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GENERALIZATION OF THE FOSCOLO-GIBILARO ANALYSIS OF
DYNAMIC WAVES

by Daniel D. Joseph

Abstract

A new expression for the particle phase pressure in a fluidized bed

generalizing the one used by Foscolo and Gibilaro is derived.  In the new theory

uniform fluidization is always unstable.

1.  Introduction

This note reports an attempt to obtain the particle phase pressure in the

Foscolo-Gibilaro [2] one-dimensional, particle in a fluidized bed model, from a

constitutive hypothesis which appears to be implied by their work.  Our

hypothesis leads to their expression plus another term which is proportional to

the space derivative of the particle velocity.  We think of this term as

representing a change in the microstructure, the positions of the particles relative

to one another.  This term is also missing from the one-dimensional equations

which were recently derived by G.K. Batchelor [1].  When the new term is added

we find that the state of uniform fluidization is always unstable.

2.  Dynamical equations

Foscolo and Gibilaro [2] start with the coupled one-dimensional equation

for the particles and fluid phase.  The particle phase equations are

∂φ
∂t +

∂φu p

∂z = 0,

φρρ

∂u p

∂t + u p

∂u p

∂z
�
�
�

�
�
�

= − φρρg + F −
∂p p

∂z .

(1)

(2) 
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where up is the particle velocity, φ is the particle volume fraction, φ=1–ε, where

ε is the fluids fraction, ρp is the particle density, F is the interaction force, the

force that the fluid exerts on the particle, and pp is the particle phase pressure.

The fluid equations are of the same form except that the subscript p is replaced

by f, φ is replaced by ε and F by minus F.

Foscolo and Gibilaro modeled the interaction force F and the particle

phase pressure in a manner that decouples the equations for the fluid and solid

phases.  This gives rise to a system of equations for the particles only, called the

particle bed model.

It is convenient to introduce a dynamic pressure πp into (2) by writing

pp = P + πp (3)

φppg + ∂P∂z  = 0 (4)

Then (2) reduces to

φρp

∂u p

∂t + u p

∂up

∂z
�
�
�

�
�
�

= F −
∂πp

∂z .  (5)

3.  Drag on a particle in a steady fluidized suspension

To get their equations they first derived an interesting expression Fd(1) for

the drag force exerted by the fluid on a single particle in a uniform fluidized

suspension.  This expression relies strongly on the well-known correlation of

Richardson and Zaki for fluidized and sedimenting beds of monosized spherical

particles

uf = ucp (6)
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where

uf = upφ + ufε (7)

is the composite velocity, the volume flux divided by total area and uc is

independent of z, 
∂uf
∂z   = 0.  Of course V=uf when ε=1, the steady terminal velocity

of a freely falling single sphere in a sea of fluid.  The exponent n depends on the

Reynolds number Re = dV
µ   where d is the diameter

n =

4. 65 for Re < 0.2 ,

4.4 Re−0.03 for 0.2 < Re < 1,

4.4 Re−0.1 for 1< Re < 500 ,
2. 4 for Re > 500 .

�
��
�
�
��

 (8)

Foscolo-Gibilaro replace 4.65 with 4.8=2(2.4) for reasons to be made clearer

later.

There is a huge amount of fluid mechanics buried in the Richardson-Zaki

correlation.  This is hidden in the drag law for particles falling under gravity in

steady flow.  Let Fd(ε) be the drag on a single particle in a freely falling

suspension with a water fraction ε.  When ε=1 we get a drag law for the free fall

of a single sphere which is Stokes drag when V is small enough; for larger V the

drag is given by

Fd(1) = ρV2
2   πd2

4   CD (9)

where CD is given by an empirical correlation, for example,

CD = 
�
�
�

�
�
�0.63 + 4.90

re  2

said to be due to Dallavalle. Foscolo and Gibilaro produce the formula
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Fd(ε) = εFd(1) (10)

from an argument which says that in a fluidized bed in steady flow, the total force

F on a sphere is the sum

F(ε, Re) = Fd(ε) – Fp(ε) (11)

where

Fp(ε) = πd3
6  (ρp – ρf)  g (12)

is the buoyant force using the effective density

ρf = ερp + φρp (13)

of the composite fluid. Since φ = 1 – ε ,

Fp(ε) = – πd3

ρ  (ρp – ρf)  gε = εFp(1) (14)

In steady flow, F = 0 and

Fd(ε) = Fp(ε) = εFp(1) = εFd(1) (15)

We never see steady flow in a fluidized bed, the particles always jiggle about;

steady is in some statistical sense, whatever that may be.  In any interpretation

up = 0 in steady flow . (16)

Equation (15) is all that is required to get the drag on a single particle in a

fluidized suspension in steady flow.  The hydrodynamic content is all buried in

the drag correlation (9).  We may write Fd(ε) = εF1(V).  To see how Fd(ε)

depends on the fluidizing velocity uc, Foscolo and Gibilaro note that (9) implies

that
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F
d

= ε
3πµV (laminar)

0.055πρd
2
V

2
(turbulent ).

��
�
��

 

They next note that the Richardson and Zaki correlation (6) and (8), with 4.8

replacing 4.65, implies that

F
d

= ε−3 .8
3πµdu c (laminar)

0.055πρd2uc
2 (turbulent ).

��
�
��

 (17)

This is good, we have Fd(uf, ε) = ε–3.8Fd(uf), independent of V for low and high

Reynolds numbers.  Now we look for an equivalent expression, valid for all

Reynolds numbers in steady flow and

Fd(ε) = Fd(ε, uf, V) = ε–3.8g(uf, V) (18)

which will reduce to (17) at low and high Re.  Clearly

g(u c,v) = ε4 .8F d(1) =
u c

V
�
�

�
�

4 .8
n

F d(1) .

Hence

F d(ε,uc,V) = ε−3.8 uc

V
�
�

	



4 .8
n

F d(1).
(19)

This is just another way of writing Fd(ε) = εFd(1) when 4.65 is replaced with 4.8

which is useful in motivating the constitutive equation (21) below.

4.  The first constitutive hypothesis giving the force per unit volume on the

spheres

Foscolo and Gibilaro assume that in unsteady flow the force on a particle

is given by the expression (19) with uc replaced by the slip velocity
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uc − u p = (1− ε)up + εu
f
− u p = ε(u p − u

f
). (20)

Then the unsteady drag force is

F
d
(ε,uc − u p,V) = ε−3.8

u c − u p

V
�
�

�
�

4 .8
n

F
d
(1).

(21)

In steady flow, up = 0, and (21) reduces to

Fd(ε) = εFd(1) (22)

where balancing drag and buoyancy for a single sphere gives

F d(1) = πd3

6 (ρp − ρ f )g .

The total force on single particle in a fluidized suspension is given by

F = F
d

− F
b

=
πd

3
g

6 (ρ p − ρ
f
) ε −

u c − up

V
�
�
�

�
�
�

4 .8
n

ε −3 .8

��
	
�


��
�
�

.
(23)

The force per unit volume due to all n spheres is

F = NF (24)

where

N =
φ

πd
3
/6

= n
volume .  (25)

Hence, the total force on the particles per unit volume is

F = φ(ρp − ρ
f
)g ε −

u c − up

V
�
�
�

�
�
�

4 .8
h

ε−3.8

��
	
�


��
�
�

.
(26)

In steady flow, up  and F = 0.
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5.  The second constitutive hypothesis giving the particle phase pressure

The same force of the fluid on the particles acts at the boundary to keep

the fluids from dispersing.  However we need to multiply the force on a single

particle by the number NA per unit area

N
A

=
φ

πd
2
/4

 

Hence, the dynamic pressure is given by

πp = NA F =
N A

N F = 2
3 dF  

The idea of making a constitutive equation for the pressure is more allied to gas

dynamics where the pressure is a state variable than to incompressible fluid

mechanics.  In discussing forces which fluids exert on particles G.K. Batchelor

[1] noted that in his list (2.3) of forces there is a “… mean force exerted on

particles in this volume by the particles outside the volume.”  Further he notes

that the nature of these two forces

“… may be explained by reference to a hypothetical case in which
the particles are electrically charged and exert repulsive
electrostatic forces on each other.  The range of action of these
electrostatic forces is small by comparison with the dimensions of
the dispersion, and so the mean resultant force exerted on the
particles inside τ, that is, by stress, –S say, which is a function of
the local particle concentration.

“Electrostatic interparticle forces are conservative, and in
that case one can interpret –S as the derivative of the mean
potential energy per particle with respect to the volume of the
mixture per particle.  The contribution to the net force exerted on
particles in our control volume by external particles is then

− A
x

1

x
2

�
∂s
∂x dx. (2.12)
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A repulsive force between particles corresponds to a positive value
of S (relative to zero when the particles are far apart), in which case
S plays a dynamical role analogous to the pressure in a gas.”

The equations of motion (1) and (2) are now reduced to

∂φ
∂t + ∂

∂z φup = 0,

ρpφ
∂u p

∂t + u p

∂up

∂z
�
�
�

�
�
� = F − 2

3 d ∂F
∂z

(27)

(28)
 

where F is given by (26) and

∂F
∂z = ∂F

∂ε
∂ε
∂z + ∂F

∂u p

∂up

∂z  (29)

and

∂F
∂ε = ∂N

∂ε F + N∂F
∂ε . (30)

Equations (27) and (28) are two nonlinear equations in two unknowns, ε and up.

These equations differ from the ones derived by Foscolo and Gibilaro [2] to

which they reduce when the two additional terms

∂F
∂u p

∂up

∂z (31)

and

∂N
∂ε   F (32)

are put to zero.  The term (32) vanishes in the analysis of stability of uniform

fluidization but (31) does not.

The term (31) also is absent from the list of forces which act in this

problem developed by Batchelor [1].  Hence, we are obliged to consider the
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physical origin of such a term.  We may regard the term (31) as arising from

changes in the microstructure of the mixture.  This has been well expressed in a

recent paper by Ham and Homsy [3].

“Analysis of the mean settling speed leaves unresolved the
problem of microstructural evolution in suspensions.  Such
changes in the relative positions of particles are likely because
each particle in a random suspension sees a slightly different local
environment and is therefore expected to have a velocity which is,
in general, different from that of any neighboring particle.  The
variations in particle velocities will lead to an adjustment of the
particle distribution.”

They note further that

“…the microstructural dependence arises from the fact that the
time between the velocities of the faster- and slower-setting
particles, and the difference will be influenced by the relative
position of the particles.  The influence of φ comes about from the
change in interparticle spacing with concentration of particles.”

6.  Stability of uniform fluidization

Equations (27) and (28) are satisfied by the steady state of uniform

fluidization

up = 0,ε = ε0 (33)

where ε0 is independent of z and t.  Let ε and up now stand for small

perturbations of ε0 and 0.  Then, we find that

∂ε
∂t = φ

∂u p

∂z ,

φ
∂up

∂t = −B(φ0u p + c1ε) + c2
2 ∂ε

∂z + 2
3 φ0dB

∂up

∂z

(34)

(35)
 

where
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c 2
2 = 3.2φ0g~ d,

g~ =
g(ρp − ρ

f
)

ρp
,

c1 = nVε 0
n −1φ0 ,

B =
4.8g~

nVε 0
n −1 .

 (36)

After eliminating up between (34) and (35) we get

∂2ε
∂t2 − c 2

2 ∂2ε
∂z2 − 2

3 dB ∂2ε
∂t∂z + B ∂ε

∂t + c 1
∂ε
∂z

�� �� = 0.  (37)

This equation is in the form derived by Wallis [5] but the meanings of the

coefficients are altogether different, as are the results of stability analysis using

normal modes proportional to exp {–iα (x – ωt)} .  We find that the uniform is

unstable whenever

c1 + 13  dB > c2
2 + 19 d2 B2 (38)

This reduces to the well known criterion of Wallis when B = 0.  In the present

case, the inequality (38) is always satisfied and the uniform state is always

unstable.

The unsteady drag law (21) used by Foscolo and Gibilaro is controversial.

I have not seen a compelling argument for or against it.  Perhaps we can finally

judge (21) only after we know what it implies.

References

[1] Batchelor, G.K., 1988  A new theory of the instability of a uniform fluidized

bed.  J. Fluid Mech. 193, 75-110.



11

[2] Foscolo, P.V. and Gibilaro, L.G., 1984  A fully predictive criterion for

transition between particulate and aggregate fluidization.  Chem. Eng. Sci.

39, 1667.

[3] Foscolo, P.V. and Gibilaro, L.G., 1987  Fluid dynamic stability of fluidized

suspensions.  The particle bed model.  Chem Eng Sci. 42, 1489-1500.

[4] Ham, J.M. and Homsy, G.M., 1988  Hindered settling and hydrodynamic

dispersion in quiescent sedimenting suspensions.  Int. J. Multiphase Flow

14, 533-546.

[5] Wallis, G., 1969  One-Dimensional Two Phase Flow.  McGraw-Hill.

Acknowledgements

This work was supported under grants from the Dept. of Energy, ARO,

and NSF.  I wish to thank Constantinos Sioutas for his help with some aspects of

§6.


