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Experiments in which vortex rings of one immiscible liquid are created in another from drops 
falling from rest under gravity are presented and interpreted. These rings are associated with 
circulations generated by viscosity and, unlike classical vortex rings which occur in miscible 
liquids at high Reynolds numbers, they can exist even at very low Reynolds numbers. Since the 
rings do not diffuse, they are well-defined. Nonetheless, there are many similarities in the 
dynamics of formation and flow of miscible and immiscible rings. Parameters are identified 
which appear to correlate the authors’ observations and photographs of some of the more 
interesting events are shown. 

I. CLASSICAL VORTEX RINGS 

By way of comparison, it is instructive to recall that in 
classical hydrodynamics, it is usual to consider vertical re- 
gions embedded in an otherwise irrotational flow. In the case 
of the ring, a cross section [Fig. 1 (a) ] is like the “potential 
vortex” [Fig. 1 (b) ] : the flow outside a cylinder which ro- 
tates rigidly. This is the Taylor problem (flow between two 
concentric cylinders with the inner one rotating and the out- 
er one fixed) with the outer cylinder moved to infinity. The 
streamfunction #of the flow, with (A, - +4x ) for the veloc- 
ity in the x-y plane, and r = (x2 + y*) “2, is then $ = c In r. 
Thus, A$ = 0 and the flow is irrotational. The potential vor- 
tex satisfies the no-slip boundary condition at the cylindrical 
boundary, and it is one of only a few potential flow solutions 
of the Navier-Stokes equations. 

Vortex rings can be generated in a number of ways. One 
way is to impulsively eject a puff of fluid from a circular 
opening into a bath of the same fluid, as in the smoke ring.’ 
Another is to let a drop of liquid fall into a pool of the same 
liquid.2 A third method is to force a buoyant fluid into a tank 
of water (see Sec. 6.3.2 of Ref. 3) .4 These experiments do not 
involve immiscible liquids. Rings are more easily created in 
miscible rather than immiscible liquids. Thomson and 
Newall’ did an interesting study of ring formation and their 
stability in miscible and immiscible liquids. They stated the 
following: 

“It is not every liquid, however, which, when dropped 
into water, gives rise to rings, for if we drop into water 
any liquid which does not mix with it, such as chloro- 
form, the drop in consequence of the surface tension 
remains spherical as it descends. In fact, we may say 
that, with some few exceptions to be noticed later, rings 
are formed only when a liquid is dropped into one with 
which it can mix. This is important, because surface 
tension has been supposed to play an important part in 

the formation of these rings; it is difficult, however, to 
see how any appreciable surface tension can exist be- 
tween liquids that can mix, and as far as our experi- 
ments go they tend to show that it is only the absence of 
surface tension which is necessary for their produc- 
tion.” 

On the whole, it is not surprising that a phenomenon 
which occurs at zero interfacial tension also occurs at small 
values of interfacial tension. And small here means with re- 
spect to viscous effects, so that the actual numerical value of 
the coefficient of interfacial tension does not have to be 
small. The processes are similar whether miscible or immis- 
cible liquids are involved, up to the ring stage. However, 
interfacial tension does affect the breakup pattern: for exam- 
ple,6 it can prevent the smaller-sized drops from repeating 
the sequence of ring formation and breakup; this limits the 
vortex cascade (see Figs. 1 and 2 of Ref. 5 for a description of 
this cascade for the case of an ink drop in water) to one or 
two stages. Membrane rupture is another form of breakup. 
The rupture strength or breaking strength of membranes is 
not well understood but it may be related to surface tension. 
We know that the rupture strength generally decreases with 
surface tension. When the surface tension parameter is small 
but the surface tension is large, a vortex ring spanned by a 
tough permanent membrane can form. In other cases in 
which interfacial tension has been reduced by surfactants, 
the membrane is blown out and an unstable vortex ring of the 
type shown in our photographs forms. The difference be- 
tween strong and weak interfacial tension is illustrated in 
Figs. 2 and 3. In Fig. 2, a smaller drop of 1000 cS silicone oil 
is sucked into the wake of an oblate ringlike cap of the same 
silicone oil falling in a contaminated soybean oil. The mem- 
brane in this system is too tough to break. On the other hand, 
if a surfactant (97% dye, 3% Rhodamine B base powder, 
Aldrich Chemical Co., Milwaukee, WI) is added (as in Fig. 
3), the membrane breaks readily. Figure 1 (d) of Ref. 7 illus- 
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(c) (b) 

FIG. 1. (a) The two circular cross sections of a ring vortex are shown. The 
flow is as indicated. The dashed line denotes the axis at the center ofthe ring. 
The ring as a whole turns about this axial line. The continual turning of the 
ring is analogous to the rigid-body rotation of a straight cylinder shown in 
(b) if the ring were cut and straightened. (b) An infinitely long solid cylin- 
der is rotating with azimuthal velocity Rr, where fi is the angular speed. 
The flow outside the cylinder is irrotational and given by the streamfunction 
*=clnr. 

trates this well. The existence of a spanning membrane in 
miscible liquids is hard to understand without invoking the 
idea of transient inter-facial tension induced by momentarily 
strong gradients of composition. Such notions were intro- 
duced by Kojima et aL8 and are considered in more detail in 
Ref. 9. 

II. THE NORMAL STRESS BALANCE 

It is probable that the.parameters which control the de- 
formations of drops to rings in free fall are associated with 
the stress balance at the interface: 

-~~n+2ED[u]jln+S*n2H=O, 
where His the mean curvature at a point on the interface Z 
and D [ u] is the rate of strain. This equation may be decom- 
posed into normal and tangential parts. 

We denote 

I[*n = (.>d - (*),, 
to be the jump in the quantity - across the interface, where 
the subscript d stands for drop and o stands for the outer 
fluid. In the equilibrium case (that is, no flow), the drop or 
bubble pulls into a sphere with radius R r = R2 = a and equi- 
librium pressures satisfying 

l[pq =p; -pz = W*/a. 
By using the condition that the velocity is continuous at 

the interface and the continuity equation, the reader may 
verify that 

m”n = 09 (1) 

where we denote 

D,, = n*D[u]*n. 

The next step in the reduction of the normal component 
of the stress balance on the interface B is the decomposition 
of the pressure into an equilibrium partp’, a hydrostatic part 
ps = pgz, with p” = pdg.z in the drop, and a dynamic part Il 
due to the motion. We use a coordinate system where the 
origin is the center of the spherical drop, and we denote the 
parametrization for the surface of the drop by z = z, (x,y) . 
Thus, bq = b]gz,, and 

(b) 

(cl . 

FIG. Z~~ailure of coke-through of captured drop of 1000 CS silicone oil in 
an indented oblate drop of the same silicone oil falling through contaminat- 
ed safflower oil. (a) The captured drop is sucked strongly into the wake 
behind the oblate drop. There is a tail drawn out of the captured drop by the 
motion of safflower oil in the wake which is reminiscent of the tail behind 
drops in miscible liquids (cf. Fig. 11). (b) The drops are sucked into strong 
contact. (c) The captured drop decelerates under the restraining action of 
the silicone oil membrane on the oblate drop which never breaks. 

Combining now ( 1) and (2) with the stress balance equa- 
tion at the interface, we find that 

--Pn+~,,M+IGOn@~+~* -+++-$) ( 1 2 

= 0. (3) 
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(a) (b) 

(d) 

(4 
FIG. 3. Ring formation in 1000 CS silicone oil with a surfactant falling in 
soybean oil. The surfactant is a trace amount of 97% dye with 3% Rhoda- 
mine B base powder. (a) One indented oblate sphere accelerates in the wake 
of another; (b) they come close. (c) Poke-through: the large ring loses its 
membrane. (d) The small ring never pokes through; it retains the oblate 
indented shape. (e) Beginning of the two-lobe instability of the Rayeligh- 
Taylor type. (f) The instability can be compared with Fig. 6(b) where the 
membrane does not break. 

The dynamic pressure is of course an unknown which 
must be determined from the solution. 

III. DIMENSIONLESS PARAMETERS 

To identify dimensionless parameters, we scale lengths 
with a, the radius of the equivalent spherical drop or bubble 

with the same volume, and velocity with U to be specified 
later (see next section). The normal stress balance at the 
interface (see previous section) shows that there are four 
forces at work: gravity, surface tension, inertia, and viscos- 
ity. 

The viscosity ratio 

M=K-l/p, (4) 

where,zu, is the viscosity of the drop and,u is the viscosity of 
the ambient fluid, is very important. 

The ratio of inertia to viscous forces is measured by the 
Reynolds numbers 

R = lJa/v, R, = Us/v,, (5) 
where Y =&p, Y d =pud/,od. To form immiscible vortex 
rings, inertia is important because the drop will be close to a 
sphere if R and R, are sufficiently small. lo 

The viscous part of the normal stress in the drop is 
scaled by U&/a and in the exterior fluid by Up/a. The inter- 
facial tension term in the stress balance is scaled by 5’ */a. 
The ratio of the stress associated with inter-facial tension to 
the viscous part of the normal stress in the outer fluid is 

S*/,LLU= J/R, (6) 
where 

J = S *a/tip (7) 

is Chandrasekhar’s capillary number (used in his study of 
the capillary instability of a jet; see Sec. 111 of Ref. 11) for 
the outer fluid. Similarly, for the inner fluid we have 

S*/,ud U = Jd/Rd, (8) 

where 

MJd/Rd = J/R. (9) 

For a ring to form, the tendency for interfacial tension to 
keep the drop spherical should be overcome by the effect of 
viscosity to distort it. Thus, we expect to-see rings when 
J/R 4 1. In our experiments, we got ring formation only 
when M# 1. We did not observe rings in immiscible liquids 
when A4 < 5. The condition MS 1 may not be universal. Cer- 
tainly, it is easier to form vortex rings in miscible liquids; for 
these, J/R = 0, but evidently when Mz 1 it is possible to 
form vortices from ink drops falling in water. 

We have already mentioned that inertial effects are al- 
ways important in deforming the drop away from a sphere. 
These effects can be measured by the Weber number, the 
ratio of interfacial tension to inertia. The inertial part of the 
dynamic pressure for the outer fluid is scaled with p U 2 and 
the drop withpd U2. The ratio of interfacial tension to inertia 
in the outside fluid is 

(s*/a) J 1 -=--=-, 
pu2 R2 w 

and in the drop is 

(S*/a) Jd 1 -=- =-, 
pciU2 R; W, 

where Wis the Weber number. Obviously, 

(10) 

(11) 
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TABLE I. Fluid properties. Table notes: Canola oil is also termed rapeseed oiI;the glycerin listed is 0.99 pure USP glycerin; the percentages listed for golden 
syrup and glycerin are dilutions with water; Alconox is an industrial glass cleaner and is used as a surfactant with water. 

Pluid 

Canola oil 
Glycerin 
0.95 Gly” 
0.9 1 Gly 
0.92 golden syrup 
Lyle’s golden syrup 
Motor oil 30W 
Olive oil 
Palmolive soap 
Safflower oil 
Sesame oil 
Shell Research oil 
Silb 5 CS 
Sil 100 cS 
sil200 cs 
Sil300 CS 
sil400 cs 
sil500 cs 
Sil600 CS 
Sill000 cs 
sil 10 000 cs 
Sil30 Ooo cS 
Soybean oil 
Water 
Water + Alconox 
Walnut oil 

Density Kinematic viscosity Viscosity 
(g/cm3) (CS) (g/cm set) 

0.915 67 0.61 
1.265 656 8.29 
1.245 244 3.03 
1.240 113 1.40 
1.400 2 606 36.49 
1.440 20 804 299.58 
0.886 316 2.80 
0.914 69 0.63 
1.05 238 2.50 
0.920 51 0.47 
0.920 64 0.59 
0.895 2 037 18.23 
0.930 5 0.05 
0.960 100 0.96 
0.970 200 1.94 
0.970 300 291 
0.970 400 3.88 
0.971 500 4.86 
0.971 600 5.83 
0.971 1000 9.7 1 
0.975 10 000 97.50 
0.975 30 000 292.50 
0.922 53 -~ 0.49 
1.000 1 0.01 
1.080 33 0.36 
0.925 51 0.47 

a0.95 Gly = 95% glycerin in 5% water. 
“Sil= Silicone oil with indicated viscosity. 

pd Jd J --=-* 
p R’d R2 

(12) 

Since p and pd do not differ greatly in our experiments, the 
Weber number is nearly the same in the outside fluid and the 
drop. The Weber number W, for systems that do form rings 
ranges between 330 and 9600 whereas the W, for systems 
that do not form rings ranges between 0.3 and 11000. The 
low Weber number drops are spherical. 

IV. PHYSICAL AND OTHER PROPERTIES 
The physical properties are density, viscosity, and inter- 

facial tension. Other properties used in our discussion are the 
velocity U and the drop size a. First, we discuss the fluid 
properties. 

Table I lists the fluids used in the experiments. The den- 
sities were measured using a Curtin Scientific hydrometer at 
approximately 21 “C. The viscosities were measured using 
standard Cannon Fenske tube viscometers. The interfacial 
tension S * was measured with the spinning rod tensiometer. 

Our early experiments on vortex rings were carried out 
in a Plexiglas box 3 in. square and 8 ft long. The top of the 
box is open to allow introduction of the drop and the bottom 
is closed by a valve. The valve holds the host fluid in and 
allows the removal of the dropped fluids that collect at the 
bottom. The Plexiglas is clear to allow good visualization 
and photographic recording. The apparatus is backlighted 

by retlecting incandescent light off of a translucent Plexiglas 
sheet. The most recent experiments were carried out in a 
tube, which differed from the previous apparatus in that it is 
made of glass and has a circular rather than square cross 
section. The tube is 4 ft long, and like the Plexiglas box, it is 
open at the top, and closed at the bottom with a valve. 

The method for introducing the drop into the vortex 
ring box is as follows. A 10 cm3 drop of the more dense fluid 
was carefully placed on top of the host fluid with a calibrated 
beaker. This gives 

$-a3 = 10 cm3 or a = (2.39) “3 cm = 1.34 cm. 

Care was taken to ensure that the drop was not splashed or 
accelerated into the host fluid. 

A parametric study of drop size was also carried out 
with volumes other than 10 cm3. The results of these studies 
are summarized in Fig. 4. 

The velocity scale we use to calculate the Reynolds 
numbers is U given by (see Sec. 4.9 of Ref. 12) 

u=+$,,, -p)(s). (13) 

Using this U, R, = ua/vd depends only on measurable 
quantities and may be interpreted as the ratio between the 
buoyancy and viscous forces. The assumptions leading to 
( 13) are that the fluid is a sphere falling at constant speed in 
Stokes flow, and that if the shear stress and velocity are 
matched at the interface, then the normal stress is automati; 
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FIG. 4. 

-2 4 6 8 10 12 14 

VOLUME (cc) 

Distance traveled by a falling drop before a vortex ring forms as a function of drop volume. The formation of the ring occurs 
spanning the ring breaks. 

tally matched. The analysis does not say anything about 
what the drop would do if it were not falling at the terminal 
speed; for example, in the experiments, the drop starts at 
rest, some drops do not attain any steady speed, and more- 
over appear not to reach the speed predicted by this formula. 
It is difficult to decide apriori on a velocity scale because we 
do not have a formula for predicting the velocity as the drop 
changes shape. For each experiment, one could measure the 
maximum speed attained by the drop and use that as U, and 
this type of data is available for some of the experiments. 

The velocity of the drop as it falls in the vortex ring box 
has been measured for some situations and found to be much 
smaller than the value from ( 13). Measurements of the ve- 
locity of a falling drop were made by recording the time it 
took for the drop to cross a 6 in. region of the box. Five such 
regions were selected to best capture the rate of fall at critical 
sections. The records were taken ten times for each region 
and the average velocity was calculated. Figure 5 shows the 
average velocity versus distance down the tube for three 
types of glycerin (e.g., 90% glycerin means 90% glycerin in 
10% water) and silicone oil falling in soybean oil. (Rings 
were observed in the 100% glycerin case, but not in the other 
two cases, which happen to have higher velocities in the fig- 
ure.) Take, for example, the data in this figure. Compared 
with this, the value of U from ( 13) is approximately 110 
in./sec, which is about 20 times the actual average velocity. 
This is consistent with the notion that a spherical drop 
would fall faster than a flattened spheroid or a ring. The 
swings in the measured speed reflect the changes in the shape 
of the drop as it evolves into a ring and decays. We should 

the membrane 

therefore keep in mind when looking at the tables that the 
true Reynolds numbers are probably an order of magnitude 
less than those tabulated. 

There are also situations where U from ( 13) turns out to 
be large, which is inconsistent with one of the assumptions in 
the derivation of ( 13); but since Stokes drag is less than the 
actual drag at higher Reynolds numbers, we expect that the 
U is an upper bound on the actual maximum velocity. Thus 
our tabulated values of Jd/Rd and J/R in the sequel underes- 

p 100% glycerin 
L. 

f. 4- 

1 
: 

L 
3 

e 
m 1 
> 
m 2 

i- 

- 500cS. silicone 

1 ! 
10 20 30 

dbtance down lube (inchesi) 

1 
40 

FIG. 5. The average velocity versus distance down the vortex ring tube for 
the designated liquids falling in soybean oil. 
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timate the importance of surface tension, but consistently, so 
that they should probably be an order of magnitude larger 
than they are. This would imply that the switch in the behav- 
ior from ring formation to no ring is actually occurring at a 
value of J/R of order 1. This, in fact, is what one would 
expect. 

It is interesting that the condition for ring formation (on 
M and J/R) appears to hold for the entire wide range of 
Reynolds numbers encountered in the experiments. Why? In 
the normal stress condition at the interface, the only term we 
have not really commented on above is the pressure term, 
which is multiplied by the Reynolds number R. It appears 
that this term does not affect the ability to give birth to a ring: 
indeed, the factor R appearing there can be made to disap- 
pear just by changing the way the pressure is nondimension- 
alized. 

The formation of vortex rings always involves the break- 
ing of a membrane, by poke-through or blowout, and the 
breaking strength (toughness) of a membrane is very diffi- 
cult to control, especially in silicone-vegetable oil systems. 
Our early experiments were recently repeated with good suc- 
cess except for the breaking of silicon-vegetable oil mem- 

(a) 

(b) 

FIG. 6. 1000 CS silicone oil falling in contaminated safflower oil. (a) A 
vortex ring with circulation has developed but a tough membrane spans the 
ring. (b) The ring is unstable in the usual way (Rayleigh-Taylor in stabil- 
ity) forming the characteristic drops [cf. Fig. 3 (d) 1, but the membrane 
breaks. 
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FIG. 7. Vortex ring of 1000 cS silicone oil with trace amounts of surfactant 
(Igepal) falling in soybean oil after blowout. 

branes. Some experiments were carried out with a contami- 
nated safflower oil with various additives. We could never 
break a membrane in a silicone-contaminated safflower oil 
system (Figs. 2 and 6). The breaking strength of a mem- 
brane may be related to interfacial tension since we could get 
tough membranes to break by adding certain types of surfac- 
tants to the silicone oil (trace amounts of 97% dye, 3% Rho- 
damine B base powder in Fig. 3; trace amounts of Igepal in 
Fig. 7). We also had difficulty breaking membranes in a 
silicone-soybean oil system, even when uncontaminated 
fluids were used. However, the oils used in the most recent 
experiments were not exactly the same as those used earlier, 
and it is possible that the newer oils had an interfacial tension 
large enough to prohibit vortex ring formation. As was the 
ease for the contaminated-oil system, rings were formed 
when the above-mentioned surfactants were added to the 
silicone oil. 

The low values of surface tension in the silicone oil- 
vegetable oil systems may indicate the possibility of small- 
scale activity at the interface. This activity could affect the 
boundary conditions involved, but more research must be 
done before any definitive statements may be made. 

V. DlSTORTlON OF THE SPHERICAL DROP 
It is well known that a spherical drop or bubble, moving 

slowly, in Stokes flow can keep a spherical shape even when 
interfacial tension is suppressed.1213 There is numerical and 
experimental evidence to suggest that these solutions are sta- 
ble to small disturbances i4,” but not to large disturbances. 

When viscous effects win over the effect of inter-facial 
tension, a falling drop cannot maintain a spherical shape. 
Numerical solutions have been obtained16 for steady stream- 
ing flow past an axisymmetric drop over a wide range of 
Reynolds numbers, interfacial tension, viscosity ratios, and 
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density ratios. Their results indicate that at lower Reynolds 
numbers, the shape of the drop tends toward an indented 
oblate shape with decreasing interfacial tension, and at high- 
er Reynolds numbers the drop becomes more disk shaped 
with decreasing interfacial tension. 

In our experiments, the drop is released at zero speed 
and undergoes accelerations and decelerations, so that the 
results mentioned above concerning steady motions cannot 
strictly be used to infer anything about what our drop is 
doing. Moreover, as mentioned in the previous section, mea- 
surements of the drop speed indicate that it often does not 
reach the steady speed predicted by the formula ( 13 ) . How- 
ever, there are similarities with these analyses and what we 
have seen. 

Figure 8 shows an indented oblate drop like those com- 
puted in Ref. 15 at low Reynolds numbers (see, for example, 
their Fig. 3). Experimental observations suggest that the 
streamline pattern on the concave side of the cap is probably 
like that of Fig. 9; there are no points of separation or vorti- 
ces in this guess about the underlying fluid dynamics. The 

(b) I. 

FIG. 8. Indented oblate drops falling in safflower oil. (a) Water M  = 0.02, 
J- 4534 S * = 3.39 dyn/cm. Indentation never develops in water and oil 
systems without surfactants. (b) 500 cS silicone oil. i’hese are the most 
common shapes when falling. The high viscosity drop develops a circulation 
that brings it closer to a vortex ring. 

(a) i 

FIG. 9. DeveIopment of vorticity in a drop falling from rest. The stream- 
lines are sketched in a frame moving with the drops: (a) from experimental 
observations at sufliciently small velocity; (b) larger velocity. 

suction in the cap, call it a wake, is large and small drops and 
even large drops are easily captured by the indented drop, as 
shown in Figs. 2(a), 10, 11, and 12(a). Ifthe conditions are 
right, the drop in the wake will poke through the membrane 
spanning the indentation, as in Figs. 3 and 12, but if the 
membrane is tough, as in Figs. 2 and 6, the poke-through will 
fail. 

VI. FORMATION OF RINGS 

Stuke” performed experiments like those reported here. 
He cites the work of Northrup’* who used paraffin in a water 
bath, where interfacial tension is large. Northrup needed to 
inject the paraffin at high speed so that viscous forces would 
create a circulation of sufficient magnitude, as in the case of 
air injected into water. The larger the interfacial tension, the 
faster the intrusive speed necessary to create a ring. Stuke 
showed that rings would form at slower speeds when water 
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(a) 

(b) 
FIG. 10. Spheres nested in the wake ofan indented oblate drop. (a) Glycer- 
infallinginsoybeanoil M= l&9,5 = 0.45, S* = 18.45 dyn/cm. (b) 500~s 
silicone oil in contaminated safflower oil. 

was replaced with amyl alcohol, with a consequent lowering 
of interfacial tension. The slower speeds allowed these pro- 
cesses to be recorded in photographs which can be compared 
with the photographs of this paper. Initially, there is a mem- 
brane across the hole of the ring (cf. Figs. 6 and 12) and then 
the membrane ruptures. Once formed, the ring starts to ex- 
pand rapidly and the bulk of the paraffin flows into two or 
three bulges around the ring (cf. Figs. 3 and 7). These hea- 
vier bulges fall faster, so that the ring bends and breaks into 
two or three drops [see his Fig. 5, Fig. 2(b) of Ref. 6, and our 
figures]. If a drop were large enough, it would form another 
vortex ring and the sequence repeats itself. An analogous 
description of the ring instability for miscible liquids at slow 
speed is given in Fig. 4 of Ref. 8 and in Ref. 7. 

If the conditions are right, if the drop is much more 
viscous than the host fluid CM% 1) and the ratio J/R of 
interfacial to viscous forces is not too large, then the spheri- 
cal drop will evolve toward a vortex ring. The entries in Ta- 
bles II-IV for drops of silicone oils in soybean oil exemplify 
these effects well. The viscosity of silicone oils can be varied 
through careful mixing without changing their density or 
surface tension appreciably. It was observed that when the 
viscosity of the drop was lower than a certain value (about 
500 CS here), rings did not form. In particular, when the 

FIG. 11. A streamline pattern for Fig. 2. The flow in the wake could pull out 
a tail from the nested sphere if the wake were strong as in Fig. 2(b), or the 
surface tension weak as in the case of miscible liquids. 

drop was less viscous than the bath, even with very low inter- 
facial tension, rings did not form, as in Fig. 13. 

Inertia alone will not cause a ring to form. Indented 
oblate drops like those shown in Fig. 8 are the most robust of 
the falling drops. If conditions are such that the viscous ac- 
tion of the host fluid can create a permanent circulation [like 
that sketched in Figs. 9 (b) and 111 of sufficient strength, the 
drop will begin to look like a ring, spanned by a membrane, 
as in Figs. 10, 11, 12 (a), and especially 6 (a). A free ring will 
form only if the membrane breaks. The membrane may or 
may not break. If it breaks, it does so either by poke-through 
of a smaller drop caught in the wake as in Figs. 6 and 12, or 
by blowout. Blowout can best be understood by the failure of 
blowout shown in Fig. 6 (a). Blowout can occur only if the 
membrane is very weak as in miscible liquids or in low inter- 
facial tension systems like those shown in Figs. 7 and 14. 

Vortex rings are unstable; whether or not the membrane 
has broken, the ring will expand rapidly. The rapid extension 
is a universal characteristic of the instability. If a membrane 
remains and no drop rests in the wake to poke through, the 
membrane will stretch and either rupture or fold as in Fig. 
6(b). 

Because of capillarity, draining, or other causes, bulges 
develop on the ring; these fall faster than the rest of the ring, 
and fluid drains rapidly to the heavy bulges, exacerbating the 
instability. This instability can be considered as a manifesta- 
tion of the Rayleigh-Taylor instability of the heavy fluid into 
the light, when the heavy fluid has the shape of a vortex ring. 
In our experiments, the draining almost always occurs at just 
two points of the ring, more or less at opposite points on the 
ring as in Figs. 3 (f) and 12(d), and in the figures of Refs. 7 
and 8. This type of instability scenario can occur even for 
ringlike structures like the one shown in Fig. 6 (a) in which 
the membrane does not break and it leads to the folded ring 
shown in Fig. 6 (b) . The heavier places fall faster and the 
ring bends and breaks into drops. 

O’Brien, I9 in reviewing her own work and that of Ref. 
17, noted that the number of bulges which develop on the 
ring depends on the Reynolds number and is two for Reyn- 
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(d) 

FIG. 12. Poke-through of 1000 cS silicone oil in safflower oil M  = 19.8, J= 0.03, S* = 2.41 dyn/cm. (a) Silicone oil spheres nested in the wake of an 
indented oblate drop of the same oil. (b) Poke-through leads to a vortex ring. (c) Vortex ring ( Rayleigh-Taylor) instability is the rapid expansion of the ring 
diameter and the draining of the oil into the falling bulges. (d) Two new indented oblate drops form from the falling bulges in a replication of the dynamic 
sequence. 

TABLE II. Systems that form vortex rings. Gly denotes 100% glycerin; 0.95 Gly denotes 95% glylcerin in 5% wafer; Shell denotes Shell Research oil; Sil 
denotes silicone oil with the indicated viscosity; Soy denotes soybean oil. The difference&denotes (density of dropped fluid) - (density of host fluid); Av 
denotes (viscosity of dropped fluid) - (viscosity of host fluid): this difference is negative in some of the systems in the tables. 

System 
AP 

(g/cm’) 
S* u 

(dydcm 1 (cm/set) Rci t&/P M  J,/Rci J/R 

Gly/Soy 0.343 606 18.45 278.5 57 1.37 16.9 0.008 0.135 
Gly/canola 0.350 589 35.78 227.5 46 1.38 13.6 0.02 0.272 
500 cS SWcanola 0.056 433 2.33 37.0 10 1.06 8.0 0.01 0.080 
Gly/olive oil 0.35 1 588 lt3.50 242.0 49 1.38 13.2 0.005 0.066 
500 cS SiUolive oil 0.057 431 3.10 58.0 16 1.06 7.7 0.01 0.077 
Gly/safflower 0.345 606 15.65 291.5 59 1.38 17.6 0.006 0.106 
500 cS SiVsafflower 0.05 1 450 7.44 43.6 12 1.06 10.3 0.03 0.309 
Gly/walnut oil 0.340 605 39.51 285.8 58 1.37 17.6 0.02 0.352 
500 cS Sil/walnut oil 0.046 449 4.15 39.1 10 1.05 10.3 0.02 0.206 
Gly/sesame oil 0.345 592 15.20 216.3 44 1.38 14.1 0.008 0.113 
500 cS SiNesame oil 0.051 436 3.40 34.9 9 1.06 8.2 0.02 0.164 
500 cS Sil/Soy 0.049 447 1.68 40.3 11 1.05 9.9 0.008 0.079 
600 cS Sil/Soy 0.049 547 2.68 40.1 9 1.05 11.9 0.01 0.119 
1000 cS SiVSoy 0.049 947 2.41 39.7 5 1.06 19.8 0.006 0.119 
10 000 cS SiVSoy 0.953 9 947 3.29 42.3 0.6 1.06 199.0 0.0008 0.159 
30 000 c3 SiVSoy 0.053 29 947 6.49 42.3 0.2 1.06 597.0 0.0005 0.298 
Golden syrup/Soy 0.518 20 751 42.20 413.3 2.7 1.56 611.4 0.0003 0.183 
0.92 Golden syrup/Soy 0.478 2 553 28.46 382.6 19.6 1.52 74.47 0.002 0.149 
Palmolive/Soy 0.128 185 18.10 108.0 61.0 1.14 5.10 0.0006 0.003 
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TABLE III. Systems that do not form vortex rings. 

System 
A/J 

( g/cm3 ) 
Av s* u 

(CS) (dyn/cm) (cm/=) R‘i Pd~P M Jc,/& J/R 

0.95 Gly/Soy 0.323 
0.91 Gly/Soy 0.318 
WatedfOW motor oil 0.114 
Water/Shell 0.105 
Gly/Shell 0.370 
500 cS Sil/Shell 0.076 
5 CS Sil/Soy 0.608 
100 cS Sil/Soy 0.038 
200 cs m/soy 0.048 
300 cS SiVSoy 0.048 
400 cs sillsoy 0.048 
Water/Soy 0.078 
Water + Alconox/Soy 0.158 
0.60 Golden syrup/Soy 0.342 

194 13.43 269.8 148 1.35 6.2 0.02 0.124 
63 11.49 277.3 328 1.34 29 0.03 0.87 

315 9.22 23.7 3172 1.13 0.004 38.85 0.156 
2036 42.14 3.4 450 1.12 o.OCQ5 1251 0.625 
1381 27.83 10.3 2 1.41 0.45 0.34 0.153 
1537 5.82 2.2 0.6 1.08 0.27 0.53 0.143 
- 48 1.14 9.2 245 1.01 0.10 2.7 0.27 

47 2.75 34.1 46 1.04 2.0 0.08 0.16 
147 2.16 40.9 28 1.05 4.0 0.03 0.12 
247 2.71 40.2 18 1.05 5.9 0.02 0.118 
347 2.67 39.7 13 1.05 7.9 0.02 0.158 

- 52 3.39 92.3 12 337 1.08 0.02 0.37 0.074 
- 20 4.64 156.0 632 1.17 0.73 0.08 0.056 
- 27.5 7.42 341.0 1788 1.37 0.659 0.07 0.046 

olds numbers of order one or less. Basically, we observed 
only two bulges even at Reynolds numbers of order 100, with 
some very rare exceptions. Perhaps the number of bulges on 
the ring is related to capillary breakup and is strongly in- 
fluenced by the value of interfacial tension. We saw many 
bulges when soap was added to water in soybean oil (see the 
last entry of Table II). This interpretation is also suggested 
by the closely similar instability in miscible liquids,6 in 
which case the lack of surface tension promotes the forma- 
tion of many more nodules around the ring, the ring breaks 
into many drops, and those drops subsequently repeat the 
cycle and there is a vortex cascade.5 Surface tension can keep 
subsequent drops spherical if they are small enough, and 
thus inhibits the cascade. 

The effect of the wall on the drop and ring needs further 
study.” For example, when a ring approaches a wall of the 
apparatus, it expands considerably before touching it. Also, 
experiments done with a vortex tube of smaller diameter 
show that the walls inhibit ring formation. Observations 
about the way a ring behaves (in the miscible case) at a 
variety of boundaries is reported in Ref. 18. 

The dynamics leading to formation of vortex rings is not 
well understood. Data presented in the next section show 
that rings form from drops started from rest when the viscos- 
ity of the drop is relatively great and the inter-facial forces do 
not dominate viscous forces. 

A falling drop is relentlessly sheared by the host fluid, 
but only small portions of the host fluid come under the 

TABLE IV. Systems of injected bubbles. 

influence of the falling drop, and these only momentarily. If 
we move with the drop, we can think that we have a uniform 
flow around the drop as in Fig. 9 (b), and this picture is also 
suggestive of why circulations develop in the drop and not in 
the host fluid. The flow around the ring would, in the case 
where the ring fluid is very viscous, resemble that of Fig. 
1 (a), where the flow is analogous to the rigid-body rotation 
of Fig. 1 (b) and would then be almost potential flow, with 
potential flow at infinity (uniform flow), and the vorticity 
localized to the interface region between the fluids. 

VII. TWO-FLUID SYSTEMS THAT DO AND DO NOT 
FORM VORTEX RINGS 

We used formula ( 13) to compute the velocity of a fall- 
ing drop [with a = (2.39) 1’3 ] and rising bubble [with vol- 
ume 5 cm3, a = ( 1.19) 1’3 ] and evaluated many of the di- 
mensionless parameters. The parameters are listed in Tables 
II-IV. Parameters that are not set down explicitly in these 
tables can be computed readily from the listed values. Table 
II tabulates the systems that were observed to form rings. 
The other two tables list the two-fluid pairs that were ob- 
served not to form rings. 

We find that to form a ring, it is necessary that the drop 
fluid be much more viscous than the host 3uid. Another 
criterion which appears to be necessary is that the effect of 
interfacial tension should be smaller than viscous effects, 
which may be expressed as 

System 

100 cS SiVwater 
12 500 cS U/water 
Soy oil/water 
30W motor oil/water 
Olive oil/water 

S* u 
(dynkm) f-Q/P (cmhc) Rd M Jd/& J/R 

24.67 0.96 984 1043 96 0.03 2.88 
27.11 0.975 621 5.3 12 188 0.0004 4.8 

3.39 0.922 1917 3829 49 0.004 0.196 
9.22 b.886 280 

16.42 0.914 2119 3257 63 0.012 0.72 

576 Phys. Fluids A, Vol. 4, No. 3, March 1992 Baumann eta/. 576 

Downloaded 27 Nov 2002 to 128.101.143.146. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



FIG. 14. Vortex ring of dyed glycering falling in soybean oil after blowout. 

FIG. 13. Crisco rising in a column of water with surfactant (Alconox). The 
value of interfacial tension has been reduced from 3.39 dyn/cm to 0.158 
dyn/cm by the surfactant. The membrane does not break, despite the low 
tension. (a) A torus is formed inside the water bag. (b) The water in the 
torus is dragged out in the wake. 

J/R<O(ll, 
where the notation is defined in (7) and (9). The last col- 
umn of Table II is comfortably in agreement with ( 14). 
However, the velocity U used to compute R was computed 
from ( 13) and the true J/R may be an order of magnitude 
larger than in the table. In general, however, when one in- 
spects the tabulated data, it becomes apparent that since all 
of the fluids tested have low values of J/R, the factor which 
distinguishes a system which will not is the value of M. For 
the most part, the criterion for the fluids tested seems to be 
that Mbe greater than 8 or so. However, there is definitely an 
ambiguous range (5 <M<8) within which we cannot pre- 
dict whether a ring will form or not. 

A very dramatic illustration of the importance of J/R 
and M is exhibited by data for Palmolive soap dropped in 
soybean oil (a ring forms; see last entry of Table II) and 
water dropped in soybean oil (a ring does not form). Palmo- 
live soap is essentially water modified with a surfactant that 
reduces the interfacial tension enough to move J/R down to 
a sufficiently small value. The viscosity of Palmolive soap is 
greater than that of water and this alters M such that the 
combination of J/R and Mproduces a vortex ring. The evo- 

lution of the ring in this soapy solution is exceptionally rapid 
and the torus breaks up rapidly into small bubbles, as in the 
case of miscible liquids. 

Table III displays systems that do not form vortex rings. 
The data show that a modification of the fluids will switch a 
system that forms a vortex ring to one that does not. An 
example is the glycerin and soybean oil system. When 9% 
water is added to glycerin, the resulting diluted solution will 
not form a vortex ring because the viscosity ratio M has 
decreased and J/R has increased to the borderline level. A 
similar adjustment was made for golden syrup by adding 
water. Of course, we cannot determine in these examples 
which parameter is truly causing the change of the system, 
since in both cases Mand J/R change simultaneously. How- 
ever, it is still interesting to observe the effect of altering the 
relevant parameters. 

Table IV lists systems where bubbles of the less dense 
liquid were released and left to rise through the more dense 
liquid. In each case, an oil was released into water. No vortex 
rings were observed. The related case of air bubbles released 
into water has been shown to yield rings (see Fig. 7 of Ref. 
2 1) . The case of 12 500 CS silicone oil was inconclusive be- 
cause the silicone oil showed an affinity for the Plexiglas box. 

In Fig. 4, we display the results of a study of drop size on 
the distance required for ring formation. This distance de- 
creases monotonically with volume and seems to asymptote 
to some small value less than 15 in. for large volumes. 
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ADDENDUM (by Paul Mohr and D. D. Joseph) 

This addendum contains a brief summary of recent find- 
ings regarding drop size and surfactant effects on the forma- 
tion of immiscible vortex rings that were obtained after this 
paper was submitted for publication. A number of experi- 
ments are reported, all of which involved dropping different 
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quantities ( l-7 ml) of 1000 CS silicone oil in soybean oil, and 
allowing them to fall under the influence of gravity. The 
results of pure silicone drops, as well as silicone drops con- 
taining the surfactant Igepal are included. 

1. Introduction 
The drops of silicone oil are released at the top of a 4 ft 

tall glass tube that contains soybean oil. They fall under 
gravity, and observations are made as they traverse the 
length of the tube. To control the drop sizes, we use a 1 in. 
diameter (60 ml) plastic syringe with the end almost com- 
pletely removed. Since small amounts of silicone invariably 
stick to the syringe and since the modified syringe volume 
was measured to be 0.8 ml less than with the tip intact, we 
consistently pull the plunger back 1 ml beyond the desired 
drop size. With the plunger set, the syringe is filled with the 
silicone oil and the end is quickly placed into the soybean oil 
and the plunger is depressed. The syringe is tilted to a sharp 
angle and twisted to remove the clinging drop. While this 
method does not allow us to ascertain with a great degree of 
accuracy the true drop volume, it does provide for drops of 
very consistent volume. 

(b) (b) 
FIG. 15. (a) The center-spanning membrane is rupturing while still ai FIG. 15. (a) The center-spanning membrane is rupturing while still ai 
bottom of this 2 ml drop of pure silicone oil. (b) Here, the membrane bottom of this 2 ml drop of pure silicone oil. (b) Here, the membrane 
bulged up through the center of the 5 ml, pure silicone drop, forming a 1, bulged up through the center of the 5 ml, pure silicone drop, forming a 1, 
dome. dome. 
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I. The drops begins to indent on top. 

II. The indentation deepens. Very oman drops 
(less than 1 mU remain like this for the entire 
length of the tube. 

III. The indentation reaches the bottom of the drop. 
Drops that are I-2ml will sometimes remain in 
thfs mnfi~tion for the length of the tube. 

00 N. Membrane rupture occurs on the bottom of the 
drop. Those dmps 2-3111 will usually exhibit this 
type of rupture. 

PIG. 16. Drop evolution for volumes of 2-3 ml. 

2. Pure silicone oil 
Small drops (roughly those < 2 ml) were generally ob- 

served to remain as indented oblate spheres for the entire 
length of the tube. When drop sizes were increased to 2 ml, 
the indentation in the drop deepened, and for many drops 

The drop forms an ablate sphere 

An indentation be&s to form on the 
top of the ablate sphere, flattening it 
out, and folring more fluid towards 
the outer edge.3 of the drop. 

The indent&m becomes deeper. and 
still more fluid is forced into the outer 
edgsofthedmp 

The middle of the drop h now a fairly 
thin membrane, with a thick annulus 
surrounding it. 

The membrane is stretched upward, and 
becomes very thin. Dmps of 4 ml and 
more exhibit Rayleigh-Taylor imtability 
at this point and do not proceed to 
phase VI. 

The membrane breaks, leaving only 
the vortex ring. This ccdiguration is 
unstable, and the ring will separate 
into two lobes shortly after forming. 

FIG. 17. Drop evolution for volumes of 3-5 ml. 
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(b) 

FIG. 18. (a) This 5 ml drop of loo0 cS silicone containing 0.5% Igepal CO- 
530 has formed a membrane similar to that in Fig. 15(b). (b) The mem- 
brane is rupturing from the left side of the drop to the right. Rupture of 
membranes at this stage of development is extremely rare with pure silicone 
oil, but occurs frequently when Igepal is added. 

(six times out of ten observations) this indentation poked all 
the way through until a free ring was generated. These rings 
would always rupture their membranes while they were on 
the bottom of the drop [see Figs. 15(a) and 161. 

Drops of approximately 3 ml also form rings, but their 
evolution is slightly different than that of 2 ml drops in that 
the spanning membrane does not always break while it is on 
the bottom. These drops instead expand horizontally, and 
the membrane bulges up through the center of the surround- 
ing annulus of fluid [see Figs. 15 (b ) and 171. The degree to 
which it bulges upward is strongly dependent on drop size; 
the larger the drop, the more extreme the expansion. For 
drops with volumes of 3 ml, the membrane would occasion- 
ally rupture after this expansion. However, those drops of 
pure silicone oil having a volume greater than 3 ml were not 
observed to form rings. They underwent the same evolution 
as the slightly smaller drops, but exhibited Rayleigh-Taylor 
instability before membrane rupture (see Fig. IO). The in- 
stability causes the drop to form two lobes, thus pinching off 
the center membrane. 

TABLE V. Data summary. Quantities listed are pure 1000cS silicone/1000 
cS siIicone with 0.5% Igepal. The interfacial surface tension for the pure 
silicone oil in soybean oil is 2.7 dyn/cm. With 0.5% Igepal in the silicone oil, 
the interfacial tension is 1 dyn/cm. 

Size (ml) # Trials # Ruptures # Pinch-off # Oblates 

1.0 5/5 o/o o/o 5/5 
2,O IO/10 6/4 o/o 4/6 
2.5 2/4 2/4 o/o o/o 
3.0 lO/lO 3/10 7/o o/o 
4.0 lO/lO o/9 IO/l o/o 
5.0 2/10 o/7 2/3 o/o 
7.0 3/- O/- 3/- O/- 

3. Silicone oil with 0.5% lgepal CO-530 

The addition of 0.5% Igepal CO-530 to the 1000 CS sili- 
cone oil had a rather dramatic effect on the upper bound of 
drop size. As mentioned above, large drops (4-7 ml) had the 
tendency to become unstable, form a tough membrane and 
pinch off before a ring could be formed. The drops which 
contained Igepal proceeded in the same fashion except that 
the membrane usually broke; sometimes before and some- 
times after the onset of instability. It was sometimes ob- 
served that a membrane would rupture during pinch off. In 
other words, it appeared that the membrane rupture oc- 
curred when the total surface area of the membrane was 
decreasing. Without Igepal, 4 ml and larger drops would 
invariably pinch off without membrane rupture, while with 
Igepal, 4 and 5 ml drops would frequently (nine and seven 
times out of ten observations, respectively) form free rings 
[see Figs. 18(a) and 18(b) 1. Thus large drops with Igepal 
experience membrane rupture more frequently than those 
without, and so it would appear that the membrane strength 
was in some sense decreased with the addition of the Igepal. 

The effect of Igepal on smaller drops sizes is not clear. 
For 2 ml drops, membranes broke less often with the Igepal 
(four out of ten with Igepal, six out of ten without). How- 
ever, with 2.5 ml drops membranes broke much more fre- 
quently with Igepal (ten out of ten with, three out of ten 
without). At 3 ml, no effect was observed when Igepal was 
added (membranes broke ten times in ten trials with or with- 
out). It appears that with small drops, size is a more critical 
factor in determining whether a ring will form than whether 
or not the drop contains any Igepal. 

The raw data are presented in Table V. Under each col- 
umn two numbers are given; the tist is for pure 1000 CS 
silicone oil, the second for the same containing 0.5% Igepal. 
The column with the heading “# Ruptures” lists the num- 
ber of times the membrane was observed to rupture, “# 
Pinch-off’ lists the number of times the instability manifest- 
ed itself before the membrane could rupture, and “Oblates” 
lists the number of drops that were observed to remain as 
indented oblate spheres for the entire length of the tube. 

The number of trials is quite small (ten and less) at each 
drop size, and it could certainly be said that more observa- 
tions should be made. However, for the most part we found 
that given the drop size, we could predict quite accurately 
whether a ring would form, 

579 Phys. Fluids A, Vol. 4, No. 3, March 1992 Baumann ef d 579 

Downloaded 27 Nov 2002 to 128.101.143.146. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



‘M. H. I. Baird, T. Wairegi, and H. J. Loo, “Velocity and momentum of 
vortex rings in relation to formation parameters,” Can. J. Chem. Eng. 55, 
19 (1977). 

*D. S. Chapman and P. R. Critchlow, “Formation of vortex rings from 
falling drops,” I. Fluid Mech. 29, 177 ( 1967). 

9. S. Turner, Buoyancy Effects in Fluids (Cambridge U.P., Cambridge, 
1979). 

4G. A. Simons and R. S. Larson, “Formation of vortex rings in a stratified 
atmosphere,” Phys. Fluids 17, 8 ( 1974). 

-‘J. J. Thomson and H. F. Newall, “On the formation of vortex rings by 
drops falling into liquids, and some allied phenomena,” Proc. R. Sot. Lon- 
don 39,417 (1885). 

‘V. O’Brien, “Why raindrops break up-vortex instability,” J. Meteorol. 
18,549 (1961). 

‘F. T. Arecchi, P. K. Buah-Bassuah, F. Fran&e, C. Perez-Garcia, and F. 
Quercioli, “An experimental investigation of the break-up of a liquid drop 
falling in a miscible fluid,” Europhys. Lett. 9, 333 (1989). 

“M. Kojima, E. J. Hinch, and A. Acrivos, “The formation and expansion of 
a toroidal drop moving in a viscous fluid,” Phys. Fluids 27, 19 ( 1984). 

9D. D. Joseph, ‘Fluid dynamics of two miscible liquids with diffusion and 
gradient stresses,” Eur. J. Mech. B/Fluids 9, 565 (1990). 

‘OR. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops and Particles (Aca- 
demic, New York, 1978). 

’ ‘S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, 

New York, 1981). 
“G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge U.P., 

Cambridge, 1970). 
“J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Mar- 

tinus Nijhoff, Boston, 1983). 
14C. J. Koh and L. G. Leal, “An experimental investigation on the stability 

of viscous drops translating through a quiescent fluid,” Phys. Fluids A 2, 
2103 (1990). 

r5C. Pozrikidis, “The instability of a moving viscous drop,” J. Fluid Mech. 
210, 1 (1990). 

l6D. S. Dandy and L. G. Leal, “Buoyancy-driven motion of a deformable 
drop through a quiescent liquid at intermediate Reynolds numbers,” J. 
Fluid Mech. 208, 161 (1989). 

“B. Stuke, “Zur Bildung von Wiibelringen,” Z. Phys. 137,376 (1954). 
*sE. Northrup, “A photographic study of vortex rings in liquids,” Nature 

88,463 (1912). 
19V. O’Brien (private communcation, 1985). 
“‘A. M. D. Amarakoon, R. G. Hussey, W. J. Good, and E. G. Grimsal, 

“Drag measurements for axisymmetric motion of a torus at low Reynold 
number,” Phys. Fluids 25, 1495 (1982). 

*‘J. K. Walters and J. F. Davidson, ‘The initial motion of a gas bubble 
formed in an inviscid liquid. Part 2. The three-dimensional bubble and the 
toroidal bubble,” J. Fluid Mech. 17, 321 (1963). 

580 Phys. Fluids A, Vol. 4, No. 3, March 1992 Baumann et a/. 580 

Downloaded 27 Nov 2002 to 128.101.143.146. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp


