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Abstract

A sphere in air will roll down a plane which is tilted away from the vertical.  The only

couple acting about the point of contact between the sphere and the plane is due to the component of the

weight of the sphere along the plane, provided that air friction is negligible.  If on the other hand the

sphere is immersed in a liquid, hydrodynamic forces will enter into the couples, which turn the sphere,

and the rotation of the sphere can be anomalous, i.e., as if rolling up the plane whilst it falls.  In this

paper we shall show that anomalous rolling is a characteristic phenomenon which can be observed in

every viscoelastic liquid tested so far.  Anomalous rolling is normal for hydrodynamically-levitated

spheres, both in Newtonian and viscoelastic liquids.  Normal and anomalous rolling are different names

for dry and hydrodynamic rolling.  Spheres dropped at a vertical wall in Newtonian liquids are forced

into anomalous rotation and are pushed away from the wall whilst in viscoelastic liquids, they are

forced into anomalous rotation, but are pushed towards the wall.  If the wall is inclined and the fluid is

Newtonian, the spheres will rotate normally for dry rolling, but the same spheres rotate anomalously in

viscoelastic liquid when the angle of inclination from the vertical is less than some critical value.  The

hydrodynamic mechanisms underway in the settling of circular particles in a Newtonian fluid at a

vertical wall are revealed by an exact numerical simulation based on a finite-element solution of the

Navier-Stokes equations and Newton’s equations of motion for a rigid body.
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1. Introduction

Goldman, Cox and Brenner [1967] treat the problem of interaction between a sphere and a wall.

They also consider the problem of a sphere ‘rolling’ down an inclined wall and find that the sphere

cannot be in physical contact with the wall and that it slips, giving rise to anomalous rotation when

forced into close approach.  In this paper ‘anomalous’ is defined as the sense of rotation that exists

when the sphere rotates as if it were rolling up the wall.  We define ‘normal’ rotation as the sense of

rotation that exists when the sphere rotates as if it were rolling down the wall.  Bungay and Brenner

[1973] showed that the rotation of a tightly-fitting ball falling down a vertical tube would change sense,

from normal to anomalous, as the distance between the ball and the tube wall tended to zero.  The

Stokes flow predictions of these authors involve neither inertia nor elasticity.  The phenomenon of

anomalous rolling predicted by these authors appears in the experiments of Humphrey and Murato

[1991].  They found that the rotation of a sphere gradually changes from anomalous to normal as the

tube inclination angle is increased and the sphere contacts the wall.  They think that inertia-induced lift

keeps the rolling ball off the wall at the smaller angles of inclination.

Dhahir and Walters [1989] studied flow past a cylinder in a straight channel of rectangular cross

section.  They did experiments with Newtonian fluids, 2% and 3% Xanthan (Kelco) in water, and 1.5%

aqueous polyacrylamide (an elastic fluid).  Looking at a horizontal Poiseuille flow moving from left to

right, with a cylinder above the center line, the cylinder will rotate against the clock as if turned by

shears from the center part of the channel rather than from the gap between the cylinder and the wall.

For all of the non-Newtonian fluids, the flow generated a side force which pushed the cylinder toward

the wall, no matter where the cylinder was placed.  This side force was too small to measure in

Newtonian liquids.  These results are totally consistent with phenomena we have observed on the lateral

motions of spheres settling along a wall.

Jones and Walters [1989] did experiments on the flow of polymeric liquids through a channel

blocked by a periodic array of staggered cylinders, simulating a porous media.  They found that the

elastic polyacrylamide did not want to pass through the narrow passages between the channel wall and
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the cylinder, but the Newtonian liquids and aqueous Xanthan were not blocked.  Blockage, even partial

blockage, can produce a situation in which a cylinder or sphere is turned by the shears from the fluid

which goes around the outside of a sphere, leading to the rolling which we have called anomalous, but

which is normal when the turning is controlled by hydrodynamics.  A mechanistic description of the

hydrodynamics underway for the rotations induced by the settling of a circular particle in two

dimensions will be presented in §5, but our understanding of the fluid mechanics underway in the

viscoelastic case has yet to be revealed.

Figure 1

Joseph, Nelson, Hu and Liu [1992] found anomalous rolling of a sphere along an inclined wall.

The angle between the wall and gravity was varied so that the sphere fell on, rather than away from, the

wall.  A sphere falling down these inclined walls rotated normally in viscous liquids as it does in dry

rolling, but rotated anomalously in the other sense in viscoelastic liquids when the wall was not tilted

too far from the vertical.  In this paper we document this phenomenon by reporting observations and

measured data for many different polymeric liquids.  We find anomalous rolling in all liquids,

Newtonian and viscoelastic, when the wall is vertical even though spheres are repelled by the wall in

Newtonian liquids and attracted to the wall in viscoelastic liquids.  The anomalous results for rolling

spheres in apparent (only) contact with tilted walls are as reported by Joseph, et al. [1992] with the
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caveat that viscoelastic solutions with weak or no normal stresses stand between Newtonian and

viscoelastic behavior.

2. Material and dimensionless parameters

The material parameters (Table 1)which were measured in the liquids used in the experiments

are the density ρ  , viscosity η = k Ý γ n −1 where Ýγ  is the shear rate in reciprocal seconds, the climbing

constant 
ˆ β  measured on a rotating rod viscometer (Beavers and Joseph [1975]) and the wave speed c .

To compute 
ˆ β  from measured values of the climb, we need the interfacial tension which we measured

with a spinning drop tensiometer (Joseph, et al [1992]). The value of 
ˆ β  is insensitive to a small change

of surface tension (chapter�16 in [J1990]).

The climbing constant 
ˆ β  is related to the limiting (zero shear) value of the first and second

normal stress differences

(n1,n2 ) =
Ý γ →0
lim(N1( Ý γ ), N2 ( Ý γ )) Ý γ 2 (2.1)

by

ˆ β = 1
2

n1 + n2
. (2.2)

The climbing constant

ˆ β = 3α1 + 2α 2 (2.3)

may also be expressed in terms of quadratic constants

(α1,α 2 ) = (−
1
2

n1,n1 + n2 )
(2.4)

of the second order fluid. α 2 α 1   is the ratio of quadratic constants and

α1,α 2[ ] = −m,2m − 2[ ] ˆ β (m − 4) (2.5)
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where m = 2α 1 (2α 1 + α 2 ) = −n1 n2  is the ratio of the first to second normal stress difference. It can

be argued (§17.11 in [J1990]) that m = 10 is a reasonable value for our polymer solutions. Then

α 2

α 1

=
2(1 − m)

m
= 1.8

(2.6)

is a constant and α 1  and α 2  are determined by the measured values of the climbing constant 
ˆ β .  The

value of n1  we get from measuring 
ˆ β  is not sensitive to the value of the ratio n2 n1  as long as n2  is

relatively small and negative (see §17.11 in [J1990]).

The measured value of the climbing constant together with the assumption that the second

normal stress difference is -1/10 as large as the first, allows us to evaluate Roscoe's [1965] formula

T11 − T22 = 3Ý s ηo + 3(α1 + α2 )Ý s 2 (2.7)

for the extensional stress difference where Ýs  is the rate of stretching in the direction x1  and ηo  is the

zero shear viscosity. Using (2.6) and α 1 = −n1 2 we get

T11 − T22 = 3Ý s ηo + 1.2n1Ý s 2 (2.8)

The zero shear value of the first normal stress difference 
n1 =

2m
m − 4

ˆ β = 10
3

ˆ β 
 and the zero shear

quadratic correction 4 Ý s ̂  β  of Troutons viscosity, 3ηo , increase with 
ˆ β .  An argument given by Liu and

Joseph [1993] suggests that extensional stresses, broadly speaking, control the properties of the

aggregation of particles in viscoelastic liquids documented here.
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Fluid
ρ

(gm/cm3)
ηo

(Pa.sec)
k n ˆ β n1

(gm/sec)
c

(cm/sec)
λ

(sec)
1.5% aqueous polyox 1.00 101 10.1 0.38 132 440 20.3 0.245
1.25% aqueous polyox 1.00   55.1   6.42 0.39 117 389 17.2 0.186
1.0% aqueous polyox 1.00   31.8   3.97 0.42 108 360 15.0 0.162
0.4% Carbopol in
   50/50 glycerin/water 1.13     0.76   0.31 0.67 0 0 15.9 0.0027
0.3% aqueous Xanthan 1.00     5.21   1.1 0.28 0 0 12.2 0.035
S1 0.875     8.06   7.14 0.62    11.8     39.3 72.4 0.0018
STP 0.86   18.0 17.8 0.85      0.97       3.23 2.86 0.00026

Table 1.  Material parameters of fluids used in experiments.  Percentages are by weight.
Experiments were also done in more dilute polyox solutions (WSR 301) and in a 1.2%
polyacrilamide solution in a 50/50 glycerin-water solution, but the material parameters were not
measured.  The numerical value k is the value of the viscosity in Pa.sec at a shear rate γ

•
= 1

Glycerin and water mixtures in various concentrations were used to determine Newtonian

behavior.  The polyox and polyacrilamide solutions are standard test viscoelastic liquids exhibiting

normal stresses, shear thinning and memory effects.

STP is a solution of polysolutilene in petroleum oil which was used extensively in early studies

of rod climbing (see Joseph, [1990]).  S1 is a solution of 50.0g of 5% W/W of PBI in decalin plus 50.0g

polybutene oil.  It is a world-wide standard test fluid which is being characterized by different

laboratories in many countries.  We mixed our own samples according to procedures laid down by

Professor J. Ferguson of the University of Glasgow.  Our homemade solutions have nearly the same

properties as the premixed samples given to us.

The viscosity of these two polymer solutions was measured as a function of the shear rate Ýγ  on

the RSF2 Rheometrics fluid rheometer and is given in Figure B.  The viscosity of STP is nearly

constant for shear rates less than 100.  The viscosity of S1 decreases with increasing Ýγ , but the decrease

is very slow for shear rates less than 10.  The viscosity of S1 is an order of magnitude smaller than STP;

it is a much more mobile liquid.  Both solutions climb a rotating rod, but the STP is not a good climber;

the climbing constant at room temperature is about one gm/cm.  We can say that STP is a Boger fluid
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with very weak normal stresses.  The climbing constant of S1 at 25˚C is approximately 41 gm/cm and

S1 can be said to resemble STP with much larger normal stresses, especially at low rates of shear.

Values for the dynamic moduli of STP and S1 are given in Figure C.  The loss modulus for STP

is an order of magnitude higher than S1.  The storage modulus of S1 is larger than STP for shear rates

less than about 10 s-1, and the shear rate at which the loss modulus falls below the storage modulus is

much lower in S1 than in STP.  S1 is a more mobile and much more elastic liquid than STP.

Ýγ 

0.1

1

10

100

0.1

vi
sc

os
ity

 

 η  (P
a.

s)

1 10 100
(s-1)shear rate 

S1 fluid
STP

Figure B.  The viscosities of STP and S1 fluid as a function of the shear rate were measured, at
temperature of 24.5˚C, on a RSF2 Rheometrics fluid rheometer with a cone of 50 mm diameter
and 0.021 radian cone angle and a plate. The viscosity of S1 is an order of magnitude smaller
than STP; it is a much more mobile liquid. S1 has a small shear thinning, and STP is more like a
Boger fluid. The power law constants for S1, for the shear rates greater than 0.5 s-1, are κ =7.14
and n =0.62; whereas for STP, κ =18.7,  n =0.85. And for S1, the density is ρ =0.875 gm/cm3,
the zero shear viscosity is η0 =8.06 Pa.s; whereas for STP, ρ =0.86 gm/cm3 and η0 =18.0 Pa.s.
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Figure C. Dynamic moduli of STP and S1 were measured, at 2% strain, on the same rheometer
with the same pair of cone and plate as in Figure 2. The loss modulus for STP is an order of
magnitude higher than S1. The storage modulus of S1 is larger than STP for shear rates less than
about 10. The shear rate at which the loss modulus falls below the storage modulus for S1 is
much lower than that for STP.

We attempted to isolate the role of shear thinning suppressing both normal stresses and

elasticity by using a solution of 0.4% Carbopol 690 (Goodrich) in a 50/50 glycerin/water mixture in our

sedimentation experiments.  The viscosity versus shear rate for this Carbopol solution is plotted in

Figure D, and the dynamic moduli are plotted in Figure E.  Carbopol is thought to be a pseudoplastic

fluid without elasticity.  Since our Carbopol solution has a non-zero storage modulus, it cannot be said

to be without elasticity.  The presence of small elasticity in Carbopol solutions has been noted before;

for example, Hartnett and Kostic [1989] have noted that an aqueous solution of 1000 wppm Carbopol

exhibits a phase shift between the input shear stress response of less than π / 2  radians, and that there is

evidence that aqueous Carbopol solutions experience strong secondary motions in laminar flow in

noncircular channels, but they do not reduce drag.  There is no evidence that Carbopol 690 in 50/50
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glycerin/water has a measurable value of the first normal stress difference, and it does not climb a

rotating rod.

To determine the effects of shear thinning with a strong memory but no normal stresses, we

used a solution of 0.3% Xanthan (Kelco) in water.  The graph of viscosity versus shear rate is shown in

Figure D, and the variation of the storage and loss moduli with frequency is shown in Figure E.  This

Xanthan solution is very shear thinning and it apparently has no normal stresses.  We could not register

a first normal stress difference on the Rheometrics fluid rheometer and the 0.3% Xanthan solution

would not climb a rotating rod.  On the other hand, this fluid has a high storage modulus and can be

said to be linearly elastic.

Ýγ 

Figure D. The viscosities of 0.3% aqueous Xanthan and 0.4% Carbopol in 50/50 glycerin/water
solution as a function of the shear rate at temperature of 24.5oC. The Xanthan solution has a
higher but more shear thinning viscosity than the Carbopol solution. For the Xanthan solution,
κ =1.1, n =0.28, ρ =1.0 gm/cm3, η0 =5.21 Pa.s; whereas for the Carbopol, κ =0.31, n =0.67,
ρ =1.13 gm/cm3, and η0 =0.76 Pa.s.
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Figure E. Dynamic moduli of Xanthan and Carbopol solutions. In modest shear rates ranging from
0.1 to 100, both the storage modulus and loss modulus of the Xanthan solution are higher than
that of the Carbopol solution. And also, in the Xanthan, the storage modulus G' is greater than the
loss modulus G", but in the Carbopol it is the opposite.

3. Rolling of spheres down the sidewall of a channel.  Experimental Setup

Six different types of spheres and three channels were used in our experiments which are shown

in Table 2.  The motion of 1/4-inch diameter sedimenting spheres in the thin bed is basically two

dimensional, with spheres centering themselves between two close walls.  The centering was described

by Liu and Joseph [1993].  Close sidewalls have a marked effect on the magnitude of the fall velocity

and rotation rate of spheres rolling down an inclined wall.  But the direction of the rolling and other

qualitative properties of aggregation of sedimenting spheres, sphere-wall interactions and the tilting of

long sedimenting bodies, do not depend strongly on the aspect ratio.
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material plastic teflon rubber steel steel tungsten
diameter

spheres (inches) 0.25 0.25 0.25 0.25 0.5 0.25
density
(g/cm3) 1.34 2.18 5 7.61 7.61 15.8

polyox
polyacry

0.275x4x23 glycerin   -lamide STP
channel STP

dimensions glycerin
(inches) Xanthan Xanthan S1

0.85x0.85x18 Carbopol Carbopol Xanthan STP STP S1
glycerin S1 glycerin

glycerin
1x1.63x28 STP

Table 2. The channels and the spheres used in our experiments. The cells in the right-bottom corner
of the table give the liquids we tested with certain spheres in certain channels.

In this experiment, we tilted our sedimentation channel with its center plane vertical and the side

walls inclined to the vertical.  The angle of inclination from the horizontal is θ  (Figure F).  When

θ  = 90˚, the plane of rolling is vertical.  We measured the fall velocity and rolling velocity of spheres

on a Kodak Spin Physics.  The measurements were routine and accurate.  We were unable to get an

accurate measurement of the distance between the wall and the sphere in the viscoelastic case of close

approach.  The drag on the sphere must be strongly influenced by the precise value of this too-small-to-

measure stand-away distance.  A more systematic study than the one undertaken here would look

systematically at weight and size effects of particles.  We did many casual tests of this type, but found

no suprising results.  Our view is that more systematic experiments should be undertaken only after

some hypotheses about the controlling viscoelastic mechanisms have been formulated for testing.
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The case of vertical settling (θ  = 90˚) is special.  If a sphere is initially dropped at or near a vertical

wall, it will always turn counter-clockwise, as shown in Figure F(b), whether the fluid is viscoelastic or

inelastic.  We have found that spheres dropped in a viscoelastic liquid near a vertical wall are sucked to

the wall, but the same spheres will move a certain distance away from the wall when they are dropped

in inelastic fluids.  This striking difference will be documented in another paper (Joseph and Liu

[1993b]).  For now it will suffice to note once again that independent of whether the sphere migrates to

the wall or takes up a small stand-off as it falls, it will turn counter-clockwise as it falls.

4. Rolling of spheres down the sidewall of a channel.  Experimental results.

We might have thought that friction emanating from the wall would turn the sphere clockwise.

Evidently the small gap between the falling sphere and the wall partially blocks the fluid, so that the

main flow and the main shears are on the outside of the sphere, where passage is not blocked, turning

the sphere, as in Figure A.  The sense of the rotation of the sphere, then, which is dropped from rest in

close proximity to a vertical wall, must be anomalous, since much of the fluid cannot get through the

small gap between the wall and the sphere, and instead must go around the outside.  The blockage effect

is greatly enhanced in viscoelastic fluids because the viscoelastic forces draw the spheres to the wall,

even when the wall is vertical.

It is evident from the considerations just introduced that the fluid dynamics of sphere-wall

interactions are such as to produce anomalous rolling when the relative weight of the sphere is not

sufficient to hold it on the wall against countervailing hydrodynamics lift forces.  This is always the

case when the wall is vertical and even when θ  is very small.  In this sense, anomalous rolling is

normal whenever hydrodynamic lift forces are at work.  The lift forces are sensitive to the Reynolds

number and a sphere will “fly” if the forward speed is fast enough no matter what the value of the angle

of tilt.  Spheres settling on an inclined wall however need not reach the forward velocity necessary for

levitation against the component of the buoyant weight of the sphere pushing it on the wall.
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Our experiments using the 0.275 x 4 x 23 inch channel filled with pure glycerin and steel balls

are representative for Newtonian liquids.  When θ  = 0˚, vertical settling, a sphere started at the wall,

will be repelled by the wall and will commence to role in the anomalous sense as in Figure F(b).  When

θ  ≤ 89˚, the sphere falls to the wall and a gap is not evident; it either slips at the wall (11˚ ≤ θ  ≤ 14˚) or

slips a lot and rolls normally a little (14˚ ≤ θ  ≤ 20˚), rotates normally with a little slip (20˚ ≤ θ  ≤ 40˚) or

rotates normally with no slip (θ  ≥ 40˚).

The interval of θ  for normal rolling and slipping are functions of the Reynolds number and

hence change with the weight of the sphere and the aspect ratio of the channel.  We carried out

experiments with Teflon spheres in the narrow channel and steel and Teflon spheres in the square

channel with different quantitative but the same qualitative results.  We have already remarked that we

expect the spheres to lift off the inclined walls at a higher Reynolds number, not seen in our

experiments.

Our experiments in 0.4% Carbopol in 50/50 glycerin-water solutions were carried in the 0.85 x

0.85 x 18 inch channel using plastic and Teflon balls.  The wall does not attract these balls when it is

vertical (θ  = 0˚); a sphere dropped next to the wall will rotate in the anomalous way and drift away

from the wall to an equilibrium stand-away distance, as in Newtonian fluids.  In the case of tilted walls,

with slight tilting (70˚ ≤ θ  ≤ 80˚) the sphere falls to the wall, first rotating up the wall, then slipping

without rolling.  This behavior is intermediate between Newtonian and viscoelastic behavior, but is

more Newtonian.

We turn next to the experiments with viscoelastic liquids in which a vertical wall attracts rather

than repels sedimenting spheres; that is, all solutions mentioned in this paper other than glycerin and

Carbopol.  Naturally, an inclined wall will attract a sphere more strongly if a vertical wall attracts.  The

anomaly is that in these cases of sedimentation with close approach, as if touching, the sphere rotates

anonymously, with “dry” rolling taking over only for relatively horizontal tilting of the wall.
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In Table 3 we give the measured values of the terminal fall velocity U0  and the terminal angular

velocity ω0 .  It is of interest to compare the measured values of U0  with computed values of the Stokes

velocity US , which is generated from the balance between buoyancy and drag ∆ρg 4
3

πa3 = 6πη(1)aUS ,

where ∆ρ  is the density between the solid (Table 2) and fluid (Table 1), g = 980 cm/sec, a = 1/4 inch or

1/2 inch is the sphere radius and η(1)  (=k) is the viscosity at γ
•

 = 1 (Table 1), which we used because of

uncertainty in the value of η0 .  In all cases, the Stokes drag is much smaller than the drag in our

experiments.  The main reason for this discrepancy is that the nearby wall to which the sphere is

attracted exerts an additional drag.  Nearby side walls also exert an additional drag.  The drag on the

1/2-inch sphere is the 1 x 1.63-inch channel is very strongly influenced by the side walls.  The measured

value of ω0  is corrected with the measured value of U0  by the following argument.  In dry rolling

U0 = aω0  so that in hydrodynamic rolling, we might find a relationship like  U0 = caω0  with an

unknown c between zero and one.  Of course the sense of ω0  is reversed in hydrodynamic rolling, and

the shear from the outside is a less-effective turner than dry friction.

Table 3

Our experiments in 0.3% Xanthan in water were carried out in the square channel, using plastic,

Teflon and rubber balls.  The Xanthan solution is very interesting because it has an appreciable linear

elasticity (a high storage modulus) and is very shear thinning (Table 1), yet has no measurable normal
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stress.  A plastic sphere, which is light and settles slowly (U0  = .269 cm/sec) is attracted to a vertical

wall where it rotates anomalously with a slow angular velocity (ω0  = 0.126 rad/sec).  The heavier

Teflon sphere falls faster (U0  = 13.12) than the shear wave speed (c = 12.2) and it levitates off the wall.

The fall velocity for Teflon and rubber spheres is too great to determine the value of the angular

velocity.  In the case of a tilted wall, data was taken only for Teflon spheres.  These were attracted to

the wall when θ  ≤ 85˚ even though the wall repels the sphere at θ  = 0˚.  The rotation was very weak,

with appreciable amounts of slipping for angles of 15˚, 20˚, 25˚ and 30˚.  The weak rolling was

anomalous for 20˚ and 25˚, there was only slip at θ  = 25˚ and slip plus normal rolling at θ  = 30˚.  The

plastic sphere was attracted to the vertical and inclined wall where its rotation was too slow to measure.

The rubber sphere to the wall at θ  ≥ 15˚ where it settled so fast that sense of rotation could not be

ascertained.  It is certain that a lighter sphere would levitate at the large velocities at which the rubber

spheres fell.  The behavior of spheres rolling on walls in Xanthan is intermediate between Newtonian

and viscoelastic, but is more viscoelastic.

In our experiments using 1/4-inch steel balls on the flat side wall of the narrow channel (Table

2) filled with 1.2% polyacrilamide in 50/50 aqueous-glycerin, we found intermittent slipping

interspersed with anomalous rolling for 10˚ < θ  ≤ 30˚.  Only slip was observed for 35˚ and 40˚ and

intermittent slipping and normal rolling for θ  = 35˚, 40˚ and 44˚.  In all cases a very slight gap could be

detected between the ball and the plane; the ball was hydrodynamically levitated in a position of close

approach.

We did the same experiment with a 1/4-inch wire laid against the flat surface.  The contact

between the sphere and the wire is less severe than the contact between the sphere and a flat wall.  The

gap under rolling on the inclined wire changes radically across the gap.  There are only very small

differences in the outcome of experiments using these two wall surfaces.

Now we give some measured results in graphical form for the terminal settling and angular

speed of rolling spheres as a function of the angle θ  of inclination of a tilted wall in aqueous Polyox,
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STP and S1.  The settling speed U and angular speed ω are normalized by their values U0  and ω0  at θ

= 0˚.  In all cases, anomalous rolling is observed.

We have presented the data in two forms.  First we give U U0  as a function of sinθ .  The force

driving the tangential motion of the sphere down the plane is the buoyant force ∆ρgsinθ 4
3

πa3 , linear

in sinθ .  For a linear response between the velocity and driving force and velocity, we might expect

that U = c
•

1 sinθ  where c depends on geometrical and fluid parameters and is a sort of drag coefficient.

We have attempted to make a best guess at the parameter from the measured data, but the response is

not rigorously linear and the fits are not convincing.  In fact we really don't expect linearity for no other

reason than that the normal force exerted on the inclined plane varies with θ .  This variation will

produce a change in the small gap between the sphere and the plane and change the drag emanating

from the wall.

A second form for presenting data is as ω ω0  versus U U0 .  We expect to see a more or less

linear relation U U0 = c2 ω ω2  based on the idea that ω and U  have the same dependence on sinθ ,

whatever that dependence might be.  This idea seems to work

In Figures H and I, we have presented results for aqueous Polyox (WSR 301) solutions.  We

were able to obtain reproducible data exhibiting anomalous rolling only in the more concentrated

solutions:  1.5%, 1.25% and 1%.  Anomalous rolling occurs in 0.85% solution.  In the 0.75% solution,

results are ambiguous, with a high degree of slipping and very little rolling, behaving like Newtonian

fluids.  Polyox solutions of 0.6% and less exhibit only normal rolling.  We were able to enhance the

angular velocity of rolling in the 1.5% Polyox solution by putting a wire on the inclined wall.  This

effect was not so marked in the 1.25% solution.
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Figure H (previous 4.1)

Figure H.  Anomalous rolling results for a 1/4-inch nylon sphere falling in aqueous Polyox in the
narrow channel.  (a) Normalized angular speed versus θ .  (b) Normalized angular speed versus
normalized fall speed.  O - 1.5% Polyox, flat surface, U0 , ω0( ) = (0.434 cm/s, 0.311 rad/s); ± -
1.5% Polyox, wire surface, U0 , ω0( ) = (0.0491 cm/s, 0.302 rad/s); ∞ - 1.25% Polyox, flat
surface, U0 , ω0( ) = (1.356 cm/s, 0.388 rad/s); + - 1.25% Polyox, wire surface, U0 , ω0( ) = (1.359
cm/s, 0.278 rad/s); ◊ = 1.0% Polyox, U0 , ω0( ) = (3.06 cm/s, 0.396 rad/s).

In Figure 9, we have presented measured values of U U0  versus cos θ  for S1.  We drew the

best straight line by linear curve fit without taking the data points for big rolling in which is not

levitated and for hydrodynamic rolling in the vertical in which there is no normal _____ force.  The data

relating U U0  and ω ω0  falls close to a straight line satisfying ω ω0 ~ 2.37(U U0 ) .

In Figure 11, we have presented measured values of U U0  versus cos θ  for STP in two

different channels and fitted the data to straight lineω ω0 ~ c2 U U0( ), where c1 = 1.37 for the 1/4-inch

Tungsten sphere in 0.275 x 4 x 23-inch channel and c1 = 1.21 for the 1/2-inch steel ball in 0.85 x 0.85 x

18-inch square channel.  Straight lines ω ω0 ~ c2(U U0 ) , where c2  = for Tungsten sphere and c2  =

for steel sphere are shown in Figure 12.
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In Figure I, we present measured values for the normalized angular speed of spheres rolling in

S1 as a function of the inclination angle θ  of the wall and the normalized fall speed U U0 .  The data

appear to lie close to a straight line whose slope depends on experimental and rheological parameters in

an unknown way.

Figure I (previous 4.2)

In Figure J, we have presented measured values of U U0  and ω ω0  as a function of θ .  The

graph U U0  shows that the proximity of the side wall can have a marked effect on the drag.  The

change of the fall and turning speed with tilt angle is greater for heavy than for high spheres and the

proximity of side wall inhibits the motion for a given sphere.

In Figure J, we present measured values of ω ω0  as a function of θ  and U U0  for two different

channels.  The spheres fall and turn faster in the wide channels.  This shows that the side walls have a

marked quantitative effect on the settling and turning speed of spheres.
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Figure J (previous 4.3)

Figure J.  Anomalous rolling result for STP in the wide channel and in the narrow channel.
(a) Normalized angular speed versus θ .  (b) Normalized angular speed versus normalized fall
speed.  O - 1/4-inch tungsten sphere falling in thin channel, U0 , ω0( ) = (0.374 cm/s, 0.111 rad/s),
± = 1/2-inch steel sphere falling in wide channel, U0 , ω0( ) = (0.708 cm/s, 0.133 rad/s).

5. Direct numerical simulation of the settling of a circular
particle in a Newtonian fluid at a vertical wall.

The hydrodynamic mechanisms which cause circular particles to rotate and drift away from a

vertical wall can be understood by direct (two-dimensional) numerical simulation, using the Navier-

Stokes equations to find the fluid motion and the hydrodynamic forces which move a rigid particle

according to Newton’s equation of motion.  A finite-element package with this capability has been

presented by Hu, Joseph and Crochet [1992], and a video of this simulation together with a short paper

has been given by Hu, Fortes and Joseph [1993].  Huang, Feng and Joseph [1993] applied this code to

the problem of the turning couple on an elliptic particle settling in vertical channel, and they showed

that there is high pressure on the front side of the ellipse at the place where the shear stress vanishes,

which corresponds to a stagnation point in potential flow, which acts always to keep the long side of the

body perpendicular to the fall. Feng, Hu and Joseph [1993] used this code to solve initial value
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problems for circular particles in a channel and this section is an adaptation of their work to the

problem at hand.

We want to understand how a heavier-than-liquid, circular particle dropped from rest in this

liquid at a vertical wall will rotate and move.  Referring to Feng et al. [1993] for details, we note here

that in the regime of moderately low Reynolds numbers in which there is no vortex shedding, the

particle will drift to channel center under the influence of side forces from both walls.  The problem at

hand could be posed in the semi-infinite domain on the right of the vertical wall, but is here simulated

by diminishing the influence of the other wall by moving it far away, 60 sphere diameters from the

active wall.

At first, when the particle is very near the wall, the fluid between the circular particle and the

wall is blocked, so that the flow passes over the outside of the circular particle, turning it in the

direction which we called “anomalous.”  The stagnation pressure in the narrow gap induces side drift

away from the wall.

In our experiments, spheres dropped from rest in glycerin would rotate drift rapidly away from

the wall and after a short time reach an apparently steady state with definite angular velocity ωo  and a

fixed stand-away distance with no further side drift.  In the simulation, we get a quasi-equilibrium of

this type.  A drift to the center of channel takes place on a much larger time scale.

In Figure A, we have drawn a cartoon of the quasi-equilibrium to help the reader to understand

the fluid mechanics at work.  We first put the center of the sphere to rest by a Galilean transformation.

The circular particle is rotating counter-clockwise, so that the no-slip condition implies that there are no

stagnation points on the surface of the circle.  However, we know from our previous work that the

image of the stagnation point, which we could identify for the Rankine vortex in a stream in potential

flow, is the place on the front face to where the shear stress vanish, near to a dividing streamline.  There

is a second point on the side of the circle near the wall where the shear stress vanishes corresponding to

a separation point of negative pressure.  The side drift is suppressed because at the equilibrium stand-
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away distance, the negative pressure has developed a sufficient magnitude to balance the stagnation

pressure.  Other forces enter into this balance, but only as a small change.

Figure A (same as previous 2.1)

Figure A.  Cartoon of the settling of a circular particle at a wall in a coordinate system in
which the center of the sphere is at rest.  At the points of ST (stagnation) and SP (separation),
the shear stress vanishes.  Side drift is suppressed when the positive pressure at ST balances
the negative pressure at SP.

7. Discussion and conclusions.

We have studied the motion of a sphere falling and rotating on a plane inclined with respect to

gravity.  The sphere is forced toward the plane by the component of its buoyant weight normal to the

plane and is moved along the plane by the tangential component of the relative weight.  If the normal

component of the relevant weight is large enough, the sphere will make effective contact with the plane

and will roll normally about the point of effective contact, as it does in air.  The normal component

maybe increased by tilting the plane toward the horizontal, or by increasing the weight of the sphere.

The effects of the interaction between the moving sphere and the suspending liquid introduce

countervailing forces which tend to levitate the sphere and to make it rotate in the anomalous way,
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opposite to what would be expected from dry rolling.  The sense of rolling we have called anomalous is

actually normal for the hydrodynamically-levitated case, and it could be called hydrodynamic rolling,

opposite to dry rolling.

There is a marked difference in the migration of spheres dropped near to a vertical wall.  In

Newtonian liquids, dilute solutions and other solutions without strong viscoelastic properties, a sphere

dropped in proximity of a vertical wall will be forced away from the wall by lift forces and be put into

anomalous rotation by shears from the flow going around the outside of the sphere.  We did an exact

numerical simulation of this scenario for a circular particle falling near a wall in two dimensions and

showed how the lateral motion of the particle and its equilibrium positions at the front and rear

“stagnation” points near the wall where the shear stress vanishes.  In a strict sense, the no slip condition

in a viscous fluid is not compatible with motion of stagnation points as they appear in the theory of

flows without viscosity.  In the inviscid theory, stagnation points appear at dividing streamlines and a

natural image of these for a viscous fluid, say with a boundary layer, are points on the boundary at

which the shear stress vanishes.  We find the high pressure at a point on the front face of the

sedimenting circle near the “stagnation” point where the shear stress vanishes.  There is also a point on

the rear face where the shear stress vanishes, but without the pressure recovery and, in fact, the

minimum pressure is very near to this point.  The magnitude of the minimum pressure is relatively

small, so that the outward drift of the particle is controlled by the component of the “stagnation

pressure” on the front face pushing the particle away from the wall.  We cannot carry our simulation

into a semi-infinite regime, but in a channel, even with sidewalls far away, the particle will drift slowly

to the center of the channel.  At higher Re, after vortex shedding commences, you can see off-center

___ positions equilibrium (Feng, Hu and Joseph [1993]).  It is probably that slow drift away from a wall

in a semi-infinite is a permanent condition, with ever slower sidewise drifting as time goes on.

The results of the two-dimensional simulations do not give rise to the fixed stand-away distance

which is observed when spheres are dropped in a Newtonian fluid near a wall.  Maybe the experiments
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are at fault, with channel lengths too small to see a continuous increase in the distance between the

particle and the wall.  Another possibility is that the theory for two dimensions is not realized in three.

The considerations of the previous paragraph do not apply to viscoelastic fluids in which

particles are attracted to a wall.  In this case the conclusion that there is a very small equilibrium

distance between the wall and the particle is inescapable.


