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ABSTRACT

Oil and water in equal proportion are set into motion between horizontal concentric
cylinders when the inner one rotates. Many different flows are realized and described. In
one regime many large bubbles of oil are formed. In a range of speeds where the water is
Taylor unstable and the oil Taylor stable, we get strange Taylor cells of emulsified fluids
whose length may be three or even four times larger than normal. The length of cells
appears to be associated with effective properties of a non-uniform emulsion, so the cell
sizes vary along the cylinder. At much higher speeds we get a fine grained emulsion which
behaves like a pure fluid with normal Taylor cells. A second focus of the paper is on the
mathematical description of the apparently chaotic trajectory of a small oil bubble moving
between an eddy pair in a single Taylor cells trapped between the oil bands of a banded
Couette flow. We defined a discrete autocorrelation sequence on a binary sequence
associated with left and right transitions in the cell to show that the motion of the bubble is
chaotic. A formula for a macroscopic Lyapunov exponent for chaos on binary sequences is
derived and applied to the experiment and to the Lorenz equation to show how binary
sequences can be used to discuss chaos in continuous systems. We use our results and
recent results of Feeny and Moon (1989) to argue that Lyapunov exponents for switching
sequences are not convenient measures for distinguishing between chaos (short range
predictability) and white noise (no predictability).

The flows which develop between our rotating cylinders depend strongly on the
material properties of the two liquids. A third focus of the paper is on dynamically
maintained emulsions of two immiscible liquids with nearly matched density. The two
fluids are 20 cp silicone oil and soybean oil with a very small density difference and small
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interfacial tension. The two fluids are vertically stratified by weight when the angular
velocity is small. Then one fluid fingers into another. The fingers break into small bubbles
driven by capillary instability. The bubbles may give rise to uniform emulsions which are
unstable and break up into bands of pure liquid separated by bands of emulsified liquid. We
suggest that the mechanics of band formation is associated with the pressure deficit in the
wake behind each microbubble.

INTRODUCTION

Some of the phenomena which are now to be described extend results first given in
the paper of Joseph, Nguyen, and Beavers (1984). This paper is the only one we know to
report results of experiments on the flow of two immiscible liquids in a Taylor-Couette
apparatus. We shall refer to this paper as JNB. The papers by Y. Renardy and D. Joseph
(1985) and by Guillopé, Joseph, Nguyen, and Rosso (1987) are the only theoretical studies
of the special form of two-fluid flow between rotating cylinders called Couette flow. The
paper by Joseph and Preziosi (1987) gives a theoretical explanation of rollers, which is
another configuration which appears in our experiments between cylinders. In this paper we
are going to describe some of the flows which can be observed when two immiscible liquids
are set into motion between horizontal cylinders when the inner one rotates. Many different
flows are realized: fingering flows, coarse and fine emulsions, phase-separated emulsions,
lubricated flow, and banded Couette flows.

The nature of fluid-solid interactions takes a more important place in two-fluid
dynamics than in single fluid dynamics. There is a competition between the two fluids as to
which one will wet a solid boundary. The factors that enter into this competition are not
understood. We get some kind of interaction between the physical chemistry of adsorption
of fluid at the boundary of a solid with two-fluid dynamics. Wetting is not determined
entirely by energy considerations, by contact angles, static or dynamic. The history of the
motion also plays an important role in determining the places on the solid which are wet by
one liquid or another (see Figure 3e).

Taylor-Couette flows of a single fluid are among the best understood of all fluid
phenomenon. One reason for this is that the geometry is relatively simple for analysis and
perfectly marvelous for experiments. The Taylor-Couette apparatus may also evolve as an
apparatus of choice in the study of two-fluid dynamics, fluid-solid interaction, and in the
study of dynamical properties of emulsions.

EXPERIMENTS

All of the experiments were carried out between two concentric cylinders with axis
horizontal, perpendicular to gravity. The outer cylinder and the end plates are plexiglass.
The inside diameter of the outer cylinder is 2.495 inches; the outside diameter is 2.986
inches. The inner cylinder is of aluminum with a diameter of 1.985 inches. This is a
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convenient reference for normal Taylor cells which combine two counter-rotating eddies
approximately 0.515 inches in length. The length of the cylinder is 11.985 inches. The outer
cylinder is fixed and the inner one rotates with angular velocity Ω.

Our Taylor apparatus uses two neoprene lip seals to prevent leakage. The shaft
driving the inner cylinder is connected to a torque meter which has a provision for counting
rpm. The torque meter is connected to a mechanical-digital converter which displays the
value of the torque and rate of rotation. The digital signal is transferred to a Hewlett-
Packard 87 and then sample averaged. Usually there is a fluctuation in the torque before the
rotation reaches a new steady state. By monitoring the values displayed on the digital
converter, we can determine when the motion is in steady state. We took torque data for
some of the experiments which is reported in Figure 1. For uniformity each data point was
taken one-half hour after establishing a changed condition. Obvious transients were well
delayed after this time. Sometimes there is a slow emulsification which will eventually
change the dynamics.

The torque values shown in Figures 1, 5, and 9 are not guaranteed because there is
an unknown frictional torque due to the neoprene seals which varies with the speed. The
decrease in the torque at small values of Ω is almost certainly an effect of seals and not of
flow. At higher speed the fraction of the total torque due to the bearings is smaller. Perhaps
torques measured at speeds in excess of 80 rpm are reasonably accurate.

The laboratory is temperature controlled at 25° Celsius. We used two different oils
in the experiments with water and oil: Mobil heavy duty oil with density of 0.97 g/cm3 and
viscosity 0.95 poise, and SAE 30 motor oil with density of 0.886 g/cm3 and viscosity of
0.98 poise. The major effect of the density difference occur in slow or lubricated flow in
which the oil floats up. This effect is greater in SAE 30 oil-water systems than in the heavy
oil-water system which is more nearly density matched.

A different set of experiments in the same apparatus were carried out with silicone
oil and soybean oil (under the brand name of Crisco). The density and viscosity of the
silicone oil is ρ=0.949 g/cm3, µ=0.2 p and of the soybean oil is ρ=0.922 g/cm3, µ = 0.46 p.

The interfacial tension between Mobil heavy-duty motor oil and tap water is 30.00
dyne/cm. The interfacial tension between SAE 30 motor oil and tap water is 9.2 dyne/cm.
The interfacial tension between 0.2 p silicone oil and Crisco is 1.4 dyne/cm.

PARAMETERS

Six dimensionless parameters govern these flows: the viscosity ratio, the density
ratio, the volume ratio, a capillary number, a Froude number based on ∆ρg where ∆ρ is the
density difference, and a Taylor (or Reynolds) number. We are going to collect data for
systematic variations of the parameters later. It is useful to note that we usually get some
form of emulsions when the Taylor number for the high viscosity constituent is larger than
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the critical one for Taylor instability. The critical angular velocities in our apparatus are
calculated from the instability theory as [4.35, 409, 402, 91.7, 217] rpm for [water, SAE 30
motor oil, Mobil heavy-duty motor oil, 0.2 p silicone oil, Crisco] when one fluid rather than
two fluids fills the gap. We say that two-phase flow between cylinders is bistable when one
phase is stable, the other unstable. Bistable flow of water and motor oil occurs when
4.35<Ω<409 (or 402) rpm. Bistable flow of silicone and Crisco oil occurs when
91.7<Ω<217 rpm.

COUETTE FLOWS

Couette flows of two liquids are here defined as steady axisymmetric flow of two
immiscible liquids between infinitely long rotating cylinders of radius a<b and angular
velocities Ω1 and Ω2. These flows satisfy the Navier-Stokes equations, no-slip boundary
conditions, and classical interface conditions at liquid-liquid interfaces. The Couette flows
are a small class of steady and possibly nonaxisymmetric flows which could develop
between rotating cylinders, but in contrast to the one-fluid case, Couette flows of two fluids
are not unique, there is a continuum of solutions of at least two different types: layered and
banded Couette flows.

Layered Couette flows

Layered Couette flows are one class of steady solutions. For two layers, one is on the
inside, two outside, and the interface between them is at r=d In fact the steady solutions are
not unique, there could be any number of layers of any thickness subject to the specification
of the volume of each fluid and geometrical constraints. JNB showed that the layered flow
with just two layers, the low viscosity liquid on the inner cylinder, uniquely minimizes the
torque when the angular velocity difference is prescribed. They noted that the minimizing
torque can be determined by minimization for two layers since we may always consider the
problem for adjacent layers. For two layers, one inside, two outside, the torque ML per
length L is

M L =
a 2 b2 Ω 2 − Ω 1( )

b2 − a 2( ) k

µ1µ 2 b2 + ka 2( )L

b2µ 1 + ka 2µ 2( )  (1)

where

k =
v 2
v 1

 (2)

is the ratio of volumes. Suppose that we have oil and water, fixing the water volume vw and
oil volume. First we compute M when µ1=Uw, v1=vw then compute M when m2=µw,
v2=vw.  The case with µ1=µw gives a smaller torque, so the water is on the inner cylinder
r=a, oil outside.
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The stability of layered Couette flow was studied by Renardy and Joseph (1985) and
Guillopé et al. (1988). The linear theory with gravity neglected studied in their paper
showed that a thin layer of the less-viscous fluid  next to either cylinder is linearly stable
and that it is possible to have stability with the less dense fluid lying outside. The stable
configuration with less-viscous fluid next to the outer cylinder, layered Couette flows, have
never been observed because of effects neglected. However various lubricated flows with
less viscous fluid on the wall in the presence of gravity could be regarded as realizations of
the torque-minimizing layered Couette flow. For examples of this type we refer the reader to
Figures 7, 8, and 9, and especially Figure 10 of JNB and to the description of the flows
shown in Figures 2e, f, and g of this paper.

Banded Couette flows

These flows are such that the two fluids are arranged in alternating bands rather than
layers. This is an exact solution, the same solution as if there were no bands.

u = e
θ
V(r) = e

θ
Ar + B

r( ) ,

A =
b2Ω 2 − a 2Ω 1

b2 − a2
,

B = Ω1 − Ω 2( ) a2 b2

b2 − a2
.

 (3)

The interface between bands are set on the annular areas in the intersection of the gap and
planes perpendicular to axis z of the cylinders. The velocity is automatically continuous; the
shear stresses τzθ and τzr are zero and the pressure is continuous across these planes.

Banded Couette flows are not unique, the width of the bands and their number is not
determined by stated conditions. The torque on the cylinders is the sum of the torques of
each band. The torque MB on a band of length L, with viscosity µ, is given by

M B =
Lµ
2 r 3

d v
r( )

dr
�
�
�

�
�
�

2

a

b

� dr

= Lµa2 b2 Ω 2 − Ω 1( )
2

b2 − a2
.

 (4)

Suppose L1 is the total length of bands of fluid with viscosity µ1 and L2 with viscosity µ2.
Then
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L 1 + L 2 = L ,

L 2
L 1

=
V 2
V 1

= k, and

M B =
µ 2 + kµ1( )

1 + k La 2 b2 Ω 2 − Ω1( )
2

b2 − a 2
.

 (5)

To compare the torques on the cylinders in banded and layered Couette flow we put

M B
M L

=
b2µ1 + ka 2µ 2( )

µ 1µ 2 b2 + ka 2( )
µ 2 + kµ 1( )

1 + k( )

=
m + k a2

b2
�
��

�
��

1 + mk( )

m 1 + k a 2

b2
�
��

�
��

1 + k( )

 (6)

where

m =
µ1
µ 2

.

The minimum torque in layered Couette flow is when the low viscosity constituent is on the
wall, m<1 The function (6) of m decreases from infinity at m=0 to one at m=1. Hence
MB>ML; layered Couette flow has a smaller torque for the same angular velocity and
volume fraction as banded Couette flow for which the oil must necessarily attach itself to
both inner and outer layer.

Banded Couette flows are not lubricated. We have never seen a banded Couette flow
without secondary motions, but the flows shown in Figures 3a and 10 are banded Couette
flows in the water cells which have already become unstable to Taylor vortices. The active
water cells in Figure 10 are the sites for the strange attractor which is described in the
section, “Chaotic trajectories of oil bubbles in an unstable water cell.”

ROLLERS

There can be a superficial resemblance between banded Couette flows and rollers.
The rollers shown in Figures 26 and 28 of JNB look exactly like the banded Couette flows
shown in Figure 10 of this paper, but the rollers are not attached to the outer cylinder; they
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rotate nearly as a rigid solid sheared only by water. Truncated rollers are shown in Figures
2e, f, and g.

EMULSIONS, TALL TAYLOR CELLS, CELL NUCLEATION

The generation of emulsion can occur in several ways. The fluids at rest are stratified
by gravity. At slow speeds a stable interface of one fluid advances into the other. The
advancing interface develops scallops at its leading edge as in Figure 2.1. These scallops
become unstable and finger into the host fluid (Figures 4 and 6a). Bubbles form from
capillary instability leading directly or eventually to emulsions. The average size of the
bubbles in an emulsion decreases as the speed (shear) increases. A coarse emulsion has
large oil bubbles (Figures 2c, d). All these emulsions are maintained by shearing. They
collapse to stratification when the motion is stopped. Strictly speaking, emulsions are
unsteady because the oil water interfaces are moving. We can realize transient uniform
emulsions (Figures 4 and 6b), but they appear to be unstable because they cannot be
maintained when the angular velocity of the inner cylinder is fixed (Figure 6c).

The forms taken by rotating flows of emulsions depend strongly on the fluids used.
In the oil-water systems we get very long cells and the cell sizes are variable along the axis
of the cylinder (Figures 2d, 3b, 3c). This nonuniformity may be due to a nonuniformity of
the degree of emulsification, the bubble size, along the axis. In any event the long
nonuniform cells are robustly stable to changes in the angular velocity. At much higher
speeds the degree of emulsification increases and new cell boundaries nucleate, producing
more cells. Eventually we get a very fine stable homogeneous emulsion which has square
Taylor cells of the usual type (Figures 3d, 6e). These cells are robust; if the angular velocity
is reduced the normal cells persist. This shows that fine emulsions have a different response
than coarse emulsions even when the gap size and angular velocity are the same.

Typical sequences of flow types are exhibited in the photographs of heavy motor oil
in water shown in Figure 2 and in the photographs of SAE 30 motor oil shown in Figure 3.
Many of the transitions are evident also in the torque graph, Figure 1, associated with
transitions in the heavy oil of Figure 2.

PHASE INVERSION

There is a critical φφ ~

21

1 =
+

=
vv

v
 for phase inversion, which we shall now define.

In our experiments  0.6<
~
φ <0.7; when φ<0.6, the liquid with the lower viscosity (silicone

oil) fingers into the more viscous liquid (Crisco oil) and eventually we get silicone drops in
Crisco oil. When φ>0.7, we can sketch the same Figure 4; but the words Crisco and silicone
are interchanged because Crisco, rather than silicone oil, fingers. In either case, the bubbly
emulsions which exist before phase separation are uniform without structure. The bubbly
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emulsions all have smaller torques than the pure low viscosity constant (silicone oil) when
Ω is small (see Figure 4). The torque is an increasing function of volume fraction up to
phase inversion; after inversion (φ>0.7) the torque appears to decrease with increasing φ.
The “effective viscosity” of bubbly emulsions is smaller than the viscosity of its lowest
viscosity constituent in pure form (silicone oil). There is a preference for low viscosity
fingers to penetrate into the high viscosity fluid, φ<0.6 Phase inversion shows that it is also
possible to get a more viscous liquid to finger into a less viscous one.

The torque curves can be used to back out the effective viscosity of an emulsion.
The effective viscosity of emulsified Crisco oil is smaller than the effective viscosity of
emulsified Crisco oil after phase inversion.

Mobil heavy oil and water average torque vs. rpm

T ave

rpm

Fig. 1. Torque versus angular velocity for heavy motor oil and water. The decrease of the
torque at the origin is due to the friction of the neoprene seal. We think that the oil
foam which appears at Ω>200 marks the inflow boundary of a Taylor cell for a
coarse grained emulsion. The appearance of clear bands is associated with
spontaneous clearing of oil from the inner cylinder, increasing lubrication.
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Fig. 2. Heavy motor oil and water. (a) 5 rpm. The inner cylinder is dragging the oil (top)
into water (bottom). Scallops are on the leading edge of the oil-water interface
which is steady and stable. (b) 31 rpm. The scalloped interface lost stability to a fat
finger at 13 rpm. The finger was dragged around the cylinder and lead to the oil
band evident in the photograph. There is a small oil roller on the left lubricated by
water.  (c) 201 rpm. This marks the beginning of a secondary motion of the oil
bubbles. It appears that all of the oil has emulsified. A fine band of foamy oil is
deposited on the outer cylinder over the inflow boundary. The cell size may be
measured as a fraction of the outside diameter (0.29 inches). Normal Taylor cells
are roughly twice the gap, 0.5 inches. These strange cells, which appear to be
Taylor cells, are over three times as long as normal Taylor cells. We can treat the
emulsion as an effective fluid with an effective viscosity. (d) 308 rpm. The oil
bubbles are fine markers of the fluid motion elongating themselves in the direction
of motion. The foamy oil bands are inflow boundaries. The outflow boundaries are
between the inflow boundaries and define a center of orientational symmetry for
the fluidized oil bubbles. The length of the cells is not uniform. The cells are three
times longer than usual. (Fig. 2 continued on next page.)
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Fig. 2. (continued) Heavy motor oil and water. (e) 500 rpm. The emulsion has almost
vanished. The oil on the outside cylinder is lubricated by water on the inside.
Truncated rollers are on the inner cylinder. (f) 550 rpm. The oil at the top is
shielded from the inner cylinder by a layer of water. It is a lubricated flow, like a
layered Couette flow. There are well-lubricated oil rollers on the inner cylinder. (g)
563 rpm. There are bigger rollers and fewer drops. Everything is lubricated by
water.
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Fig. 3. SAE 30 motor oil and water, series 1. This series undergoes development
somewhat like the one in Figure 2. (a) 99 rpm. A banded Couette is on the right
and a water lubricated stratified flow on the left. The oil broke up at about 300 rpm
and coarse grained emulsion is formed. (b) 360 rpm, (c) 785 rpm. The secondary
motions are beautifully marked by the emulsions. The cell sizes are not uniform
but do not change with speed. At higher speeds new cells nucleate and after
several adjustments the long cells shorten to the normal length, twice the gap. This
adjustment is complete at 2550 rpm. Then the speed is reduced to 360 rpm (d) and
the normal cells are retained. The difference between (b) and (d) is due possibly to
the fact that the emulsion in (d) is finer.  (e) The speed was reduced from 360 rpm
to zero. The oil foam at the outside of the inflow boundary is stuck to the wall and
it won’t come off. This shows clearly that the fluid which wets the wall in different
places depends on the history of the motion.
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Fig. 4. Fingering instability leading to emulsion. The inner cylinder rotates.

Fig. 5. Torque versus angular velocity with the volume fraction of silicone oil as a
parameter.

PHASE SEPARATION

Apparently the state of uniform emulsification is unstable. At least, we have never
been able to maintain a state of uniform emulsification, even after one is created (see Figure
6). The instability of uniform emulsions in the silicone oil and Crisco oil systems leads to a
phase separation. The cause of this phase separation is not understood. It could not be a
form of Taylor instability since it occurs at angular velocities well below the critical Taylor
number, 91.7, for the silicone oil alone. In fact the phase separation may occur at all finite
values of the speed or rotation of the inner cylinder. We think that the state of uniform
emulsification is unstable because of wakes which tend to align bubbles in rows. This effect
is very clear in beds of spherical particles fluidized by water discussed in the paper by
Fortes et al. (1987). In that case there is a scenario called drafting, kissing, and tumbling.
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Drafting is the mechanism by which one sphere is sucked into the wake of another, as debris
is pulled from the side of a road behind a fast-moving truck. The rear sphere accelerates in
the wake of the forward sphere and they kiss. The kissing spheres are aligned with stream.
The kissing spheres form a long body which is unstable to the same kind of turning couples
that cause and aircraft to stall so that spheres tumble into more stable cross stream pairs.
Falling drops and rising bubbles also draft but they don’t tumble. Instead, they appear to
align as we have seen in drop experiments in which heavy liquids are dropped into a long
tube filled with an immiscible lighter liquid.

The drops always align and drafting is obvious. Side bubbles cannot be pulled
uniformly in alignment, so there is a tendency to segregate. Clearly this explanation is
tentative and incomplete.
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Fig. 6. Soybean (Crisco) oil and silicone oil in equal proportions. (a) 16 rpm. Silicone
drops form as capillary instability after fingering. (b) “Uniform” emulsion at 24
rpm. (c) Phase separation at 24 rpm. (d) A finer emulsion of silicone oil at 122
rpm. Some of the phase boundaries are very distinct.  (e) Stable emulsion with
normal Taylor cells at 410 rpm.
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Fig. 7. Phase separation. Bands of emulsified silicone oil are separated by bands of pure
Crisco oil, φ≤0.6.

Fig. 8. Phase separation when Crisco oil fingers, φ=0.7.

PHASE INVERSION AND PHASE SEPARATION

When φ≤0.6, symmetric equally spaced bands of an emulsion of silicone oil in
Crisco are separated by bands of pure Crisco oil, as in Figure 7.

For φ=0.7, instead of silicone bubbles, we get Crisco bubbles, again with more or
less symmetric equally spaced bands. In this case, a narrow band of pure Crisco oil is in the
center of each band of emulsified Crisco oil, as in Figure 8.

The next event, as Ω increases, is the disappearance of the phase boundaries with
uniform mixing, leading to a foamy emulsion that is unlike the grainy emulsion which
develops after fingering. The foamy emulsions are more stable and take longer (5 to 10
minutes) to collapse when the rotation stops.

The appearance of foamy emulsions appears to coincide with the appearance of
regular Taylor vortices. The secondary motion, which is generated from the instability of the
hitherto stable Crisco oil in the bistable phase separated regime, may be the cause of the
mixing leading to foamy emulsions. The critical angular velocity for the onset of Taylor
vortices in the composite fluid, which we have called a foamy emulsion, can be determined
visually; and, when the volume ration is small, (φ<0.5) forms a sharp break in the torque
curve (see Figure 9).
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If we assume that this emulsion acts basically like a Newtonian fluid when in the
Taylor apparatus, we can use the formula for the critical Taylor number to back out the
value of the effective viscosity from the critical angular velocity, which is evidenced either
by visual observation or by the break point in the angular velocity-torque curve.

The next critical Taylor number signals the formation of uniform wavy vortices in
the foamy emulsion. We could also try to identify material properties from this transition.

Fig. 9. Torque versus angular velocity for an emulsion of 10% silicone oil in Crisco.
Taylor cells appear at 330 rpm.
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Fig. 10. Banded Couette flows of SAE 30 motor oil and water at 309 rpm. There is a small
bubble in the unstable water cell on the left which is visible in (c) but not in (a) or
(b). This small bubble undergoes an apparently chaotic motion. The large bubble
appears to undergo chaotic switching from right to left.

Finally we note that at yet higher rotation rates the waves on the vortices seem to
disappear, and, as far as the eye can see, the vortices are steady. This is unusual because it
does not happen in the dynamics of Taylor vortices in single constituent liquids.

CHAOTIC TRAJECTORIES OF OIL BUBBLES IN AN UNSTABLE WATER CELL

In the course of experiments described in the section, “Emulsions, tall Taylor cells,
cell nucleation,” we found a motion which appears to us to be chaotic. At sufficiently high
values of the angular velocity prior to emulsification of motor oil, some bubbles of oil are
torn away from the oil bands. In some situations we were able to get one oil bubble into a
Taylor cell. This oil bubble is carried round and round by water and is dragged around in the
secondary motion due to Taylor instability. We made a video tape of this and some still
photographs are shown in Figure 10. The small oil bubble on the left is the one for which
the binary sequence is studied. Each time the oil drop goes around it is either in the left eddy
or in the right eddy. We monitored about 3000 terms in the sequence LRLL… and assigned
number minus one to left and one to right. It is difficult to get revealing still photographs of
the motion of the small bubble in the leftmost water cell shown in Figure 10. However, the
large bubble in the center water cell also executes a chaotic motion of a slightly different
type as can be seen in the photographs.
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Binary sequences

We are going to apply methods of estimation theory (see Singh and Joseph, 1989) to
characterize the chaos in the binary number sequence generated by the bubble in our
experiments. Consider a sequence u(n)=±1 of binary numbers. We assume that the sequence
is ergodic so that time averages are the same as ensemble averages. In our experiment the
average

E u(n)[ ] = 1
N u(n)

n =1

N

� → 0  

when N is large, left and right or ±1 are equally probable.

Singh and Joseph (1989) showed how to generate a binary sequence for chaotic
trajectories of the Lorenz system [x

.
 , y

.
 , z

.
 ]=[σ(y–x), rx–y–xz, xy–bx] for (σ, b, r)

=(10, 8
3 , 28). The binary sequence is generated by projecting the trajectories into the xz

plane,as shown in Figure 11, and monitoring the crossing points of trajectories on the
segments AB and CD of the line AD. The crossing times are put into correspondence with
the sequence n of integers, left crossings on AB are recorded as u(n)=1, and the right
crossings of CD, as u(n)=–1. The time averages of these sequences vanish for large N,
independent of initial condition, so that left and right crossings are equally probably and we
may assume that the sequences are ergodic.

 
x

z

A B C D

Fig. 11. The projected trajectories of the Lorenz attractor remain inside the butterfly region
and outside the ovals around the fixed points.

Autocorrelations

An estimate of the autocorrelation function on an ergodic binary sequence can be
obtained as follows:
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r(n) = 1
N u(k + n)u(k)

k =1

N

� , n = 1, 2,… N >> n . (7)

The value r(1) represents the correlation between immediate neighbors (1, 2), (2, 3),
(3, 4), etc. Value r(2) gives the correlation between separated pairs (1, 3), (2, 4), etc. A
chaotic response is one for which r(1)≠0 and r(n)∅ 0 for large n.

For the oil bubble autocorrelation values r(n)’s, for large n, are not uniformly close
to zero because of the relatively small length of the sequence, N=3000 (Figure 12). We tried
sequences of different length and found that r(n)’s, for large n’s, approached zero uniformly
as the length of the sequence was increased.

The Lorenz equations were integrated numerically using the NAG library.
Subroutine DO2BBF was used for different tolerance levels in the range 10-4 to 10-10. We
projected into the xz plane and formed a binary number symbol sequence with 76,000
entries. The autocorrelation function is shown in Figure 13. The tolerance level in the
numerical scheme had absolutely no effect on the nature of autocorrelation sequence, even
though sequences generated were quite different for different tolerance levels. For large n,
r(n) approached zero uniformly with the increase in length of the sequence, N.

In both cases the decay in the autocorrelations value is very rapid. For large n,
autocorrelation values decrease monotonically with the length of the sequence. The decay of
autocorrelation for the bubble is essentially complete after n=2, a substantial correlation
exists only for r(1). The decay of correlation is slower for the Lorenz system with nonzero
r(n) for n<6. We could say that the Lorenz system is less random.
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Fig. 12. The autocorrelation sequence for the oil bubble, N=3000.

Fig. 13. The autocorrelation sequence for the Lorenz attractor, N = 76,000.
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Lyapunov exponents

Singh and Joseph (1989) derived a macroscopic Lyapunov exponent for binary
sequence. Lyapunov exponents for continuous times are locally defined quantities which
measure the tendency for chaotic trajectories to diverge exponentially for small time, on the
average. One can define the first exponent by

λ = 1
t N+1 − t 1

log 2

d t k +1( )
d 0 t k( )k =1

N

�  (8)

where d0(tk) is the initial distance between two trajectories at time tk and d(tk+1) is the
distance between these two trajectories at time tk+1>tk. In the continuous case d0(tk) and
d(tk+1) are infinitesimal and N∅ ∞.

The concept of distance is not natural to binary sequences. Two trajectories
correspond to two strings of binary symbols. We replace the condition that the initial
distances between trajectories is small with the condition that we shall only compare strings
of symbols which start with the same symbol. We can compare the “distance” between two
strings of symbols which both start with u=1 or both with –1, but not with starting values of
+1 for one string and –1 for the other.

Another condition we need for comparing two strings of symbols is statistical
independence. We want uncorrelated sequences so that theorems requiring ergocity, the use
of “time” averages, will be appropriate. This requirement is easy to fulfill for our binary
sequence symbol string. We compare two strings u(k), k = 1, 2, … with u(k + M) where M is
larger than the correlation time for the autocorrelation, M>2 for the chaotic bubble, M>5 for
the Lorenz attractor.

We can replace (8) with

λ t N +1 − t 1( ) = log 2
d(k + 1)

d 0(k)k =1

N

�  (9)

where d
–
 0(k) is the average “distance” between two statistically independent strings at the

kth observation. If the two symbols at the k+1st observation have the same sign we say that
the “distance” is unchanged, on the average

d(k + 1) = d 0(k) . (10)

If the two symbols have different signs after one observation, then

d(k + 1) = c 1d 0(k)  (11)

where c1 is the constant average change of distance. It follows from (10) and (11) that
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log 2
d(k + 1)
d 0(k)

=
0 same sign

α sign change after iteration

��
�
��

 (12)

where α=log2c1.

We now define the set S1 of ergodic initial distance between strings of symbols

S1 = k : u(k)u(k + M) = 1{ }  . (13)

The complementary set is

S 2 = k : u(k)u(k + M) = −1{ }  . (14)

Hence, we may write

log 2
d(k + 1)
d 0(k)

= α
2 1 − u(k + 1)u(k + 1 + M){ }  

for all symbol sequences which have the same sign at the time k for all k S1. Hence,

log 2
d(k + 1)
d 0(k)k =1

N

� = α
2 1 − u(k + 1)u(k + 1 + M){ }

k∈ S
1

�  . (15)

The total number of k is N. Let N1, N2 be the number of k’s in the sets S1, S2, and
N1+N2=N. We have also that

N r(M) = u(k)u(k + M)
k =1

N

� = u(k)u(k + M)
k∈ S

1

�

+ u(k)u(k + M)
k∈ S

2

� = N 1 − N2 = 0 .
 (16)

Since r(M)=0 when M is larger than the correlation “time.” Hence N1=N2=N
2 .

We next define the macroscopic Lyapunov exponent as the average value

λ m = 1
N1

log 2
d(k + 1)

d 0(k)k∈ S
1

�

= α
N 1 − u(k + 1)u(k + 1 + M){ } .

k∈ S
1

�
 (17)
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This is related to the average Lyapunov exponents by

λ(t N +1 − t 1)
N = λ M . (18)

Singh and Joseph (1989) showed that

λ m = α
2 1 − r2(1)[ ]  . (19)

Lyapunov exponents and white noise

Singh and Joseph (1989) calculated the macroscopic Lyapunov exponent for the
Lorenz system described in the section, “Binary sequences.” They calculate α as follows.
The average distance between starting trajectories on the line AB(=CD) of Figure 11 is

AB
3 = d 0(k)  .

The switching distance is |AD|–|AB|+d
–
(k+1) . Hence

d(k + 1)
d 0(k)

= 3
AD
AB − 1���

���
 .

They found that |AD|=4.31|AB|. Then from (12) we calculate α=3.3. The relation (18)
between the average Lyapunov exponent λ and the macroscopic exponent λM may be
simplified by putting tN+1–t1=N∆T where ∆T is the average period. Then

λ =
λ m
∆T = α

2∆T 1 − r(1)2( )  

where ∆T=0.7519 sec. We get

λm=1.618 bits/period .

The largest Lyapunov exponents computed directly for the Lorenz attractor is

λ=1.30 bits/period .

Feeny and Moon (1989) have studied a chaotic dry friction oscillator using the
method of binary sequences of Singh and Joseph (1989). They did an experiment with
sliding friction in which an imposed change of the normal force caused the slider to stick.
They also modeled their experiment with a second order forced ODE involving friction
coefficient and normal load functions. They did Poincaré sections for the experiments with
2,048 symbols and for the differential equation with 10,000 symbols. The symbols form a
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string of binary numbers ±1 corresponding to whether the motion is sticking or slipping at
each pass through the Poincaré section. They measure distance on the Poincaré plot:

d 0(k) = 1
3 , d(k + 1) = 1 .

Hence, using (19), they get α=log23=1.585.

Feeny and Moon studied the tent map and logistic map using the formula (19) with
α=1.585. They calculated r(1) for N=105 and N=2048. The theoretical value of the largest
Lyapunov exponent is λ=1 for both the tent map and the logistic map. They compute

��

��

λ m =
0.787515 (105 symbols)

0.787705 (2048 symbols)

��
� tent map

λ m =
0.791578 (105 symbols)

0.791116 (2048 symbols)

��
� logistic map

 

A binary autocorrelation was obtained for their experiments and numerically from
the differential equation for a symbol string with N=2048. In both cases the autocorrelation
r(1) is very small, less than ±0.05. They calculate

λ m =
0.79055 experiment

0.79219 numerical integration

��
�
��

 .

The calculation of the exponent for the Poincaré map from the equations of motion gives

λ = 0.77 . 

We draw the reader’s attention to the fact that for all the calculations done by Feeny
and Moon, they get

λ m = α
2 1 − r(1)2�� �� = 0.7925 1 − r(1)2�� ��.  

This shows that r(1)2 is very small in the examples of the tent map, logistic map and
experiments.

Short range predictability requires that r(1), r(2), …, r(M) ≠ 0 for small M, r(n)∅ 0
for large n. For white noise, we have r(1)=0. The autocorrelation is good for distinguishing
short range predictability and white noise. The macroscopic Lyapunov exponent is not
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useful for making this important distinction. In fact, the macroscopic Lyapunov exponent
depends on distance through α, but λµ/α is universal, does not depend on distance and may
be a more intrinsic measure of chaos. Certainly r(1) has a lot less information than the graph
of r(n).
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