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Abstract

A Bernoulli equation for potential flow of a second order fluid is
derived. This equation is used to form an expression for normal extensional
stresses at points of stagnation, in which elastic and inertial pressures
compete.
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The stress T in an incompressible fluid of second grade is given by

T=-pl+ud+a,B+a,A4?, (1)
where 4 =L + L7 is the symmetric part of the velocity gradient L = Vu,

B=A4,+(u-V)A+AL+L'A4, (2)
w is the zero shear viscosity, «, = —n,/2 and a, =n, + n, where [n,, n,]

=[N(k?), N,(k*)]/k* as k — 0 are the constants obtained from the first
and second normal stress difference.
The equations of motion are div u = 0 and

plu,+ (u-Vyu] = —=VP+ uV?u + div[a, B + a,4%], (3)
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where
P=p—-py—pg-x (4)

is the piezometric pressure, p, is a reference pressure and g is gravity.
For potential flow

curl =0,

u=Vo,

divu=V33gp=0,

(u-V)u =V(%Iu[2), (5)
Aij=2d)5ij7

A%,‘ = 4¢’ild),lj’

Potential flow of a viscous or viscoelastic liquid is incompatible with the
no-slip condition at the boundary of the liquid and solid. It is thought that
potential flow is a good approximation under certain circumstances outside
a thin boundary layer at the forward side of a body (see for example,
Rajeswari and Rathna [1], Beard and Walters [2], Davies [3], Leider and
Lilleleht [4]) and dead water region of separated flow at the rear of the
body.
Pipkin [5] shows that when (5) holds

div 4% = Vy?,

div B =3Vy?, (6)
where

Y =jtr 42 = 2¢ 4 (7)
After combining (5),, (5),, (5),, (6),, and (6), with (3), we find that
V]pd,+plul’/2+P-py?/2| =0, (8)

where [§ =3a, + 2a, is the climbing constant and it is typically positive,
B > 0 [6]. Hence,

pd, +plul’/2+P—fy?/2=C. 9)

Equation (9) defines the Bernoulli equation for potential flow of a
second order fluid. This equation may be simplified for steady flow with
uniform streaming U at infinity and y =p — pg - x = 0 far from the body. In
this case

plul’/2+P— B¢ b, =pU2/2. (10)
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Returning next to (1) with (4) and (9), we may eliminate p. Then
0=~ [C +:é¢,il¢,il —pd,—p |ul 2/2]5i;‘ + 2[/~L +ay(d, +u 'V)]¢ij

+ 4(“1 +a2)¢,i1¢’,1ja (11)
where
o,;=T,+pg x5, (12)

is the active dynamic stress. In the diagonal coordinates x,, x,, x; of the
frame in which ¢ ;; is diagonal

[¢,ij]= 0 A, 0, (13)
we have
o, 0 0
0 op 0 |==[C=pd,—plul’/2
0 0 oy
i 1 0 0
+B3+23+03)]l0 1 0
0 0 1
A 00
+2[p + a8, +Vo-V)]| 0 A2 0
0 Ay
0
+ 4(q, +a2) 0 (14)
)@3
where
o, +a,=1in,+n,>0 (15)

in all viscoelastic fluids known to me.

The case of flow at the stagnation points of a body in steady flow, in an
arbitrary direction is of special interest. The steady streaming past a
stationary body is equivalent, under a Galilean transformation, to the
steady motion of a body in an otherwise quiet fluid. The potential flow of a
fluid near a point (x,, x,, x;) = (0, 0, 0) of stagnation is a purely exten-
sional motion with

U .
[AZ’ A2’ )\’3] = ZS[zv —19 _1]5 (16)
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where S is the dimensionless rate of stretching in the direction x,, L is the
scale of length and

U .
[t), uy, us] = zS[2x1, —X5, —X3]. (17)

In this case

o, 0 0 p|U? . 1 0 0
O 09y 0 :E FSZ(4X%+X§+X§)_U2 0 1 0
0 0 o5 0 0 1
u.l2 0 0 ‘
+u—S10 -1 0
Lo o -1
) —a, +2a, 0 0
+2?S2 0 —Ta, —4a, 0 )
0 0 —Ta, —4a,
(18)
At the stagnation point itself
., . U? .
g = —EU +2,LLS+2(2(X2—0(1)FS . (19)

Since a; <0, 2a, —a, = 31, +2n,> 0, the normal stress term in (19) is
positive, independent of the sign of S, but 2u.S is negative at the front side
of a falling body and is positive at the rear. This is a new manifestation of
the competition between inertia and normal stress, which I believe plays a
major role in recently observed flow induced anisotropy [7]. This causes
long bodies to float broadside on when the ratio of inertial pressure to
normal (extensional) stress is large, and long-side on in the other case. The
same flow induced anisotropy causes suspensions of solid spheres to
develop cross stream structure when the ratio is high, and to hook together
in vertical chains when it is low.

Dimensionless groups may be formed from the ratios of inertia pU?/2,
viscosity 2ulU/L and normal-extensional stresses (5n, + 4n,)U?/L?. We
could again speak of an inertial radius (Joseph [6]) for the competition
between inertial and normal-extensional stress with inertia dominant when
L > L. and normal stress dominant when L < L_ where

. 101, + 8n,

~ .
C

p
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is a material property. Riddle et al. [8] discovered that if the initial
separation of two spheres settling along their line of centers in a viscoelas-
tic fluid is larger than a certain critical separation the spheres will diverge,
whereas if it is smaller than this sepration they will converge. This is
consistent with the notion that the critical separation is the inertial radius
L,.
Every potential flow is a solution of the equations of motion for a fluid
of second grade with stresses given by (11). Such solutions do not generally

satisfy the condition of no-slip at solid boundaries.
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