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Abstract. The problem of stability of smooth fingering motions which may develop from

the Rayleigh-Taylor instability when the initial data is analytic is considered. A second-

order ordinary linear differential equation with time-dependent coefficients is derived for

the evolution of a small wavy perturbation of the interface in a local approximation

when the waves are short. It is possible to have a stable, but Hadamard unstable,

perturbation if the time-dependent coefficients satisfy certain growth conditions. The

strongest Hadamard instabilities occur as Kelvin-Helmholtz instabilities associated with

a velocity difference at the sides of falling fingers.

1. Introduction

The problem of linearized instability of the interface between inviscid fluids, with

surface tension neglected as it evolves, is studied by local analysis. The basic flow is

time-dependent and nonlinear, and it may be regarded as arising initially from a

Rayleigh-Taylor instability. Such flows are ill-posed, but they may be solved in a finite

time interval before blow-up, provided that the initial data is analytic. We may also

regard the basic flow as smoothed, say, by small viscous or surface tension effects

which are neglected in the stability analysis. In fact, the details of the basic flow are left

vague in the analysis and our conclusions which apply to arbitrary basic flows are

independent of the precise details.

The main idea of the paper is that once the heavy liquid starts to fall, a velocity

difference will develop across the interface. In this case, the possibility of Kelvin-

Helmholtz instabilities arises from discontinuities in the tangential components of

velocity which develop in the basic flow as it evolves. It appears natural to think that the

largest discontinuities of velocity are at the sides rather than at the tips of unstable
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falling fingers. In fact, Hadamard instability of the Kelvin-Helmholtz problem is stronger

than the Rayleigh-Taylor instability with a growth rate proportional to the wave number

k instead of r(k). Kelvin-Helmholtz instabilities at the sides of fingers which develop

from Rayleigh-Taylor instability, should emerge from every numerical study of the

nonlinear problem.  For example, the side branches are clearly evident in Figs. 4.1, 4.2

and 4.3 of the numerical study reported in the Ph.D. thesis of Tryggvason [1985] and in

Figs. 18–24 of Gardner, Glimm, McBryan, Menikoff, Sharp and Zhang [1988]. Since the

basic flow is unsteady, we need to account for the time-dependence of the velocity and

the interface as it evolves. In fact, Moore and Griffith-Jones [1974] have shown that

these time-dependent terms can stabilize the flow for any fixed k no matter how large,

but these stable flows are still Hadamard unstable with unbounded growth as k∅_ at

any fixed value of t, no matter how large or small (see Joseph and Saut [1990]).

2. Governing equations and the basic flow

We imagine that at some instant (t=0) heavy fluid in the semi-infinite half space

y>0 lies above light liquid in y<0. The fluids are incompressible and nearly inviscid with

a small value of interfacial tension. If the viscosity and interfacial tension are put to

zero, this system will be Hadamard unstable, with a growth rate proportional to the

square root of the wave number. In practice, this problem is regularized by surface

tension and viscosity but is still unstable. This type of instability is known as Rayleigh-

Taylor instability and it leads to fingers of heavy fluid into light fluid. The fingering flows

which arise from Rayleigh-Taylor instability are unstable. The tips of the fingers of

heavy into light fluid undergo repeated instabilities, called tip splitting (see Homsy

[1987]), which can perhaps be understood as a replication of the original Rayleigh-

Taylor instability. The fingering flows are plagued by other instabilities which lead to

branching off the sides. The side branches are particularly striking in the ill-posed

problem where they give rise to scraggly dendritic structures (Nittman and Daccord
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[1985]). The analysis given below suggests that the side branches arise from a Kelvin-

Helmholtz instability associated with the velocity discontinuities which develop across

the sides of fingers accelerating into light fluid.

We suppose that a Rayleigh-Taylor instability has occurred and that fingers of

heavy fluid are accelerating into light fluid. The motion of the two fluids may be smooth

for a time, even with vanishing viscosity and interfacial tension, if the initial conditions

are analytic. We study the stability of this smooth fingering flow using the linearized

stability theory in a local approximation whose structure is tailored to the study of short

waves.

We choose a special point P on the interface _ such that at t=t0 (put t0=0) the

normal N to _ at P is colinear with a fixed direction Y. At a later time the interface will

have moved so that Y will not be a perpendicular bisector of _ as it is at t=0. We lay

down two plane coordinate systems (X*, Y*) and (X, Y) centered on P, as in Figure 1.

The two systems are related by an orthogonal transformation with angle Θ.

X* = X cosΘ – Y sinΘ ,

Y* = X sinΘ + Y cosΘ . (2.1)

The gravity vector g= –geY* points against Y* increasing and the equations of motion

are written in the (X,Y) system. Fluid 1 is over Fluid 2 and both fluids are assumed to

be in potential flow

U = f(_Φ,_X) ,    W = f(_Φ,_Y) ,    �2Φ = 0 . (2.2)

Both fluids satisfy Bernouilli's equation with pressure P and density ρ

P + f(ρ,2) (U2 + W2) + ρ f(_Φ,_t) + ρgY* = 0 . (2.3)



Kelvin-Helmholtz mechanism for side branching … Joseph, Liao and Saut

4

Figure 1. Coordinate systems for the falling fingers: ρ1_ρ2 is the heavy fluid. The fixed
direction Y is colinear to the normal N on _ at t=0, but not in general for later t. Another
useful representation of _ is r=R(θ,t) where (r,θ) are polar coordinated which are
located at the center of curvature of _ at t=0.

We could add conservative time-dependent body forces to our problem to get different

basic flows, as was done by Joseph and Saut [1990, p. 198]. These body forces are

prescribed and they change the basic flow, but otherwise will not enter into the stability

problem. There are two descriptions of the interface _:

Y = H(X, t)    and    Y* = F(X*, t) (2.4)

where H and F are related by (2.1). Using (2.4)1, we get

f(dY,dt) = W = f(_H,_t) + U f(_H,_X) (2.5)

as the kinematic equation of motion of the interface _. The jump of restrictions of field

variables defined in Fluids One and Two across _ is defined by

û•ô sup4(a(def,=)) (•)1 – (•)2 (2.6)

and

ûρô = ρ1 – ρ2 _ 0 . (2.7)

The continuity of the normal component of velocity

ûWô = ûUô f(_H,_X) (2.8)

follows from (2.5). The pressure p in (2.3) is continuous across _. Hence

f(1,2) ûρ (U2+W2)ô + ûρ f(_Φ,_t)ô + ûρôg (X sinΘ + H(X,t) cosΘ) = 0 . (2.9)

The governing equations are (2.2), (2.5) and (2.9).
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The basic flow is a smooth solution of the governing equations, designated with

a subscript zero, and such that

f(_H,_X) (X,0) = 0 . (2.10)

The condition (2.10) is fulfilled by virtue of our choice of coordinates, so that our

analysis applies to all smooth solutions of the governing solutions.

3. Perturbation equations

Now we perturb the basic flow

Y = H0(X,t) + εh(X,t) , (3.1)

Φ (X,Y,t) = Φ0(X,Y,t) + εφ(X,Y,t) (3.2)

(W,U) = (W0,U0) (X,Y,t) + ε(ω,u) (X,Y,t) (3.3)

where

(ω,u) = b(f(_φ,_Y) , f(_φ,_X)) . (3.4)

The only field equation needed in our analysis is

f(_2φ,_X2) + f(_2φ,_Y2) = 0 . (3.5)

Care must be taken in forming the interface conditions. For example

W0(X,H0+εh) + εω(X,H0+εh) = f(_,_t) (H0+εh)

  + U0(X,H0+εh) f(_,_X) (H0+εh) + εu(X,H0+εh) f(_(H0+εh),_X) (3.6)

reduces, after using the equation of the basic flow and linearizing, to

ω + h f(_W0,_Y) = f(_h,_t) + u f(_H0,_X) + U0 f(_h,_X) + h f(_U0,_Y) f(_H0,_X) (3.7)
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where ω, u, W0 and U0 are evaluated on Y=H0. The linearization of (2.9) gives rise to

blcûrcô(ρ b(f(_φ,_X) U0 + f(_φ,_Y) W0)) + blcûrcô(ρ f(_φ,_t)) + Mh = 0 (3.8)

where

M = blcûrcô(ρ b(U0 f(_U0,_Y) + W0 f(_W0,_Y))) + blcûrcô(ρ f(_W0,_t)) + ûρô gcosΘ(3.9)

The governing perturbation equations are (3.5), (3.7), and (3.8). It is convenient to write

(3.7) as follows

f(_φ,_Y) + A f(_φ,_X) + hB = f(_h,_t) + U0 f(_h,_X) (3.10)

where

A = – f(_H0,_X)

and

B = f(_W0,_Y) + f(_U0,_Y) A .

We may always choose our coordinates at the instant of observation for which (2.10)

holds (A=0). But At=_A/_t, AX=_A/_X need not be zero at this instant. The interface

equations (3.8) and (3.10) may be written as

ρ1b(φo((1),X)Uo((1),0) + φo((1),Y)Wo((1),0)) – ρ2b(φo((2),X)Uo((2),0) + φo((2),Y)Wo((2),0)) +

ρ1φo((1),t) – ρ2φo((2),t) + Mh

   = 0 , (3.11)

φo((1),Y) + φo((1),X)A = ht + Uo((1),0)hX – hB(1) , (3.12)

φo((2),Y) + φo((2),X)A = ht + Uo((2),0)hX – hB(2) . (3.13)
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We may write (3.11), (3.12) and (3.13) in polar coordinates (r, θ) by putting

dY=dr, dX= –rdθ. Moore and Griffith-Jones [1974] considered the problem of an

expanding vortex at r=R(t) in a fluid of constant density ρ1=ρ2 expanding radially

er•U=o(•,R)R/r with a vortical azimuthal velocity eθ•U1=γ/r when r>R(t) and eθθ•U2=0 when

r<R(t) where Γ=2_γ is the circulation. In this case W0=er•U and U0=eθ•U and

M= –ργ2/R3, A=0, B= –o(•,R)/R and (3.11), (3.12) and (3.13) become

– f(γ,R2) φo((1),θ) + o(•,R)b(φo((1),r)–φo((2),r)) + b(φo((1),t)–φo((2),t)) – γ2h/R3 = 0 , (3.14)

φo((1),r) = ht – f(γ,R2) hθ + f(o(•,R),R) h , (3.15)

φo((2),r) = ht + f(o(•,R),R) h . (3.16)

4. Local approximation for short waves

In the coordinate system being used, the tangent to H0(X,t) is flat at the X and

t=0 for which A=0. We are going to look at waves so short that the coefficients of φX, φY

and h are essentially constant over the length 2_/k of one wave. Then we solve �2φ=0

so that φ(1)(X,Y,t)∅0 as Y∅_ and φ(2)(X,Y,t)∅0 as Y∅0. Hence

φ(1) = ψ1(t) esup3(ikX)esup3(–kY) ,

φ(2) = ψ2(t) esup3(ikX)esup3(kY) ,

h  = h(t)esup3(ikX) . (4.1)

These equations (4.1) are inserted into (3.11), (3.12) and (3.13) and are evaluated on

Y=H0(X,t), defining

y1(t) = ψ1 esup3(–kH0)

y2(t) = ψ2 esup3(kH0) (4.2)

we find that
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k(–1 + iA) y1 + B(1)h = o(•,h) + ikUo((1),0) h , (4.3)

k(+1 + iA) y2 + B(2)h = o(•,h) + ikUo((2),0) h , (4.4)

iρ1Uo((1),0)ky1 + ρ1kAUo((1),0)y1 + ρ1y1t – iρ2Uo((2),0)ky2 – ρ2kAUo((2),0)y2 – ρ2y2t + Mh = 0

. (4.5)

We have chosen our local coordinates so that A=0 initially.  It follows that for the

smooth solutions we have in mind, A is small locally in time and we put it to zero.  Of

course At need not be small when A is small.

After eliminating y1 and y2

o(••,h) + Θ1o(•,h) + Θ2h = 0 (4.6)

where

Θ1 = f(1,•ρ) bbc{(2ik•ρU0  – •ρB + iûρô At) (4.7)

Θ2 = f(1,•ρ)  {–kM –iAtûρBô –(kAt)ûρU0ô –ik•ρBU0 –k2•ρUo(2,0) –•ρBt +

ik•ρU0t} (4.8)

and

•• sup4(a(def,=)) (•)1 + (•)2 .

and, upon putting A=0 after differentiation

B = _W0 / _Y ,

Bt = _W0t / _Y + At_U0 / _Y ,

W0 = H0t ,

W0t = H0tt – AtU0 ,

M = blcûrcô(ρ b(U0 f(_U0,_Y)) + W0 f(_W0,_Y)) + ûρW0tô + ûρô gcosΘ . (4.9)
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We do not expect our local formulation to hold globally.  The case A_0 is not too

difficult to work out, but it adds more to the length of the equations than to our

understanding of them.

5. Special cases

Consider the case of instability of a flat interface, Θ, H0, H0t, At vanish, for

uniform flow in the X direction where W0 is identically zero and

f(_Uo((1),0),_Y) = f(_Uo((2),0),_Y) = 0 ,

Then B=Bt=W0t=0 and M=ûρôg

Θ1 = f(2ik,•ρ) •ρU0 , (5.1)

Θ2 = f(–k2,•ρ) •ρUo(2,0) + f(ik•ρU0t,•ρ) – f(kûρôg,•ρ) (5.2)

Equation (4.6) with coefficients given by (5.1) and (5.2) was presented as equation

(4.22) and was discussed by Joseph and Saut [1990]. When U0 is independent of t we

can seek solutions proportional to eσt, leading to a dispersion relation of the form

σ2 + Θ1σ + Θ2 = 0 (5.3)

Hence

σ = – f(1,2) Θ1 ± f(1,2) r(Θo(2,1)–4Θ2) (5.4)

This reduces to

σ = ± r(f(k(ρ1–ρ2)g,ρ1+ρ2))

when U0_0, as in Rayleigh-Taylor instability, and to



Kelvin-Helmholtz mechanism for side branching … Joseph, Liao and Saut

10

σ = – f(ik,2) [Uo((1),0) + Uo((2),0)] ± f(k,2) |Uo((2),0) – Uo((1),0)| ,

Reσ = f(k,2) |Uo((2),0) – Uo((1),0)| .

when ρ1=ρ2 and U0 is independent of t, as in Kelvin-Helmholtz instability. The Kelvin-

Helmholtz instability is “more” ill-posed than the Rayleigh-Taylor instability because it

has a growth rate proportional to k, rather than the square root of k.

The problem of Moore and Griffith-Jones [1974] is not a special case of (4.6).

The wave number k has been assumed to be independent of t but the equivalent wave

number s/R(t) for their case does depend on t.  We may obtain a second-order

equation of the form (4.6), their equation (2.6), directly from the last three equations of

section 3.

6. WKB solutions

When the coefficients Θ1 and Θ2 in (4.6) depend on time, we cannot have

solutions of the cesup3(σt) with constant c and σ. In this case, however, we can find

asymptotic solutions, valid for large k, by the WKB method. Applying this method,

following ideas introduced by Moore and Griffith-Jones [1974], we introduce the

transformation

h(t) = η(t) exp bbc{(– f(1,2) i(0 ,t, Θ1(s) ds)) . (6.1)

Then η(t) satisfies the equation

o(••,η)(t) – Q(t)η(t) = 0 (6.2)

where

Q(t) = f(Θ1t,2) + f(Θo(2,1),4) –Θ2 . (6.3)

Substituting (4.7) and (4.8) into (6.3), we obtain
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Q(t) = ak2 + bk + c (6.4)

with

a = f(ρ1ρ2,•ρ2) ûU0ô2 ,

b = f(•ρM+2ρ1ρ2AtûU0ô,•ρ2) + i f(ρ1ρ2,•ρ2) ûBô ûU0ô ,

c = f(1,•ρ2) bbc{(f(1,2) •ρ•ρBt + f(1,4) •ρB2 – f(1,4) Ao(2,t)ûρô2)

  + f(i,•ρ2) bbc{(AtûρBô•ρ – f(1,2) Atûρô•ρB – f(1,2) Attûρ2ô) .

We now assume that a>0.  Then equation (6.2) can be written as

ε2o(••,η)(t) – o(~,Q)η(t) = 0 (6.5)

where ε=1/k, o(~,Q)=Q/k2 and Q is bounded up to a certain t. The analysis then holds

up to that t and we may also consider the case when t is infinite. Equation (6.5) is

obviously the canonical singular perturbation form for which WKB solutions were

designed. We shall work with the original equation (6.2) with Q(t) given by (6.4). The

asymptotic solutions obtained by the standard WKB procedure are of the form

η(t) ~ exp bbc{(kS0 + S1 + 0 b(f(1,k))) (6.6)

where

S0 = ± i( 0,t, r(a(s)) ds) (6.7)

S1 = ± i( 0,t, f(b(s),2r(a(s))) ds – f(1,4) ln a(t)) . (6.8)

The approximation (6.6) will be valid, if S0 and S1 and the 0 b(f(1,k)) term are

bounded.  The condition on the boundedness of the 0 b(f(1,k)) term gives the following

relation
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k » i( 0,t, blc{(±bbc[(f(1,8) attasup3(–3/2) – f(5,32) ao(2,t)asup3(–5/2) – f(1,8)

b2asup3(–3/2) + f(1,2) asup3(–1/2) c)))

    + brc}(f(1,4) bata–2 – f(1,4) bta–1)dS . (6.9)

The boundedness assumptions we have laid down for a, b, and c imply that (6.7), (6.8)

and (6.9) are bounded for any finite t.  For the t∅_ case, the integrands in these three

integrals must go to zero fast enough to insure integrability.  In an n term WKB

approximation, the extra boundedness condition is imposed at 0b(f(1,kn-1)).  Condition

(6.9) is the analog to the condition (4.2) of Moore and Griffith-Jones [1974].

Substituting a, b, and c defined in (6.4) into equations (6.7) and (6.8), using (6.1)

and (6.6), we obtain an approximate solution for h(t) in the form

h(t) = f(d1,a1/4)  exp bbc{(i( 0,t, E(s) ds – f(1,2)) i( 0,t, Θ1(s) ds + 0b(f(1,k))))

  + f(d2,a1/4)  exp bbc{(–i( 0,t, E(s) ds – f(1,2)) i( 0,t, Θ1(s) ds + 0b(f(1,k)))) (6.10)

where d1, d2 are constant, and

E(t) = kα1 ûU0ô + α2 f(M(t),ûU0ô) + α3At + i f(α3,2) ûBô .

with

α1 = r(f(ρ1ρ2,ρ1+ρ2))

α2 = f(1,2r(ρ1ρ2)r(ρ1+ρ2))

α3 = f(r(ρ1ρ2),(ρ1+ρ2)3/2)

For large k, the dominant part of h(t) in (6.10) is given asymptotically by

h(t,k) ~ f(1,a1/4) exp bbc{(k i( 0,t, b(α1ûU0ô –i f(•ρU0,•ρ)) ds)) (6.11)
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For any finite t, h(t,k)∅_ with k.  This corresponds to a Hadamard instability of a Kelvin-

Helmholtz problem.  Moreover, if the integral in (6.11) remains bounded as t∅_, then

for each fixed finite k, no matter how large, h(_,k) is bounded.  We may say then that

h(t,k) is exponentially stable in the sense of integrability.  The flow will then be stable in

this sense but Hadamard unstable.

7. Conclusions

1. Smooth solutions of the Rayleigh-Taylor problem are Hadamard unstable. The

most dangerous disturbances are Kelvin-Helmholtz instabilities for which

disturbances grow like |U1–U2|exp(σt) with σ proportional to k for large k. This

should be compared with all the other destabilizing factors with growth rates

which are proportional to r(k).

2. The prefactor |U1–U2| where U is the tangential component is likely to be greatest

at the sides of the fingers, leading to side branching.

3. It is thought that smooth solutions will last only up to a point where a singularity

of curvature develops. However, these solutions are Hadamard unstable before

they blow up.

4. Instability and Hadamard instability involve different limits. Instability means that

certain disturbances become unbounded as t∅_. Hadamard instability means

that a disturbance becomes unbounded as k∅_ for any t, however small or large.

It is even possible to find stable unsteady flow for which disturbances are not

unbounded as t∅_, which are Hadamard unstable.
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