = (−
1
2

n1,n1 + n2 )
(2.4)

of the second order fluid. α 2 α 1   is the ratio of quadratic constants and
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α1,α 2[ ] = −m,2m − 2[ ] ˆ β (m − 4) (2.5)

where m = 2α 1 (2α 1 + α 2 ) = −n1 n2  is the ratio of the first to second normal stress difference. It can be
argued (§17.11 in [J1990]) that m = 10 is a reasonable value for our polymer solutions. Then

α 2

α 1

=
2(1 − m)

m
= 1.8

(2.6)

is a constant and α 1  and α 2  are determined by the measured values of the climbing constant 
ˆ β .  The

value of n1  we get from measuring 
ˆ β  is not sensitive to the value of the ratio n2 n1  as long as n2  is

relatively small and negative (see §17.11 in [J1990]).

The measured value of the climbing constant together with the assumption that the second
normal stress difference is -1/10 as large as the first, allows us to evaluate Roscoe's [1965] formula

T11 − T22 = 3Ý s ηo + 3(α1 + α2 )Ý s 2 (2.7)

for the extensional stress difference where Ýs  is the rate of stretching in the direction x1  and ηo  is the

zero shear viscosity. Using (2.6) and α 1 = −n1 2 we get

T11 − T22 = 3Ý s ηo + 1.2n1Ý s 2 (2.8)

The zero shear value of the first normal stress difference 
n1 =

2m
m − 4

ˆ β = 10
3

ˆ β 
 and the zero shear

quadratic correction 4 Ý s ̂  β  of Troutons viscosity, 3ηo , increase with 
ˆ β .

The study of supercritical flow around bodies can be expressed in terms of a Reynolds number 
and a Weissenberg (Deborah) number W . The Reynolds number is given by

�

=
U�

η( Ý γ ) (2.9)

where U  is the terminal velocity and ���  is the hydraulic diameter (4 times the projected area over the
projected perimeter where the projection is on the plane perpendicular to gravity).

The Weissenberg number will be defined by

�

W =
λU
� (2.10)
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which is appropriate for models like Maxwell's with a single time of relaxation. For these models

W =
U2

(η λρ )
=

U 2

c2 = M2

. (2.11)

The relaxation time 
λ =

η
ρc2

 taken from wave speed measurements is much smaller than the values
obtained on conventional rheometers which typically filter out the high frequency response.

The parameters  and W  are convenient for studies in which hyperbolicity and change of type
are not relevant. When change of type is an important issue, it is better to use M  and either

��

E =
ηλ
ρ�2

         (elasticity number) (2.12)

or W  as the fundamental parameters. The parameters are related, W  = E ,  = M E .

3. Description of the experiments

Particles were dropped in a liquid-filled channel, called a sedimentation channel. Six channels
were used (see Table 1).

Channels Liquids
No.    Dimensions (inches) Polyox Polyacrylamin

e
Xanthan Carbopol STP S1 shampoo

  1        0.44x6.5x25 tested tested tested tested
  2        0.275x4x23 tested tested
  3        0.5x6.7x25.5 tested tested
  4        1x7x30 tested tested
  5        1x1.63x28 tested
  6        2.76x29 (cylinder) tested tested

Table 1.

We used different test particles to vary the weight, size and shape as shown in Table 2.
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The motion of sedimenting particles in our three dimensional bed is basically two dimensional.
The central axis of the cylinder usually aligns itself in the plane midway between the closely spaced
sidewalls, no matter what the initial condition (see Figure 1). Liu and Joseph [1993a] report that even a
thin wire needle whose diameter (0.017 inches) is over 20 times smaller than the gap (0.44 inches) will
center itself in this way. The central position of particles is an effect of close sidewalls, and it also
depends on the fluid. Apart from the drag, the motion of the central plane is apparently independent of
the gap size.  Small cylinders dropped in large tanks of circular or square cross-section behave exactly as
they do in the beds with close side walls; the tilt action is localized in a vertical plane defined by the
cylinder axis.

material density diameters lengths shapes
g/cm3 D, inches L, inches

plastic 1.318 0.1, 0.15, 0.25, 0.4, 0.6, f, c, r
0.35, 0.4 0.8, 1.0

teflon 2.176 0.25 0.4, 0.6, 0.8, 1.0 f, c, r
aluminum 2.699 0.1, 0.15, 0.25, 0.4, 0.6, f, c, r

0.35, 0.4 0.8, 1.0
titanium 4.487 0.25 0.4, 0.6, 0.8, 1.0 f, c, r

tin 7.288 0.1, 0.15, 0.4, 0.6, f, c, r
 0.25, 0.4 0.8, 1.0

stainless steel 7.834 0.017, 0.25 0.4, 0.6, 0.8, 1.0 f, c, r
brass 8.478 0.1, 0.15, 0.25, 0.4, 0.6, f, c, r

0.3, 0.35, 0.4 0.8, 1.0
lead 11.338 0.312 0.4, 0.6, 0.8, 1.0 f, r

tungsten carbide 15.778 0.312, 0.625 0.4, 0.6, 0.8, 1.0, 2.6, 3.53 f

Table 2. Test particles. The Particles had cone ends, round ends and flat ends designated by c, r and f
respectively.
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3(a) front view 3(b) side view

light

medium

heavy

3(c) cylinder centering

Figure 1. Cylinders always center themselves to the plane midway between the closely spaced sidewalls
no matter what the initial condition and the final orientation.

The centering of particles falling in a viscoelastic liquid between close walls is not a universal
phenomenon, but depends on the fluid and other factors.  We find centering in all the fluids except STP
for the spheres and cylinders used in our experiments.  Even in STP the particles will center at modest to
high speeds but not at the lowest speeds.  We might expect problems of centering at low speeds of fall in
other very viscous Boger fluids.  The centering phenomenon requires effects from both walls.  We have
shown Liu and Joseph [1993b] that a sphere falling parallel to a wall in a viscoelastic liquid will be
attracted to the wall if the distance between the wall and sphere is less than a critical value which
depends on the fluid.  We have seen flat plates settle in polyox solutions with their broadside parallel to
gravity titled in the plane of falling in such a way as to put one thin edge near one wall and the other
edge near the other wall.  Each edge was in the region of attraction.  Generally these flat plates center, so
that the positioning of plates and other bodies is an involved subject which deserves study.

Velocities and tilt angles were measured with a Kodak Spin Physics SP2000 Motion Analysis
System which can take pictures at 2000 frames per second (fps). The image is replayed at a speed of 60
fps. Images can also be played forward or backward at the rates of 2/3, 1, 3/2 or 3 fps, or one frame at a
time. There are movable reticule lines which allow spatial measurements of the image. The elapsed time
may be observed while a recording is being made and replayed.  These functions allow one to measure
the fall speed and tilt angle of sedimenting particles.

4.  Settling of Long Cylinders in Polymeric Liquids
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The motion of particles in liquids is influenced by viscosity, shear thinning, extensional stresses,
normal stresses in shear and memory effects, to name some entries in a possibly longer list.  It is useful
to compare the rheometrical properties of liquids which are similar in some ways and different in other
ways.

A very excellent comparison between 1.5% and 2% solutions of aqueous polyacrilamide
(Magnaflox E10 supplied Allied Colloids) and 2% and 3% solutions of aqueous Xanthan gum Keltrol F
(supplied by Kelco) was made by Walters, Bhatti and Mori [1990].  They arranged solutions with nearly
the same viscosity values over a large range of shear rates and compared different measures of elasticity.
They found that the Xanthan solutions had much lower normal stresses than the polyacrilamide, but had
larger values of the storage modulus.  They noted that Xanthan is a semi-rigid molecule and
Polyacrilamide is a flexible molecule.  They reasoned that Xanthan solutions are highly elastic near the
rest state with a gel-like structure but this structure is easily broken down by shear.  This is consistent
with the observation that the dynamic properties of Xanthan solutions can be significantly affected by
pre-shearing.  The effect of such pre-shearing does relax but recovery can take a day.  They noted that
the Xanthan solutions are extensional thinning for shear rates which are apparently in excess of a value
near 3 sec-1 but the polyacrilamide is strongly extensional thickening.

We are going to show that the tilt transition in semi-dilute solutions of Xanthan and water (0.3%)
undergo tilt transitions just like those seen in the standard aqueous polyacrilamide and polyox solutions
in which nonlinear elastic effects and shear thinning are present simultaneously.  The shared properties
of these standard test liquids with our semi-dilute Xanthan is the combined effect of shear thinning and a
long memory.  This idea will be explored in subsequent sections.  We first are obliged however to take
cognizance of the fact that these same particle migration and orientation effects are found in Boger and
near Boger liquids, sometimes in weaker form, when viscous effects are huge compared to elastic ones
as in the usual preparations of Boger fluids.  The effects of elasticity on particles in liquids which are
weakly pseudoplastic are evidently enhanced when the liquids are simultaneously more mobile and more
elastic, as in S1 (section 4.1)

We next note that the effects of shear thinning on the migration of particles can be better
understood by comparing two shear thinning fluids with effectively zero first normal stresses but
different memory properties.  For this, we obtained interesting results by comparing semi-dilute aqueous
solutions of Carbopol and Xanthan (see section 4.2).

4.1 Sedimentation in STP and S1
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STP is a solution of polysolutilene in petroleum oil which was used extensively in early studies
of rod climbing (see Joseph, [1990]).  S1 is a solution of 50.0g of 5% W/W of PBI in decalin plus 50.0g
polybutene oil.  It is a world-wide standard test fluid which is being characterized by different
laboratories in many countries.  We mixed our own samples according to procedures laid down by
Professor J. Ferguson of the University of Glasgow.  Our homemade solutions have nearly the same
properties as the premixed samples given to us.

The viscosity of these two polymer solutions was measured as a function of the shear rate Ýγ  on
the RSF2 Rheometries fluid rheometer and is shown in Figure 2.  The viscosity of STP is nearly constant
for shear rates less than 100.  The viscosity of S1 decreases with increasing Ýγ , but the decrease is very
slow for shear rates less than 10.  The viscosity of S1 is an order of magnitude smaller than STP; it is a
much more mobile liquid.  Both solutions climb a rotating rod, but the STP is not a good climber; the
climbing constant is about one dyne/in.  We can say that STP is a Boger fluid with very weak normal
stresses.  The climbing constant of S1 at 20oC is approximately 31 gm/cm and S1 can be said to
resemble a Boger fluid with larger normal stresses, especially at low rates of shear.

Values for the dynamic moduli of STP and S1 are shown in Figure 3.  The loss modulus for STP
is an order of magnitude higher than S1.  The storage modulus of S1 is larger than STP for shear rates
less than about 10 seconds, and the shear rate at which the loss modulus falls below the storage modulus
is much lower than S1.  It is clear that S1 is a much more mobile and somewhat more elastic liquid than
STP.

The mean shear wave in STP at a temperature between 24o and 25o is 286 cm/sec.  The mean
shear wave speed in S1 at a temperature near to 24oC is 71 cm/sec (see Table 3).  The highest terminal
velocity that could be achieved in S1 was about 30cm/sec along with a yet slower maximum velocity in
STP for the heaviest cylinder.  Since U is decisively smaller than the wave speed c in all cases, we did
not expect to see and did not see inertial turning of the cylinder from straight down to broadside-on.  The
straight down orientation occurred for every particle from nylon to tungsten falling in S1 independent of
the initial launching orientation.

h  (mm) 1.181 1.956 2.959

c  cm/sec 70.0 76.2 71

ϑ  cm/sec 6.74 2.96 1.32
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Table 3.  Shear wave speeds in S1.  The wave speed c is calculated from the ratio h T  where h  is the
gap size and T  is the measured time of transit.  The mean speed is an average over 10 trials and ϑ  is the
standard deviation.

Place Figure 2 here
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Place Figure 3 here

The fall behavior in STP was more complicated.  Heavier cylinders and flat plates falling in STP
put their longside parallel to the flow independent of the initial orientation of the body.  This is exactly
like S1 and exactly like all the other viscoelastic fluids tested by us (aqueous polyox in concentrations
ranging from 0.6% to 1.5%, 2% aqueous polyacrilamide, 8% polyox in glycerin and water, M1).  The
orientation of cylinders settling in STP cannot be specified unambiguously.  The final orientation seems
to depend on initial conditions and other factors over which we have no control.  Light particles which
settle slowly in STP do not always center; they interact with the wall and this and leads to orientations
which vary from run to run and cannot be predicted.  More satisfactory results can be obtained in a
square channel, where nose-down orientation appear more frequently, but not every time.  There is no
evidence for inertial turning in the settling of long particles in STP.

The tilting of long particles into positions with the long side parallel to gravity in STP cannot be
due to shear thinning (see Figure 2).  We have also shown (Liu and Joseph [1993b]) the spherical
particles falling STP exhibit side-by-side attraction if the initial distance is smaller than a critical value; a
spherical particle is attracted weakly to a wall if it is close enough initially.  Spherical particles falling in
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STP also form chains, though chaining is weaker than in other viscoelastic fluids which have greater
levels of elasticity and also more shear thinning.

The tilting of long particles into positions with the longside parallel to gravity in S1 could be due
to shear thinning, at least in part, since S1 does shear thin.  However, the shear thinning is not great and
is almost zero at small rates of shear (Figure 3).  It is possible that shear thinning could be responsible
for the robust turning we see in light cylinders which settle slowly.  A more likely explanation, in our
opinion, is that the elasticity is what is most strongly involved, like STP, but with more elasticity and
less viscosity.  S1 exhibits side-by-side attraction, sphere-wall attraction and robust chaining (see Figure
4) consistent with our notions about the importance of normal stresses.

4.2 Sedimentation in Xanthan and Carbopol Solutions

We attempted to isolate the role of shear thinning suppressing both normal stresses and elasticity
by using a solution of 0.4% Carbopol 690 (Goodrich) in a 50/50 glycerin/water mixture in our
sedimentation experiments.  The viscosity versus shear rate for this Carbopol solution is plotted in
Figure 4, and the dynamic moduli are plotted in Figure 5.  Carbopol is thought to be a pseudoplastic
fluid without elasticity.  Since our Carbopol solution has a non-zero storage modulus, it cannot be said to
have no elasticity.  The presence of small elasticity in Carbopol solutions has been noted before; for
example, Hartnett and Kostic [1989] have noted that an aqueous solution of 1000 wppm Carbopol
exhibits a phase shift between the input shear stress response of less than π / 2  radians, and that there is
evidence that aqueous Carbopol solutions experience strong secondary motions in laminar flow in
noncircular channels, but they do not reduce drag.  There is no evidence that Carbopol 690 in 50/50
glycerin/water has a measurable value of the first normal stress difference and it does not climb a
rotating rod.

To determine the effects of shear thinning with a strong memory but no normal stresses, we used
a solution of 0.3% Xanthan (Kelco) in water.  The graph of viscosity versus shear rate is shown in Figure
4, and the variation of the storage and loss moduli with frequency is shown in Figure 5.  This Xanthan
solution is very shear thinning and it apparently has normal stresses.  We could not register a first normal
stress difference on the Rheometrics fluid rheometer and the 0.3 solution would not climb a rotating rod.
On the other hand, this fluid has a high storage modulus and can be said to be linearly elastic.

We turn next to a description of our experiments on the settling of long cylinders in aqueous
solutions of Carbopol and Xanthan.
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Place Figure 4 here

Place Figure 5 here
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Place Figure 6 here

Place Figure 7 here
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Place Figure 8 here
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Despite the fact that our 0.3% solution of Xanthan has no measurable normal stresses in shear
and will not climb up a rotating rod, it tilts from longside-on to broadside-on in the usual way, with all
straight-down falling dominated by inertia ( >1)under supercritical conditions (M>1).  In fact, the data
shown in Figure 7 suggests a more close correlation with M=1 than need, in fact, be the case.  It could be
argued that the relevant speed to be used in the interpretation of the tilt transition is the falling speed of
the cylinder when it settles with its long side parallel to gravity, when its fall speed is greatest.  The fall
speed after turning is much slower, and it has been used in computing the numbers shown in Figures 6
through 12.  If we had used the faster fall velocities, the Reynolds and Mach numbers larger than one
would shift slightly to the right.

We could conclude that the turning in Xanthan has nothing to do with normal stresses in shear
and possibly with any other nonlinear measure of elasticity.  But we think that it would be wrong to
conclude that the subcritical nose-down orientation is controlled by shear thinning alone.  In section 5,
we will present an argument to show how these dynamical effects may be pulled into play when shear
thinning is put together with a strong linearly-elastic response, as it is in the Xanthan solutions.

The tilt transition diagrams for semi-dilute Xanthan (Figures 6 and 7) are just like the aqueous
Polyox diagrams given by Liu and Joseph [1993a] and reproduced here as Figures 8 and 9.  The Polyox
solutions are elastic and shear thinning, like Xanthan, but they also have substantial normal stresses and
climb rotating rods.  The main difference between Xanthan solutions and Polyox solutions is associated
with normal stresses which produce a phenomenon, termed by Liu and Joseph [1993a] as shape tilting
which causes sharp edge cylinders to tilt slight when round and cylinder align with gravity.  The shape
tilting does not occur in Xanthan; all the particles align smartly with gravity under subcritical conditions.

We were surprised by the finding that light cylinders which fall slowly in Carbopol also tilt nose-
down, with their long side parallel to gravity.  These fluids in other respects are nearer to Newtonian
than to viscoelastic.  Spherical particles dropped in our 0.4% Carbopol do not exhibit side-by-side
attraction, they repel each other when they are initially together or nearly together as in Newtonian
fluids.  They are repelled by a wall, do not chain and do not exhibit anomalous rolling or chaining, just
as in Newtonian fluids.

The nose-down tilting of cylinders in Carbopol does not appear to be asupercritical transition; it
occurs when >1 for Mach numbers say M = 0.1 or larger, (see Figures 8 and 9).  We do not think that
Carbopol is strongly elastic, even in the rest state, but it does have a non zero storage modulus (Figure
5).  Data for shear wave speed is given in Table 4.  We lose the signal in the larger gaps (>3mm) so that
the decay of the signal with distance is more pronounced than in more elastic fluids with the same
viscosity.  The weak signals that are received are erratic, giving evidence to diffusion.  However, the
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data in the smaller gaps shown in Table 4 are consistent, and we can find no internal inconsistency
which would cause us to reject this data.

Long bodies settling in Newtonian liquids will always turn broadside-on; no matter how small
the Reynolds number inertia will eventually have its way.  In these cases a Mach number criterion for
turning cannot be relevant.  There are surely intermediate cases of small non-Newtonian effects where
some effects of the fluid's small elasticity are present together with Newtonian-like behavior.  This may
in fact be the case for the Carbopol solutions.

h  (mm) 0.748 1.003 1.956

c  cm/sec 16.8 17.2 15.7

ϑ   cm/sec 0.79 1.47 1.06

Table 4.  Mean wave speed c  for 0.4% Carbopol in 50/50 glycerin/water solutions.  The speeds
measured in the 2.959 mm gap where erratic ranging from 22 cm/sec to 71 cm/sec with many signals too
unstable to make a clear reading.

h  (mm) 2.959 1.956 1.181 1.003

c  cm/sec 12.170 12.000 14.960 12.450

ϑ   cm/sec 0.630 0.700 0.850 0.790

Table 5.  Shear wave speeds in 0.3% aqueous solution of Kelco Xanthan.

5.  Tilt transition in semi-dilute Xanthan solutions

In this section we wish to discuss some conjectures about the mechanisms which control nose
down orientations of cylinders falling in 0.3% Xanthan under subcritical conditions (M<1) and
broadside-on orientations under supercritical conditions (M>1, see Figure 7).  The fluid is strongly
pseudoplastic (Figure 4) and has relatively high levels of linear viscoelasticity (Figure 5).  The measured
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values of the mean shear wave speed are shown in Table 2.  We recall that the first normal stress
difference is effectively zero at all shear rates and that this fluid will not climb a rotating rod.

Surprisingly also is the similarity in the properties of particle migrations in 3% Xanthan with
standard Polyox and Polyacrilamide solutions, which have large normal stresses and also are strongly
pseudoplastic, and with S1, which is moderately elastic and weakly pseudoplastic.  All these fluids and
STP give rise to critical attractive distance for side-by-side and sphere-wall attractions.  All of them
chain, with STP (the Boger fluid) the weakest chainer.  All these fluids support anomalous rolling, with
Xanthan exhibiting the weakest rolling.  None of these phenomena occur in Newtonian fluids or in our
Carbopol solution which shear thins.

Evidently a combination of memory with shear thinning is required and may be enough to induce
nose-down turning and the related chaining of spheres.  We introduce the idea that shear thinning alone
does all these tricks to particles much less because though it shear thins, the thinning is not persistent
and decays very rapidly.  The Xanthan solution remembers the place where the viscosity was reduced, so
that the back part of a nose-down cylinder, or the spheres behind the lead sphere in a chain, experience a
smaller viscosity than the leading end of the cylinder or leading sphere.  We might think that corridors of
reduced viscosity are marked on the fluid by shear thinning as a particle drops in the fluid and persist for
a time before they relax.

The idea of the last paragraph could be tested with standard test liquids provided that they shear
thin and have long memories, whether or not they exhibit normal stresses or climb rods.

The existence of relaxing corridors of reduced viscosity marked on the fluid by the shear thinning
induced by a falling ball is consistent with the observations of Cho and Hartnett [1979] and Cho,
Hartnett and Lee [1984].  They did falling ball rheometry, measuring the drag on balls which were
dropped in the test liquid in specified and definite intervals of time.  They found the memory effects to
which we have alluded, and they were particularly evident in  104 wppm solution of aqueous
polyacrilamide (Separan, AP-273) which is a highly viscoelastic and highly shear thinning liquid.  The
measured terminal velocity depended strongly on the time interval between the dropping of successive
balls in the cylinder.  Balls launched after only a short wait period would fall up to nearly twice as fast as
the speed of the initial ball, and it took intervals of thirty minutes or more for the memory of the corridor
of reduced viscosity to relax.

We can imagine the trailing spheres in a chain or the trailing end of a long particle setting itself
in a corridor of reduced viscosity.  For this, shear thinning and the memory of shear thinning is required.
It is prudent at this point to recall that similar effects in weaker form occur in our constant viscosity fluid
(STP) and in stronger form in S1 where the degree of shear thinning is small.  So shear thinning plus
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memory cannot explain everything.  The experiments with semi-dilute Xanthan are interesting because
shear thinning and memory are present, but many other mechanisms which could come into play are
absent.

Now we seek an explanation of why a tilt transition which turns particles which fall nose down
when U < c = n /λρ  broadside-on under supercritical conditions U > c .  We may remark here that the
relaxation time λ = η / ρc2  which we get by measuring η and c  on our meter, need not have anything
whatever to do with the relaxation of a corridor of reduced viscosity.

The part of our explanation  which seems secure is that the tilt to broadside-on settling is an
effect of inertia.  the transition from nose-down to broadside-on settling occurs over a small interval of
velocities and is easy to identify.  We think that this turning is due to high pressures at the stagnation
point on the front face of the falling cylinder.  Huang, Feng and Joseph [1993] did a direct, two-
dimensional simulation of an ellipse falling in Newtonian fluid.  they identified the "stagnation point" as
the point on the front of the cylinder where the shear stress vanishes and showed that the high pressure at
such a point always gives rise to a couple turning the long side of the ellipse across the stream.  This
couple is larger than the couples due to shear stresses or the viscous part of the normal stress.  We think
that this same inertial mechanism which is associated with high pressures at the point on the front face
where the shear stress vanishes operates in the viscoelastic case.

In the case of Newtonian fluids this inertial mechanism comes into operation immediately for any
Reynolds number larger than zero.  At very small Reynolds numbers the turning to a broadside on
orientation takes a long time, but a cylinder which is dropped with its broadside perpendicular to the
flow will not nose down, as it always does in viscoelastic fluid.  Moreover, the tilting from nose-down to
broadside-on orientation does not occur until the Reynolds number is greater than one in all the cases we
have studied and the viscoelastic Mach number was also greater than one in all these cases, except
Carbopol.

It did not at first occur to us that the change of orientation of long bodies sedimenting in different
polymeric liquids could be framed as a change of type with features resembling those already seen in
studies of delayed die swell (see [J1990] and Joseph and Christodoulou [1993]). The cylinders settle
vertically, more or less, when the viscoelastic Mach number is less than some number not too much
greater than one. When this Mach number is larger than about three or four the particles have all turned
their broadside to the stream, evidently controlled by inertia.

The orientation of a long body settling in a liquid under gravity is equivalent to the steady flow
past a stationary long body. This latter problem has been treated in works of Ultman and Denn [1970],
Joseph [1985], Crochet and Delvaux [1990], Hu and Joseph [1990] and Fraenkel [1988,1991]. These
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studies and related matters are discussed in [J1990]. The nonlinear studies were based on the upper
convected Maxwell model, but the linearized studies were basically model independent. In the linearized
problem the flow goes supercritical when the viscoelastic Mach number M = U c  passes through one;
the vorticity equation of the steady flow changes type from elliptic when M < 1 to hyperbolic when
M > 1. In the supercritical case there is a Mach cone of vorticity. In the front of the cone there is a
"region of silence," actually potential flow with vortical flow in the cone behind the shock. In the
nonlinear problem there can be a subcritical region near the body even when M > 1, as in transonic flow;
but away from the body linearized dynamics will prevail. The supercritical transitions do seem to
correspond to flow transitions observed in the experiments on the flow over wires reported by James
[1967], James and Acosta [1970] and by Ambari, Deslouis and Tribollet [1980] as well as in the flow
features observed in the experiments on flow over flat plates of Hermes and Fredrickson [1967].

The experiments on anomalous transfer of heat and mass in the flow over small wires were
carried out  in  dilute drag reducing solutions of polymers in water, say 10 to 100 ppm of polyethylene
oxide in water. The critical issue posed by these experiments is the comparison of the critical values of
the velocity above which anomalous behavior occurs with measured values of the wave speed. Some few
values for wave speeds for very dilute solutions are presented in the tables at the end of the book of
Joseph [1990], but they are not reliable. We need to find the techniques to do reproducible
measurements of wave speeds in dilute solutions. Gas dynamics would look good on paper, but only
there, if we could not measure the speed of sound. Fortunately reliable measurements of the wave speeds
of solutions in which tilt transitions occur can be made. In every one of many cases the transition
commences when the fall velocity exceeds the wave speed, in all cases without exception.

Goldshtik, Zametalin and Shtern [1981] gave an interesting interpretation for the criterion for the
onset of drag reduction in a Maxwell fluid. They said that there are two lengths to consider, a viscous
length ν u * where ν  is the kinematic viscosity and u * is the friction velocity, and an elastic length
λu * where λ  is the relaxation time. Onset occurs when the elastic length exceeds the viscous one.

λu* > ν u *. (1.1)

We can apply the same idea to the tilt transition by claiming onset when

λU > ν U . (1.2)

The question is what  λ  should be used. Our answer is that λ = ν c2
 which we get by measuring ν  and

c  (shear wave speed) on our meter. Then, M2 = (U c)2 > 1, correlating unrelated dynamic data from
many different experiments.
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It is clear from the arguments just given that a key element of our description is the capacity of a
fluid to transmit waves of vorticity into a region of rest faster than the fall velocity of the body.  In fact,
this description is not strictly accurate.  Near the body, the problem is not linear and the condition for a
change of type is not as simple as M>1.  We are exploring the idea that when λU > υ / U  the
viscoelastic effects at the front of the body are confined to a layer through which the high pressure in the
essentially irrational flow at the "stagnation point" on the front of the body will turn the body broadside-
on.  A cartoon of the scenario we have in mind is shown in Figure 12.

Having now described a possible scenario giving rise to a tilt transition from a change of type, we
note that the required propagation of shear waves into a region at rest is supported by the linearly elastic
semi-dilute Xanthan solution, even though the normal stresses in this fluid are effectively zero.

The mechanism which keeps the cylinder aligned with its axis parallel to gravity in the
subcritical case is unclear.  This orientation cannot be maintained by the mechanisms discussed by Leal
[1975] and Brunn [1977] which turn long bodies already at second order because the second order
contribution to the stress is effectively zero in semi-dilute Xanthan.  The extensional flow mechanism
for turning at second order which is based on Roscoe's formula and is discussed by Liu and Joseph
[1993a] also cannot operate in 0.3% aqueous Xanthan.  The results of Walters, et al [1990] indicate that
the aqueous Xanthan in much higher concentrations, 2% and 3%, give rise to extensional thinning at
higher extension rates, which is incompatible with the turning mechanism based on Roscoe's formula.
We noted already that the Roscoe formula gives no result for 0.3% Xanthan because the second order
coefficients vanish, but Xanthan does have a small second order region in the aqueous solutions (500,
1000, 2000, and 4000 wpmm)  of Rhodigel 23 (manufactured by Rhone Poulenc) used by Allain,
Cloitre, Perrot and Quemada [1993] and by Joseph and Christodoulou [1993] in studies of delayed die
swell, and for the more concentrated Kelco solutions studied by Walters et al [1990].  The observations,
and the logic of it, lead us to consider the possibility that all the observations of the tilt transition
(Figures 6 and 7) in 0.3% Xanthan can be explained by corridors of relaxing viscosity created by shear
thinning plus memory and a transition to the dominance of inertia at fall speeds which exceed the speed
of propagation of shear waves into rest.

An example of how all the mechanisms we have discussed can be made to appear in the White-
Metzner model of a viscoelastic by choosing appropriate forms for the viscosity and relaxation functions

of the shear rate  γ
o

=
def 1

2
trace D [u], where D is the symmetric part of the velocity gradient.

The White-Metzner model is an upper convected Maxwell model λ ττττ
∆
+ ττττ = 2ηD u[ ]   in which

λ γ
o� 

� 
� 
� and η γ

o� 
� 

� 
�   are functions of the second invariant of D.  Suppose that λ and η  are relating

functions of the form given in Figure 9.
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Place Figure 9 here

Figure 9.  Relaxation or viscosity function for the WM model

Let us suppose that λ γ
o� 

� 
� 
� → 0  already at small γ

o
 and such the η γ

o� 
� 

� 
�  is still substantial.

Then  ττττ = 2η γ( )D u[ ]   is shear thinning.  On the other hand in the regime of linear viscoelasticity,

perturbations of uniform motion or small oscillations

ττττ
∆
�

∂ττττ
∂t

+U
∂ττττ
∂x

=
def

ττττ
o

and
λ o( )ττττ

o
+ ττττ = 2η o( )D u[ ]

This gives rise to the usual c = η o( ) / ρλ o( )   for wave speeds and to change of type when U>c.

Barnes and Robert [1992] have given some forms for λ γ
o� 

� 
� 
� and η γ

o� 
� 

� 
�  which fit our idea, and

they can give rise to an extensional viscosity which first increases with γ
o

 , as would be expected when
the climbing constant is positive, and then decreases as in the measurements of Walters, et al [1990].
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Place Figure 10 here

Place Figure 11 here
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Place Figure 12 here
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