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Abstract

We study some basic problems of fluid dynamics of two incompressible miscible

liquids modeled as a simple mixture in which the volume of the mixture does not change

on mixing. In general, the expansion ∆=divu in these problems does not vanish. The

velocity in such a mixture can be decomposed into a solenoidal and an expansion part.

The expansion velocity is induced by diffusion which is proportional to the gradient of

the volume fraction in a simple mixture. The expansion can be large at certain times and

places. We have carried out an analysis of transient or dynamic interfacial tension for the

problem of smoothing of an initial discontinuity of composition across a plane and

spherical surface. We find no jump in the mean normal stress across a plane layer but

there is a jump proportional to the curvature across the spherical surface. The dynamic

tension at the spherical interface decays as t-1/2; it has two terms, one term arises from the

Korteweg stress and it gives rise to a stress opposing the internal pressure as in the case of

equilibrium tension if the Korteweg coefficient has the appropriate sign. The other term

arises from the expansion velocity and is proportional to the rate of change of viscosity

with volume fraction. This term has the wrong sign for interfacial tension in the case of

glycerin and water solutions but has the right sign when the light fluid is more viscous.
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1. Introduction

In this paper we study some basic problems of fluid dynamics of two

incompressible miscible liquids modeled as a simple mixture in which the density of the

mixture is connected to the densities of the two constituents by a linear relation in the

volume fraction. Since the density of such a mixture of incompressible liquids is changed

by diffusion, the expansion ∆=divu does not vanish in general. The velocity in such a

mixture can be decomposed into a solenoidal and an expansion part. The expansion

velocity is induced by diffusion which is proportional to the gradient of the volume

fraction in a simple mixture. We find that the expansion velocity is always important

where the gradients of the volume fraction are sufficiently great, most especially at early

times in the mixing layer arising from the smoothing of a initial plane or spherical

discontinuity  of composition. Another case and place where divu=0 may be a bad

approximation are in driven problems of mixing layer where gradients of composition (or

volume fraction) can be maintained in a competition between convection and diffusion.

Dynamical effects can arise in thin mixing layers where the gradients of

composition are large. This possibility was already recognized in discussions given by

Korteweg [1901] in which he proposes a constitutive equation which includes the stresses

induced by gradients of composition which could give rise to effects which mimic surface

tension in regions where the gradients are large. The small but interesting history of

thought about ersatz interfacial tension in diffusing liquids is given in a paper by Joseph

[1990]. The presence of sharp interface in slow diffusion in rising bubbles of water in

glycerin is reported there. The shape of such interfaces resemble familiar shapes which

can be seen in immiscible liquids. A similar parallel description of drops of miscible and

immiscible liquids occurs in the evolution of the falling drops into a vortex ring

(Baumann, Joseph, Mohr, Renardy [1991]). Of particular interest is a membrane which
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spans the ring and must rupture before a free ring is formed. Such a membrane on a 9/10

glycerin-water ring falling in a 3/2 glycerin -water solution appears in panel e of Fig 1 in

the paper by Arecchi, Buah-Bassuah, Francini, Perez-Garcia and Quercioli [1989]. It is

hard to explain this membrane without acknowledging some type of interfacial tension. A

typical formulation for finding the motion and shapes of miscible drops like the one used

by Kojima, Hinch and Acrivos [1984] which uses divu=0 in each fluid and classical

interface conditions misses out on slow diffusion on the one hand and gradient stresses on

the other.

More recently it has been suggested by Barkey and Laporte [1990] that

morphological instabilities observed in electrochemical deposition could have their

origins in the fields and interfacial dynamics that drive growth with diffusion controlled

structure observed on a scale of microns, corresponding to the mass-transfer boundary

layer thickness. In another recent study Garik, Hetrick, Orr, Barkey and Ben-Jacob [1991]

“ ... reported on the stability of the interface between to miscible fluids of closely
matching viscosities when one is driven into the other. For the case where the
fluids differ only in solute concentration, we find that spontaneous cellular
convective mixing can develop. We suggest that this interfacial patterning is a
surface tension effect distinct from viscous fingering; the latter can occur
simultaneously. ... On the basis of the above experimental results, we hypothesize
that the global morphology of depositional growth, i.e., the number of branches,
the stability of the branch tips, and the way it fills space (its “dimension”) is
determined by the hydrodynamic stability of the interface between the depleted
fluid near the growth and the bulk fluid provided the gradient is sufficiently sharp
to provide an effective liquid-liquid interface. Since leading edges grow fastest,
hydrodynamic modulation of the liquid-liquid interface à  la Hele-Shaw would
determine branch position, just as cellular mixing will.
In electrodeposition the existence of a sharp gradient sustained by the growing
deposit is experimentally supported.”

We have carried out an analysis of transient or dynamic interfacial tension for the

problem of smoothing of an initial discontinuity of composition across a plane and

spherical surface. The idea is to evaluate the jump in the normal stress across the mixing

layer which in this problem reduces to a jump in the mean normal stress (the pressure).
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We find no such jump across a plane layer but there is a jump proportional to the

curvature across the spherical surface. The dynamic tension at the spherical interface is

proportional to D/t  where D=O(10-6 cm2/sec) and t is the time. There are two terms in

the expression (7.10) for the interfacial tension; one term arises from the Korteweg stress

and it gives rise to a stress opposing the internal pressure as in the case of equilibrium

pressure if the Korteweg coefficient has the appropriate sign. A second term arises from

the expansion velocity and is proportional to the rate of change of viscosity with volume

fraction. This term has the wrong sign for interfacial tension in the case of glycerin and

water solutions but has the right sign when the light fluid is more viscous.

2. Mass balance and diffusion

Recently Joseph [1990] has reconsidered the equations of fluid dynamics of two

incompressible miscible liquids with gradient stresses. The density of incompressible

fluids can vary with concentration φ and temperature, but not with pressure. The velocity

field u of such incompressible fluids is not in general solenoidal, divu≠0. A conservation

form of the left hand side of the diffusion equation which differs from the usual

substantial derivative of φ by the term φdivu, is implied by requiring that the mass per

unit total volume of one of the liquids in a material is conserved in the absence of

diffusion. Suppose that γ is the density of one liquid per unit total material volume V,

γ=mγ/V where mγ is the mass of γ. Then

d
dt  ∫V(t) γ dV = - ∫∂V qγ . n dS , (2.1)

says that the mass of γ in V can change only by diffusion across the boundary of V. In the

usual way we find that

dγ
dt  + γ divu = - div qγ   (2.2)

where qγ is the flux of γ. Of course, the substantial time derivative of the density ρ(γ)
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dρ
dt   = ρ'(γ) 

dγ
dt = ρ'(γ) [ 

∂γ
∂t  + (u.∇ )γ ] = - ρ div u (2.3)

is not zero if 
dγ
dt  ≠ 0, and then divu ≠0. In general γ=ργφ where ργ=mγ/Vγ is the density of

the fluid γ and φ=Vγ/V is the volume fraction. Under isothermal conditions ργ is a

constant and we may work with ρ(φ) and φ satisfies (2.2).

Suppose ν is the density of the other liquid per total unit volume. Then ρ=ν+γ and

dν
dt   + ν divu = - div qν   . (2.4)

The continuity equation may be written as

dν
dt   + 

dγ
dt  + (ν+γ) divu = 0 .   (2.5)

Hence, using (2.2) and (2.4) in (2.5), we find that

div (qν + qγ ) = 0 . (2.6)

The sum of the fluxes of the mass of each constituent across the boundary of any material

volume V must vanish

 ∫∂V (qν + qγ ) . n dS = 0 (2.7)

to conserve the total mass.

If the volume V of a mixture of two liquids does not change on mixing, then

V=Vγ+Vν and the density can be expressed in terms of the volume fraction φ=Vγ/V of

one of the constituents by the form

ρ(φ) = ργ φ + ρν (1−φ) (2.8)

where ργ and ρν are the densities of γ and ν, handbook values. Mixtures satisfying (2.8)

will be called simple mixtures. Equation (2.8) is correct to within 1% for glycerin and

water mixtures (see Joseph [1990]). The volume fraction is the natural variable
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connecting density and diffusion in simple mixtures. Since γ =ργ φ and ν =ρν (1-φ) and

conserved in the absence of diffusion, it is natural to express the constitutive equation for

the fluxes qγ and qν as a nonlinear Ficks' law for each constituent in terms of the volume

fraction of one of them

qγ = −Dγ(φ)∇(ρ γφ)  ;  qν = −Dν(φ)∇ [ρν(1−φ)] (2.9)

with different diffusion functions and assume that ργ and ρν are constants, as in the

isothermal case, then

 ∫∂V n . (qν + qγ ) dS = ∫∂V (Dνρν−Dγργ) n .∇φ  dS = 0

in each and every material volume V, so that either div[(Dνρν−Dγργ)∇φ ] =0 at each and

every point in V, or

Dν
Dγ

  = 
ργ
ρν

 (2.10)

is a constant.

Since the density of a simple mixture of incompressible liquids changes by virtue

of diffusion of the volume fraction, the velocity field cannot be solenoidal (cf. (2.3)).

However, Galdi, Joseph, Preziosi and Rionero [1991] have shown that if (2.8) holds, then

(2.2) and (2.3) imply that,

div W = 0  , (2.11)

where

W = u - 
(ργ−ρν)

ργρν
  qγ . (2.12)

From (2.6), we also get

div Ŵ  = 0  ,

where

Ŵ  = u - 
(ρν−ργ)

ργρν
  qν . 



7

In this case we may introduce a stream function.

The forgoing development may be carried out for homogeneous fluids with

temperature gradients when the Boussinesq approximations are relaxed and the density ρ

is related to the temperature T by the special equation

ρ = ρ* (1+βT)-1

for constant ρ* and β. Then

W = u -βκ∇ T

where κ is the thermo-diffusion coefficient (Pukhnachov,1991).

Landau and Lifshitz [1959] have considered diffusion without explicitly taking up

the case of incompressible liquids. They write what might at first glance be thought to be

the usual diffusion equation (their(57.3))

ρ 
dc
dt  = - divi (2.13)

where

c = mγ/m = γ/ρ (2.14)

is the mass fraction, m is the total mass and i is said to be the diffusion flux density,

which we shall specify presently, according to our understanding.

Substituting (2.14) into (2.13) using (2.3) we get

ρ
dγ/ρ
dt   = 

dγ
dt  + γ divu  . (2.15)

This shows that (2.13) is perfectly consistent with mass conservation argument (2.1)

provided that

divi = divqγ (2.16)

is the divergence of the flux of γ, say the flux of solute.



8

Landau and Lifshitz develop a coupled thermodynamic theory for i and the heat

flux under the condition that the concentration gradients are small (which is not the main

case of interest here). When temperature and pressure gradients vanish, they find that

i = -α grad µ̂ = -α (∂µ̂∂c)p,T
 grad c = -ρ D grad c (2.17)

where µ̂  is the chemical potential and D is the diffusion coefficient. For simple mixtures

c=γ/ρ = ργ φ/ρ(φ) and

ρ grad c =  
ργρν
ρ(φ)  grad φ . (2.18)

After combining (2.15) and (2.16) with (2.13), with constant ργ and ρν, we find that

∂φ
∂t   + div(φu) = div [ Dγ(φ) ∇φ  ] (2.19)

where

Dγ(φ) = 
 ρνD(φ)

 ργφ + ρν(1-φ)    . (2.20)

 Many pairs of liquids will give rise to small volume changes upon mixing. These

liquids are only approximate simple mixtures. It is probable that nearly all the interesting

cases which are not already well described by the theory of perfect incompressible

mixtures could be treated as a to-be-developed perturbation of the perfect case.

In areas of applications, problems of mixing liquids (miscible displacements,

binary convection, Taylor dispersion, reaction and diffusion, transport of diffusing

"passive" scalars like dyes, Marangoni convection, solidification problems, etc), it is

assumed that divu=0. In fact, though there are surely many situations in which the

assumption that divu = 0 is a good one, there are others in which

divu = 
ργ-ρν
ρνργ

  div qγ =  
ρν-ργ

ρν
  div[Dγ(φ)∇φ ] (2.30)
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is large when ∇φ is large, as is true when mixing liquids are placed into sudden contact. It

is clear already from (2.30) that if gradients are moderate divu will be small if the

prefactor or the diffusion coefficient Dγ(φ)  is small. For glycerin ρν=1.26 g/cm3 and

water ργ=1 g/cm3, the prefactor 0.26/1.26 is not negligible, but the diffusion coefficient

Dγ=O(10-6 cm2/sec) is. It follows then that the assumption that divu=0 is a slow diffusion

rather that Boussinesq approximation.

3. Momentum balance and Korteweg stresses

To extract the consequences of the balance of momentum it is desirable to frame

the theory in term of a material particle, to apply balance laws to a material volume which

in the continuous limit is a particle of fluid mass. In the present case we follow Landau

and Lifshitz and write the Navier-Stokes equations for the velocity u of volume of fixed

mass. Hence it is the u in W which will enter into the balance of momentum.

The possibility that stresses are induced by gradients of concentration and density

in diffusing incompressible miscible liquids, as in the theory of Korteweg [1901], can be

considered. Such stresses could be important in regions of high gradients giving rise to

effects which can mimic surface tension. We have already seen, in (2.30), that it is just

the same region of high gradients where the volume changes due to dilution cause the

strongest departures from the classical approximation divu=0. We are going to study the

superposition of non-classical effects of volume changes divu≠0 due to diffusion and

Korteweg stresses.

In the isothermal case, ρ varies with φ alone, as in (2.8) and in the notation of

Joseph [1990] the Korteweg's expression for the stress due to the combined effects of

gradients of φ and ρ(φ) are
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 T(2)
ij

  = δ̂  
∂φ
∂xi

 
∂φ
∂xj

  +  γ̂ 
∂2φ
∂xi∂xj

   ,

(3.1)

where

δ̂  = (ργ−ρν)2 δ1 + δ2 + 2ν(ργ−ρν) ,

γ̂  = γ1(ργ−ρν)2 + γ2 .

The governing equations are

(ργ−ρν) 
dφ
dt   + ρ div u = 0 , (3.2)

dφ
dt   + φ div u = ∇ (Dγ∇φ ) (3.3)

and

ρ
du
dt   = −∇Π  + div TD + ρg , (3.4)

where TD is the stress deviator defined by

TD
ij

  = 2µ Dij - 
2
3  δij µ div u + τij   , (3.5)

τij = δ̂  
∂φ
∂xi

 
∂φ
∂xj

  +  γ̂ 
∂2φ
∂xi∂xj

   - 
1
3  δij { δ̂  |∇φ |2 + γ̂  ∇ 2φ}

and Π is the mean normal stress.

The continuity equation (3.2) may be replaced with

div W = 0 and W = u - ζDγ∇φ (3.6)

where

ζ = 
(ρν-ργ)

ρν
   . (3.7)

We should be thinking of glycerin ν and water γ, then ζ>0.
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Then, using (3.6), we may eliminate divu from (3.5)

TD
ij

  = 2µ Dij - 
2
3  δij ζµ div(Dγ∇φ)  + τij (3.8)

and rewrite (3.4) as

 ρ
du
dt   = −∇ [ Π + Q(φ)] + div{ 2µ D[u] + δ̂  ∇φ ∇φ } + ρg , (3.9)

where

Q(φ) = 
1
3  δ̂   |∇φ |2 + 

2
3  ζµ div(Dγ∇φ ) − 

2
3  γ̂  ∇ 2φ  . (3.10)

In writing (3.9) we have assumed that γ̂  is constant. It will be convenient now to also

assume that δ̂  is a constant.

We now adopt (3.3), (3.6) and (3.9) as our system of equations governing the

evolution of simple mixtures of incompressible liquids. These are five equations for the

components of u , Π and φ. In this preliminary study we shall restrict our attention to

some one-dimensional problems for which there is a strong decoupling of equations, but

some basic issues can be addressed.

 To keep our discussion of basic issues concrete we will use estimates of material

parameters for Glycerin-Water systems. One reference for this is the article by Segur

[1953]. In figure 1 we have reproduced Segur's experimental data [1953] for the viscosity

µ. This can be excellently correlated by the expression

µ = µG exp(αφ + βφ2 + γφ 3 ) , (3.11)

where the coefficients α, β and γ depend on temperature T in the way shown in the figure,

µG is the viscosity of pure glycerin and µG=14.99 poise at 20°C. The density of glycerin

(G) and water (W) mixtures is given to within 1% by (2.8) with
(ργ,ρν)=(ρW,ρG)~(1,1.26) g/cm3 at 20°C. Unfortunately we do not have the global

dependence of the diffusion coefficient D(φ). Small gradient theories of diffusion are
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inadequate for mixing layers in which φ takes on all allowed values from zero to one. A

representative value D(φ) over different concentration, taken from Segur (p.328) is

Do=5x10-6cm2/sec. We will use this representative value in our estimates.
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Figure 1. (After Segur [1953]) Viscosity of glycerol solutions at temperature 0−100°C.

The expression µ = µG exp( αφ + βφ2 + γφ3 ) fits the experimental data.
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4. One dimensional mixing layer problems

We shall suppose that u=u(x,t)ex  where x increases upward against gravity. In

this case

0 = div W = 
∂
∂x  [ u - ζDγ 

∂φ
∂x  ].

Hence

u = A(t) + ue (x,t) (4.1)

where

ue =
def

   ζDγ 
∂φ
∂x (4.2)

is the expansion velocity which arises from mixing. In theories in which divu=0 is

assumed, ue=0 and, of course, ue=0 when the fluids are density matched. Using (4.1) and

(4.2) we find that

 
∂φ
∂t   + [ A(t) + ζDγ 

∂φ
∂x ] 

∂φ
∂x   = (1-ζφ) 

∂
∂x (Dγ 

∂φ
∂x )  ,

or
∂φ
∂t   + A(t) 

∂φ
∂x   =  

∂
∂x  [(1-ζφ)Dγ 

∂φ
∂x  ]  .

(4.3)

The momentum equation in one dimension is given by

ρ(φ) [
∂u
∂t   + u

∂u
∂x  ] = - 

∂Π
∂x   + 

∂
∂x  { 

4
3  µ 

∂u
∂x  + 

2
3  δ̂ (

∂φ
∂x)2 + 

2
3  γ̂ 

∂2φ
∂x2 }  

+ ρ g. ex (4.4)

where u is given in terms of A(t) and φ by (4.1). We need Π to satisfy (4.4) when, say,

u(x,t) and φ(x,t) are prescribed at the boundary.

The problem of diffusion is decoupled from (4.4) when A(t)=0. And A(t)=0 if

there is a value x such that for all t, u and the diffusion flux ∂φ/∂x=0. This is the case at
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an impermeable wall across which the velocity and the flux of water must vanish. It is

also true for mixing problems on unbounded domains for which u and ∂φ/∂x vanish at

x=±∞. These problems are canonical for the development of mixing layers from initially

discontinuous data which are considered below. When A(t)=0

u = ue= ζDγ 
∂φ
∂x (4.5)

and (4.3) reduces to

∂φ
∂t    =  

∂
∂x  [(1-ζφ)Dγ 

∂φ
∂x  ] .

If we switch to use the classical diffusion coefficient D(φ) given by (2.20), the above

diffusion equation then becomes

∂φ
∂t    =  

∂
∂x  [D(φ) 

∂φ
∂x  ] . (4.6)

In the simplest case, we assume that D is independent of φ, (4.6) is the classical diffusion

equation. With appropriate boundary conditions (4.6) can be solved easily. Then u is

given by (4.5), without any considerations from dynamics and the momentum equation

(4.4) determine Π(x,t) directly. Various issues which arise in the dynamical theory of

simple mixtures can be framed in terms of the one-dimensional problems considered

below.

5. Dynamic and instantaneous interfacial tension

H. Freundlich in his [1926] treatise on colloid and capillary chemistry in

discussing the methods of measuring interfacial tension between immiscible liquids and

the theory of the phenomenon, notes that

..., there is little new to be said .... We have only to remember here we are in the
end always dealing with solutions. For the one liquid will always be soluble in the
other to some degree, however small. Hence the dynamic tension of liquids, when
first brought into contact, is to be distinguished from the static tension, when the
two liquids are mutually saturated. Not only do liquids which are not miscible in
all proportions have a mutual surface tension; even two completely miscible
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liquids, before they have united to form one phase, exhibit a dynamic interfacial
tension. For we get by careful overlaying of any two liquids a definite meniscus, a
jet of one liquid may be generated in another, and so on. The tension decreases
rapidly during the process of solution, and becomes zero as soon as the two
liquids have mixed completely.

Freundlich [1926] cites the measurements of the dynamic tension by Quinke

[1902] of ethyl alcohol in contact with aqueous salt solutions (sulfates of zinc, copper,

etc.). These two liquids are miscible in all proportions. Quinke used the method of drop

weight to make his measurements. In these liquids the drop, as it emerges, does not pass

into streaks, but keeps at first its shape. He found values between 0.8 and 3 dyne/cm.

Smith, Van den Ven and Mason [1981] have reported a maximum value of 1

dyne/cm for the force corresponding to a “transient interfacial tension” between a 2000cs

and a 1cs silicone oil. According to the authors, these are two mutually soluble liquids

whose interdiffusion is sufficiently slow to enable this measurement to be made. They

note that

In principle there exists between any two separated fluid phases which have a
chemical potential difference, an instantaneous interfacial tension which may or
may not persist with time. We are unaware of reports in the literature of
measurements of interfacial tension between two miscible liquids.

It is clear that in the case of two liquids miscible in all proportions we are not

dealing with an equilibrium situation; there is no equilibrium tension. Rather, we are

looking at stress effects due to differences in density and composition and possibly even

temperature which influence the positions occupied by interdiffusing fluids. One could

imagine that when the gradients of composition are large, as in the boundary layer

between two regions of different composition suddenly put into contact, that these

stresses give rise to an effect which might be called “transient interfacial tension”.
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Smith, Van den Ven and Mason [1981] present an expression for the chemical

potential based on expressions for the free energy in a nonuniform system given by van

der Waals [1893] and Cahn and Hillard [1954] writing

S*  ∝  
��

-xo

xo
   (∂φ∂x) 2 dx (5.1)

where S* is the interfacial tension, φ is the local composition ( the mole fraction of

component 1) and xo is the “interfacial region”. The composition is assumed to satisfy a

diffusion equation φt=Dφxx with diffusion constant D. If at t=0+, φ=φ+ for x>0 and φ- for

x<0 and thereafter φ is continuous at x=0, then

φ(x,t) =∆φ f(η),  f(η) = erfc(η) ,   η = x/2 Dt 

where ∆φ = φ+ - φ-  and S* is proportional to

∆φ2 
��

-xo

xo 
  

1
π  exp(-2η2) (∂η∂x )2 dx

= 
[φ+- φ-]2

2π Dt  
��

-ηo

ηo
    exp(-2η2) dη

At small times the breadth of the diffusion layer scales with Dt  . Then the gradient

theory leads to a square root singularity for the dynamic tension. Their experiments

indicate that F=S* cosθ decays exponentially and does not follow the t-1/2 decay that

would be required if θ were constant, where θ is the contact angle. It is noteworthy that

though the rate of decay of F with time varies between 0.6 to 1.4, the extrapolated value

of F to zero time does not vary and leads reproducibly to a force of 1 dyn/cm. They

conclude that "... present experiments do indeed confirm that an instantaneous interfacial

tension exists between mutually miscible liquids."
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H. Ted Davis [1988] has written an interesting paper, "A theory of tension at a

miscible displacement front" in which he supplies a constant of proportionality for the

expression (5.1), which he develops independently starting from the Irving-Kirkwood

pressure tensor and some simplifying assumptions. He then uses some estimate of

constants in his theory to construct a table of values of S* (γ in his notation), given in his

table 3.1, varying from about 6.3x10-2 dyn/cm for t=1s and D=10-9 cm2/s to 10-5 dyn/cm

for t=4000s and D=10-5 cm2/s. He notes that "From the entries in this table it follows that

the tension of a diffusive mixing zone between miscible fluids, while small, is

nevertheless not zero."

The theory used by Smith, et al [1981] and by Davis [1988] evidently requires that

one assume wrongly that the density of a mixture of incompressible fluids is constant.

Davis restricts his analysis to a two-component regular solution in which the densities of

the components 1 and 2 are n1=φ∼ n and n2=(1-φ∼ )n. φ∼  is the mole fraction of component 1

and n is the total density, which he says is constant in a regular solution. We shall

reinterpret the Davis work for simple mixtures by replacing the mole fraction φ∼   with the

mass fraction  φ̂=mγ/m of an incompressible liquid (say, water) in a mixture (say, water

and glycerin) of total m=mγ+mν where mν is the mass fraction of glycerin. Then (n,n1,n2)

should be replaced by (m/V,mγ/Vγ,mν/Vν) = (ρ,ργ,ρν) where V is the total material

volume and ργ and ρν are the ordinary (constant) densities (of water and glycerin) listed

in the handbooks. Moreover, if our regular solution keeps its volume after mixing, then

n = ρφ∼  + ρ(1-φ∼ ) = 
m
V 

mγ
m  + 

m
V (1 - 

mγ
m ) 

      = γ + ν = ργ φ + ρν (1-φ) = ρ(φ)

and the regular solution of Davis is a simple mixture. Obviously, a mixture of

incompressible liquids does not have a constant density even though the density of each

of its constituents is constant at a fixed temperature.
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Davis [1988] expresses well the notion that gradients of composition can lead to

anisotropic forces which mimic the effects of interfacial tension:

When two miscible fluids are placed in contact they will immediately begin to
mix diffusively (and convectively if their densities are such as to drive
convection) across the concentration front formed at the zone of contact. Although
no interface will form at the concentration front, the composition inhomogeneities
can give rise to pressure anisotropies and therefore to tension at the mixing zone
between the contacted fluids. Diffusive mixing will continuously broaden the
mixing zone and reduce the pressure anisotropy and the associated tension. The
purpose of this short paper is to examine with the aid of a molecular theory of
inhomogeneous fluid the magnitude and rate of reduction of the tension by
diffusive mixing of the zone of contact of miscible fluids. The results found here
suggest that instabilities in miscible frontal displacement may be similar to those
in ultralow tension immiscible frontal displacement, with the added caveat that in
the miscible process the tension decreases continuously in time.

The calculation in section 6 shows that the dynamic tension does not and should

not give rise to a pressure difference across a spreading plane layer. This is a good

analogy to interfacial tension which is proportional to curvature and vanishes across plane

layers. The calculation of forces over a spherical layer advanced in section 7 does contain

curvature terms, but the analogy is not perfect.

May and Maher [1991] have extracted an effective "surface tension" between

isobutyne acid and water at near-critical composition (62.1 volume % water) for change

of phase from a miscible to immiscible liquid mixture. This binary liquid mixture has an

upper critical temperature, Tc=26.310°C, below which its two equilibrium phases act as

immiscible liquids with an interfacial tension σ=σo[(Tc-T)/Tc]1.23. If this system is

initially at two phase equilibrium and then has its temperature abruptly raised above Tc

but is not mechanically disturbed, the interface will remain visible for many hours as

diffusion can only mix the two phases slowly. May and Maher [1991] measured

autocorrelation function for light scattered from capillary waves at the interface of two-

phase equilibrium and after abruptly raising the temperature to drive the system toward

one-phase equilibrium. They used a capillary wave dispersion relation to determine a
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decaying transient "surface tension" with a maximum value near 0.01 dyne/cm. They note

that " ...This surface tension represents a dynamical integrity of the nonequilibrium

interface which may affect pattern formation when the interface is driven.

6. Jump of the normal stress across a plane mixing layer

We shall now examine the problem considered in section 5 without assuming that

density is constant and using the one dimensional problem defined by (4.4), (4.5) and

(4.6). This is the canonical initial value problem for mixing layers, the smoothing-out of a

discontinuity in φ at a plane. At t=0, φ=φ+ when x>0 and φ=φ- when x<0. Since we are on

an infinite domain φ=φ+ at x→∞ and φ=φ- as x→ -∞. Without loss of generality we may

translate φ by ∆φ/2 where ∆φ=φ+ - φ- >0 and suppose that when t=0

φ = 
∆φ
2      for x>0 and φ = - 

∆φ
2      for x<0 (6.1)

and for all t

φ = 
∆φ
2      as x→∞ and φ = - 

∆φ
2      as x→ -∞  . (6.2)

In this situation (4.5) holds and the velocity is proportional to the volume fraction

gradient which is infinite at t=0+.

For simplicity we take the diffusion coefficient D to be independent of φ and for

glycerin-water mixture D is of order 10-6 cm2/sec. Then classical diffusion equation (4.6)

has a similarity solution

φ = 
∆φ

π
  
��

-∞

η
   e-η2 dη (6.3)

with

η = 
x

2 Dt    . (6.4)

Using (6.3) we may express (4.5) as
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u = ue = 
ζ∆φ

2 π (1-ζφ)
 

D
t     exp[- ( 

x
2 Dt  )

2] . (6.5)

The diffusion layer can be defined from the place -xo where ψ=φ-1/2=-0.495 to

the place xo where ψ=0.495, or by -m<η<m with m about 2. The thickness of the

diffusion layer is

∆x = xo - (- xo) = 4m Dt (6.6)

and it tends to zero with t.

Equation (6.5) shows that the expansion velocity which enters into dynamics can

be considerable at early times inside the diffusion layer. The gradient of φ is the machine

which drives the velocity. The velocity decays as D/t .

It is of interest to calculate the jump of the stress across the mixing layer. To find

the jump in the stress we integrate (4.4) over the diffusion layer. Outside of this layer the

derivatives of φ vanish and

��

-xo

xo
    ρ(φ) (

∂u
∂t   + u 

∂u
∂x  ) dx = - Π  - g 

��

-xo

xo
    ρ(φ) dx (6.7)

where

Π  = Π(xo, t) - Π(-xo, t)  .

Equation (6.7) shows that the Korteweg stresses do not enter into the stress jump

across the plane mixing layer. This is unlike the calculations of section 5, but like true

interfacial tension in which curvature supports a jump in stress. Using the continuity

equation it can be easily  seen that the contribution due to inertia is always zero

��

-xo

xo
   ρ(φ) (

∂u
∂t   + u 

∂u
∂x  ) dx = 

��

-xo

xo 
  
∂ρu
∂t   dx = ρν 

��

-xo

xo 
  
∂
∂t  [D(φ)

∂φ
∂x ] dx
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= ρν 
��

-xo

xo 
  
∂
∂x  [D(φ)

∂φ
∂t  ] dx = 0,

(6.8)

which is also true when D(φ) depends on φ. Therefore

Π  = - g 
��

-xo

xo
    ρ(φ) dx  . (6.9)

The jump in normal stress is simply the static pressure difference across the mixing layer.

7. Spreading of a spherical diffusion front and Korteweg stresses

The problem of the spreading of a spherical front with gravity neglected is good

for bringing out how Korteweg stresses may enter the normal stress balance when the

curvature is not zero. In fact this kind of calculation was carried out for an equilibrium

phase change cavitation bubble in the absence of diffusion or motion by Korteweg

[1901]. A critical discussion of the Kortewegs’ equilibrium calculation can be found in

Joseph [1990].

At t=0 a spherical mass of radius ro of one liquid is inserted into an infinite

reservoir of a second liquid. The two liquids are miscible in all proportions. We can

imagine a sphere of glycerin in a reservoir of water. The governing equations are (3.3),

(3.6) and (3.9) written for spherically symmetric solutions, with one, radial, component of

velocity u(r,t) which vanishes at r=0 and r=∞. Under these conditions divW=0 implies

that

u(r,t) = ue(r,t) = ζDγ 
∂φ(r,t)
∂r     . (7.1)

The diffusion equation (3.3) may then be written as

∂φ
∂t   = D 

∂
∂r (
∂φ
∂r)  + 

2D
r  
∂φ
∂r (7.2)
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where the water fraction φ(r,t)=1 when r>ro, t=0 and φ(r,t)=0 when r<ro, t=0. When the

thickness of the mixing layer at r=ro is small, it is locally like a plane and the 2nd term on

the right side of (7.2) may be neglected. This reduces our problem to the one considered

in section 6 centered on r=ro and it has the same self similar solution with

η = 
r-ro

2 Dt   , (7.3)

when 2η Dt  << ro.

The momentum equation (3.9) may be written as

ρ(φ) [ 
∂u
∂t   + u 

∂u
∂r  ] = - 

∂
∂r  [ Π + Q(φ) ] + 2 

∂
∂r (µ

∂u
∂r)  + 

4µ
r  
∂u
∂r  

- 4µ 
u
r2  + 

∂
∂r  [δ̂ (

∂φ
∂r) 2] + 

2δ̂
r  (
∂φ
∂r) 2 (7.4)

where ρ(φ) is given by (2.8) and µ(φ) by (3.11). After integrating over the mixing layer

from  r1= ro-2m Dt   to  r2= ro+2m Dt  , we find that

��

r1

r2
    {ρ(φ) (

∂u
∂t   + u 

∂u
∂r  ) - 4µ 

∂u/r
∂r   - 

2δ̂
r   (
∂φ
∂r) 2} dr =

[ - Π - Q(φ) + 2µ 
∂u
∂r  + δ̂ (

∂φ
∂r) 2 ]

r1

r2 (7.5)

Outside the mixing layer (r1(t),r2(t)), φ is essentially constant and u is essentially zero.

The contribution due to the inertia at the left hand side of (7.5) is again found to be zero

as in the case of the plane layer. After writing

��

r1

r2
    µ 

∂u/r
∂r   dr = [µ 

u
r  ]

r1

r2   -  
��

r1

r2
    µ'(φ) 

u
r  
∂φ
∂r  dr (7.6)

and putting terms outside the mixing layer to zero we get
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��

r1

r2
     {4 µ'(φ) 

u
r  
∂φ
∂r   - 

2δ̂
r   (
∂φ
∂r) 2} dr = - [ Π]

r1

r2   . (7.7)

Now we evaluate (7.7) at very early times, when the mixing layer is very thin, r2-r1=

4m Dt   and r ≈ ro. Using the same approximations with r ≈ ro in the two terms of the

integral of (7.7), we find that

2
ro

 
��

r1

r2
   { 2 µ'(φ) u  

∂φ
∂r   - δ̂  (

∂φ
∂r) 2} dr = 

2
ro

 
��

r1

r2
   {2 

µ'(φ)ζD
1-ζφ   - δ̂  } (

∂φ
∂r )2 dr

= 
1
ro

 
D
t  
��

-m

m
   { 2 

µ'(φ)ζ
1-ζφ   - 

δ̂
D  } φ'2 dη  .

Finally,

Π(r1,t) - Π(r2,t) = 
2
ro

  T(t) (7.8)

where the "transient surface tension" is given by

T(t) = 
D
t  
��

-m

m
   { 

µ'(φ)ζ
1-ζφ   - 0.5 

δ̂
D  } φ'2 dη   . (7.9)

For glycerin and water solutions at 20°C we may evaluate (7.9) using values for µ' and ζ

near to (3.11) as

T(t) = 
D
t    [  164.5  

-δ̂
D   - 428.7 ]  (7.10)

with D about 7.5x10-6 cm2/sec, but we do not have any knowledge about the value of

Korteweg stress coefficient δ̂ . There are two terms in the expression for the dynamic

interfacial tension; one term arises from the Korteweg stress and it gives rise to a stress

opposing the internal pressure as in the case of equilibrium pressure if the Korteweg
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coefficient δ
^
  has a negative sign. A second term arises from the expansion velocity and is

proportional to the rate of change of viscosity with volume fraction. This term has the

wrong sign for interfacial tension in the case of glycerin and water solutions but has the

right sign when the light fluid is more viscous.

In general D(φ) is not a constant and the error function solution (6.3) is not valid.

However even in this case (4.6) admits a similarity solution with

φ = f(η), η = 
x

2 Dot   , (7.11)

where Do is representive value of D(φ) and

d
dη ( 

D(f)
Do

 
df
dη )  + 2η 

df
dη  = 0 (7.12)

where

f = 
∆φ
2      for η=0+ and f = - 

∆φ
2      for η=0-

and

f = 
∆φ
2      as η→∞ and f = - 

∆φ
2      as η→ -∞  .

Following now the derivation leading to (7.9) we find again with

T(t) = 
Do
t  

��

-η1

η2
   { 

µ'(φ)ζ
1-ζφ  

D(φ)
Do

  - 0.5 
δ̂

Do
  } φ'2 dη  (7.13)

where η1 and η2 mark the effective end of the diffusion layer replacing m in (7.9). In

general φ(η) will not be antisymmetric if D(φ) is not an even function.

8. Conclusions and discussion

1. A theory of motion and mixing of two incompressible liquids ν and γ can be developed

based on the equation of state for the density
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ρ(φ) = ργ φ + ρν (1-φ) = ρν (1-ζφ)

of a simple mixture. The natural variable connecting composition to density is the volume

fraction φ say of γ with constant densities ρν and ργ under isothermal conditions.

2. The velocity u is not solenoidal because the density ρ(φ) changes due to diffusion. For

simple mixtures the vector

W = u - 
ζD

1-ζφ  ∇φ

is solenoidal divW=0. The velocity u can be decomposed into a solenoidal part us,

divus=0, and an expansion part ue where

 divue = ∆ =  ζ div [
D

1-ζφ  ∇φ ]

is the expansion and D(φ) is a diffusion function of φ, a quantity of order 10-6 cm2/sec in

many liquids. D(φ) is assumed to be constant in standard theories of Fick’s law (but it

varies in experiments). The expansion velocity is driven by gradients of the volume

fraction.

3. In one dimensional problems with one component of velocity u(x,t) perpendicular to

the mixing layer we have

u(x,t) = A(t) + ue(x,t)

where A(t) is the solenoidal part of the velocity, an identical formula holds for spherically

symmetric one dimensional problems with r the radius replacing x and

ue(r,t) =  
ζD

1-ζφ 
∂φ
∂r(r,t)   .

4. The problem of dynamic interfacial tension due to effects of the expansion velocity and

Korteweg stresses are analyzed by evaluating the jump of the normal stress across plane

and spherical mixing layers which smooth an initial discontinuity of composition. We

find no jump across a plane layer but there is a jump proportional to the curvature across
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the spherical surface. The dynamic tension at the spherical interface decays as D/t .

There are two terms in the expression (7.10) for the interfacial tension; one term arises

from the Korteweg stress and it gives rise to stress opposing the internal pressure as in the

case of equilibrium pressure if the Korteweg coefficient has the appropriate sign. A

second term arises from the expansion velocity and is proportional to the rate of change

of viscosity with volume fraction. This term has the wrong sign for interfacial tension in

the case of glycerin and water solution but has the right sign when light fluid is more

viscous.
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