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ABSTRACT

We consider a one-dimensional theory of fluidized beds in which
the fluids and solids equations are decoupled and the system is closed
with a momentum equation for the particles alone. The simplest theory,
based on the Foscolo-Gibilaro force law, is used except that the force that
the fluid exerts on the solid is assumed to depend on the area fraction
rather than the volume fraction of solids and the gradient of the volume
fraction which expresses the particle phase pressure is put to zero. The
area and volume fraction are refaled by a simple geometrical construction
in the case of fluidization of a monadisperse suspension of spheres of
radius R, taking into account the area of intersection of these spheres
with a plane perpendicular 1o the flow. Our one-dimensional theory then
has three unknowns, the volume fraction, the area fraction and the
particle velocity, rather than two. The two-variable theory is recovered in
the limit R—»0. These equations admit uniform fluidization as a solution
which is Hadamard unstable in the two-variable theory but simply unstable
in the three-variable theory, with a distinguished set of marginally stable
modes belonging 1o a countable set of blocked wave numbers
generated by the relation between the volume and area fraction. The
blockage function regularizes the ifl-posed problem and generates a
structured dynamical response with a set of discrete stationary marginal
modes. The initial value problem for our three-variable, one-dimensional
theory is solved by numerical methods for periodic boundary and
different initial conditions. No solutions of permanent form with discrete
spectral peaks were found. Instead, we found chaotic solutions with
nearly stationary levels of the power when a cerain dimensionless
“growth rate” parameter is below a critical value and unstable solutions
whose power levels increase without bound when this value is above the
critical one. The power spectrum of a bounded solution is continuous
and is such that the power level is very low for wave numbers in the
blocked set which are marginally stable in the linear theory. We made
video recordings of experiments on beds of fluidized spheres confined
to move in two dimensions between glass plates. Analysis of the
digitized signals gives the area fraction as a function of space and time at
a discrete set of points. The temporal autocorrelation of the area fraction
at a point cecays to zero at all Reynolds numbers, as in a chaotic
response. The spatial autocorrelation becomes negative and then goes
to zero for large spatial shifts. Analysis of chaotic and dispersive wavelike
structures is carried out by plotting the leve! lines of two-dimensional
continuous power specira depending on a frequency and wave number.
The waves of highest power move 10 higher frequencies as the Reynoids
number is increased. The amplitude of the measured spectra is a strong
function of frequency and wave number with deep minima at the blocked
wave numbers predicted by stability theory and the numerical integration
of the initial value problem. At low Reynolds numbers, the measured
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spectrum looks like the growth rate function from finear theory. As the
Reynolds number increases, the graph of the power spectrum gets
higher energy at smaller wave numbers, consistent with the increasing
importance of wake effects. We think that our simple theory with finite
size but no gradient effects is in astonishing agreement with
experiments.

1. INTRODUCTION

We are going to let our extended abstract replace one part of this
introduction. Actuafty there are two papers which precede this one, both
by Singh and Joseph, [1990] and [1991]. Other papers which bear upon
the general topic of fluidization relevant 1o our work are discussed in the
introduction of the two previous papers and they will not be mentioned
again here. 1 will perhaps sutfice 10 motivate this omission by saying that
the derivation of finite size effects in the theory and most of the features
of the analysis of theory and experiments are discussed only in the two
aforementioned papers and in this one. Our view of our theory has
undergone a slow evolution and the version presented here is more
clearly motivated and easily understood than the previous versions.

2. TWO-VARIABLE AND THREE-VARIABLE
THEORIES WITHOUT GRADIENTS

The theories which we consider here are one-dimensional
particle-in-a-bed theories of three-dimensional fluidization in which the
effects of variations of fields on the planes perpendicular to flow are
presumed to be adequately represented on the average. The words
“particle in a bed” mean that the momentum balance for the fluid and solid
phases is decoupled in the sense that # is possible a priorito model the
effects of fluid on the particles. In this case we get a two-variable, one-
dimensional theory of the type proposed by Foscolo and Gibilaro [1987)
for the solids fraction @ and the particle velocity u. The solids fraction
satisfies a conservation law

R

2 2.1



where z is in the direction of the llu:duzing velocity ug. The momentum
equation for the particles Is framed in terms of the force
{ v }
n -3.8
Fud) =m5 -(1-0) + [ ™ 1-0) (22)

on a single one of them. Here m is the mass of a single sphere of radius

R, g=(p-pt)g/p is reduced gravity, p is the density of the sphere, pf is the
density of the fluid, U(®) Is the steady fall velocity under gravity of a
sphere in a uniform dispersion of spheres of solids fraction ®. In a
uniform dispersion u=0 and @ is independent of z. The fluidization
velocity ug=uf(1~®)-ud, where ut is the fluid velocity, is in general
solenoidal, independent of z, and when u=0, ug satisfies the Richardson
and Zaki correlation

ue = U{®) = U{0) (1-9) 23

U(0) is the velocity of one sphere in a pure liquid and it can be expressed
in terms of the Reynolds number using various empirical correlations and
n(Re) is the Richardson and Zaki exponent; it lies between 4.8 for smali

ug2R
Reynolds numbers Re .Y === and 2.4 for large Re. The ingenious force
law (1.2) was invented by Fo';colo and Gibilaro (see the [1987] paper for

earlier references) but it cannot be regarded as established.
The momentum equation of Foscolo and Gibilaro can be expressed

as

"‘"(aat_u + ull) opidpdt 20 (2.4)
where
F=NF (2.5)
and
N-2 ¢-¢/§ <R3 (2.6)
is the number density.

Equations {2.1) and (2.4) are then a system of one-dimensional
equations in two variables @ and u. The last term of (2.4) which involves a
derivative of ® can be said to express the pressure of the particle phase.
This type of system has also been developed by Baichelor [1988) and
the gradient term interpreted there is in terms of diffusion against the
gradient of concentration in which empty places tend to fill up as an effect
of small fluctuations of particle velocity analogous to Brownian motions.
To have diffusion against the gradient the sign of the last term in (2.4)
must be positive. Uniform fluidization with a constant ®=¢g andu=0is a
solution of (2.2) and (2.4) and it is Hadamard unstable if the gradient
terms in (2.4) are neglected. The gradient term can regularize this
instability and even introduce regions in the space of parameters where
the uniform state is stable. In this case the criterion for the loss of stability
is independent of the wave number of the perturbation, so if the system
is unstable at all, it is unstable to long waves as well as short waves.
Batchelor also has a viscosity term which stabilizes short waves but does
not change the stability criterion.

Central to our three-variable theory is a little construction which
relates the volume fraction @ of solids to the area fraction. Consider a
plane at z. Locate the origin of a coordinate x on z. Spheres at a distance
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Ix|<R from z Intersect z, and thelr area of intersection is n(R2-x2). I
N(x+z,t) Is the number doneuy of spheres with centers at x+2, then
N{x+2z, I)Adx is the number of such spheres in an inﬂmtesnmal volume
Adx, where A is the area ol, say, some square A=L2 with a very large L.
The area Ag on the plane which is cut out by spheres is obtained by
summing all of the areas of intersections coming from infinitesimal
volumes centered on x+z as x varies from-R to R.

R
[Nxezm(R2-x2) Adx @7
-R
After writing Ag/A=¢, using (2.6), we get
R
0=-2% [ ox+z1) (R2-x2) dx . 2.8)
4R <
-R
When & is independent of x, then
Hzt) =D(zt) . (2.9)

Equation (2.9) holds approximately when R is small. This shows that the
three-variable theory reduces to the two-variable theory when R is small.

The next step in the construction of the three-variable theory is to
repiace the voiume fraction @ in the Richardson and Zaki correlation (2.3)
and in the force law (2.2) with the area fraction ¢. This step is taken
because it leads to a good result. The nonlinear three-variable theory
without gradients is given by

‘;f ——gz—ho (2.10)
R
¢=;—:3 ety (R2-x2) dx . @.11)
48
du +ug; -9{ €+ [ Uo) n 5’3-8} (212)

where e=1-¢ and the composite velocity uc, which is the constant
superficial velocity at the inlet of the bed is given by
uc = U(0)ed (2.13)

in uniform fluidization when u=0, ®=®q and ¢=¢9. Obviously uniform
fluidization is a solution of this system of equations.

3. STABILITY OF UNIFORM FLUIDIZATION AND
THE BLOCKAGE FUNCTION

We now linearize equations (2.10), (2.11) and (2.12) at the
solution (u,®,$)=(0,20.60) and find that the system of perturbed
equations, denoted by the subscript 1, is

8<b1
%az =0 ) (3-1)
R
3_ 2_,2
o1=€1= o5 —IRm(ux.t) (R2-x2)d x, 3.2)
A A
%1 =-auq -bey, 3.3)

where
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a=70(0) ¢ 0“. (3.4)
b= 48g. (35)

After eliminating €4 and u1 from (3.1), (3.2), and (3.3), we find a single
second order equation

R
P01 rawy A3 3 2
Lo =2t —beg 0t £¢1(z+x.t)(R2—x Jdx. 3.6)

The stability of uniform fluidization may be determined by analysis of
(3.6) using normal modes.

1 = 3)1 eotgiaz

We obtain a complex dispersion relation of the form

o2+0a + iab O¢8(aR) =0. @7
where
6(aR) = 3 5NeR _cosaR (3.8)

(@RP  (aR)? !

is the blockage function. We may solve this quadratic equation for

a,a
0‘--’2—t§ 1-iZz (3.9)
where
A
2. debegotomy (3.10)

We wish to draw the readers atlention to the importance of the
blockage function €(aR). The graph of 8(aR) versus 2aR is shown in
figure 1. The zeros of 8(aR) are ata = 4';93. 7'7553. 10h904' .. The

blockage function tends to zero for large values of o like a—;‘?
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Fig. 1. &{(aD) is plotted as a function of aD.

First consider the limit « fixed, however large, R — 0. in this limit
aB{oR) - a

Now let a — « for short waves. A little analysis shows that

re 0 -\ boo Var
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Hence re 6 - o as a — o« and the uniform state of fluidization is
Hadamard unstable. On the other hand for R>0, since a®{acR) - 0 asa
— o, the blockage function regularizes the Hadamard instability ( see
figure 2). Now suppose R>0 is fixed. Then at each and every zero of
a8(aR) we have

c=Oor-£,
otherwise
rec>0.
We may conclude then that uniform fluidization is unstable, but not

Hadamard unstable when the finite size of particles is accounted for in the
calcutation of the area fraction. We also note that there is a blockage of

waves of wave length i—“ for a =0, 4“;93, etc. which are neutrally
stable.
-0.5
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Fig. 2. re o(aD) is plotted as a function of aD.

4. COMPARISON OF REGULARIZATION BY FINITE
SIZE EFFECTS WITH GRADIENT
REGULARIZATION

If finite size effects are negligible, as in the limiting case R — 0,
8(cR) — 8(0) =1, and gradient terms are included, we get a two variable
theory. We linearize (2.1) and (2.4) around the uniform fluidization. The
linearized equations are (3.1) and

u A A ACE

’91_1" Uy -be1-cszl. (4.1)
The dispersion relation for the system is given by

02+0a+(02C+ inb)dy=0 4.2)

D b is the coefficient of elasticity and it is positive. So

Wirn

A
where ¢ =

é Vaé 2 * 6
0'3‘2 t 4 -accCc - ta

A
Since ¢ is posttive, the short waves are stabilized but the dependence
of o on a is rather flat with one zero at most, unlike (3.9). Some choices
of the coefficients of the gradient terms in (4.1) lead to regions of stability
of uniform fluidization. In fact they lead to the conclusion that the beds
we used in our experiments are operating in regions of stable uniform
fluidization. We get such stability from FG theory when: Re=300, ug=

0.044 mvs, ¢~ 0.8, n~3.0, D =0.0063 m, g’- =112, § = 1.05nvs2. ltis
difficult to use Batchelor's theory to check the stability since some of the
coefficients are not known, but he says*® % is sekdom less than 2 for a

marginally stable bed.” These theories disagree with our experiments
and those of Volpicelli, Massimilla and Zenz [1966] in which all the flows



were deci,gedly not uniform. Figure 3 shows the effect of a rather large
elasticity ¢, all wave numbers are stabilized. It is quite clear from this

figure that the structure due to the blockage in the wave number space is

lost when the gradient terms are included.

rec

Fig. 3. re o(aD) is plotted as a function of aD for the gradient theory
(4.1), ¢ is a non-zero positive constant.

5. NONLINEAR SATURATION OF INSTABILITY OF
UNIFORM FLUIDIZATION

5.1 Dimenslonal analysis

The problem contains six parameters: &g = 1-£g is the average
solids fraction, R is the radius of particles, ug is the superficial velocity,
U(0) is the superficial velocity for € =1, n is the Richardson and Zaki

exponent and §=g 2Pt s a reduced gravity, where p, ps are the

densities of the solid and fluid phases. We now show that these six
parameters form three non-dimensional groups. 1t is convenient to
change the frame of reference to the one moving upwards with the
velocity ug

X=2-Ugt, v=U-Ug.
So we have

a 9

=
9 g 2
ot x fixed = 3t 2 fixed ¥ 3x"

By substituting above expressions in (2.10), {2.11) and (2.12), and using
(2.6) we get

oN(x.1) + Av(xh) NixBl _
ot ox I

mN(%+ v%)z
48

m-es (o] e 38,
R

Hxt) =1-€ = iN(x«rg.t) x(R2- £2)dt. 5.1.1)

To find the controlling dimensionless parameters we introduce
scaling parameters which are designated by *:

N =ZN, (5.1.2)

where eg is the average area fraction of the fluid and Ny is the average

number density.
Let

z=% adtads, (5.1.3)
L T

be dimensionless variables. We substitute these variables in (5.1.1) and
obtain the following equations, which atter dropping the primes () can
be written as

oN(z,1) +a|u§z,t) Nzl 0
at az =5

480

1
du du — 48 -38
A g Lot A0 ,
at dz 1 €0 (21) u

0.5

11w 2.2
£ 70—.0',[?(2+§'t) £(0.52- £2)dE, (5.1.4)

2
where I, =9§__—. The dynamical system (5.1.3) is characterized by three
D

9
parameters, I, , the area fraction eg of the fluid and the Richardson and
Zaki exponent n, which is a function of the Reynoids number.

The maximum value Em of I, as afunction of o, is attained at a=

42 sing tis value of o we find that o« 6(aR) = 357 and

_ 2.17;2m u?
m €0 Dg
2
- 2170700 5 (5.1.5)
g2

From this relation we may conclude that for a given value of the area
fraction of solids and n, Z; completely determines }:m. The area fraction

40 defines an operating condition and is not a parameter which
distinguishes one bed from another. The Richardson and Zaki exponent
n has only a smali range: it is 4.8 for very small Reynolds numbers and it is
2.4 for very farge Reynolds numbers. So the most important parameter
which distinguishes one fluidized bed from the other is Z for large I,

the maximum growth rate o is large and for small zm the maximum growth

rate o is small. The experiments described in Singh and Joseph show
that there is a one to one correspondence between the growth rates
given by the linearized model and the amplitudes different wave numbers
attain in a steady real two-dimensional fluidized bed. Later in this section
we will present the results of numerical simulations which are in harmony
with these experimental observations.



s.2 Fourier-Collocation Method

We approximate u and N by

Tkz

o,
uzit= ¥ ukihe |
k=t

1-1 .
NG9 3 i we*%

forj=0,1,2,..,2H, (5.2.1)

where 2 I is the number of collocation points. The computational domain
is from x = 0 to x =2x, and the collocation points are uniformly distributed.
We use a staggered grid for the velocity u and the number density N.

The velocties u(zjAY's are defined at zj =0, %, .., 2EU%  and the number
densities N(zj.t)'s are defined at zj = g—l -35’;-. cees (ﬂé%l! The above

representations for u and N are put in (5.1.1) and a set of ordinary
differential equations (ODE) is obtained for u(x;) and N(xjl). These
ODE'’s are then integrated numerically by using the fifth order implicit
Adam-Moulton method. The nonlinear system is solved by using the
Newton-Rapson method.

The power contained in the velocity fluctuations is given by

-1
ju) 2= kE' luki (5.2.2)

and similarly the power contained in the number density fluctuations is

f-1
INO 2=

Q12
| Ngle. (5.2.3)

The computational domain is periodic. Moreover, the use of
exponentials as interpolation functions allows us to obtain the integral
termin (5.1.1) exactly:

R
ozil) =1-¢ = JN(ué.t) R(R2- £2)dt

R t-1,
-z, ™% nr2. £2)j08

A R H
-3 RkmeMd o )i o6 n(R2- £2)0 ]

- I, fkwd Sa e

-1 .
- §uR3 ZletR) fic e, (5.2.4)

sinkR cos kR

where 8kR)= 3 [-—% -5}
e O(kR) { (kR)3 (kR)2 )| :
{®(z0)} is simply a discrete Fourier fransform of { 8{(kR)) Nk (1) }. The last
term in (5.2.4) can be evaluated by using the Fast Fourier Transform
(FFT). So for a discrete problem in a finite periodic domain the

We note that the sequence
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convolution of equation (5.1.1) leads to a spatial filter, 8(kR), see figure
1. The spatial filter 8(kR) is unique in some respects; it completely
removes the wave numbers for which 8(kR) is zero, significantly reduces
the effect of the wave numbers which are close to these zeros, and the
large wave numbers for which 8(kR) is small are also filtered out from the
spectrum of N. The dynamical significance of all these wave numbers is
greatly reduced because the momentum equation depends on ¢ which
is obtained from N by applying the filter 6(kR).

In order to obtain a numerical scheme which is stable over a large
period of time # is necessary that the numerical scheme used conserves
|N|2. When global interpolation functions are used to evaluate the
derivatives one of the effects of truncation, finite I, is the generation of
high frequency components [Canuto, Hussaini, Quarteroni and Zang).
Many alternatives are available to overcome this problem. One can apply
a low pass filter, do derivative filtering using many different types of fifters
available and/or add some artificial diffusion to stabilize the numerical
scheme. But all these methods suffer from the fact that they modify the
equation conserving N in a non-physical way. The method we use is
based on obtaining the correct flux balance using the inflow and outflow.
For this reason the grids for N and u are staggered.

5.3 Lagranglan quantities

One clear advantage any numerical simulation of the fiuid flow
has over an actual fluid flow experiment is that numerically one can obtain
the Lagrangian quantities with relative ease. In fact in an experiment it is
often impossible to obtain Lagrangian quantities. The Lagrangian
quantities are very important when one is studying the rate of diffusion or
the rate of mixing. For a tracer particle we obtain its position, the velocity
and the acceleration as a function of time. We also obtain the local
velocity gradients for the tracer particle.

5.4 Resuits

When we integrate (5.1.4) numerically we find that the numerical
solution changes continuously with time and does not reach any fixed
shape or form. One way to study this problem is to look at it as an initial
value problem: we integrate the system of equations by assuming some
initial conditions and some parameter values until the power contained in
the fluctuations reaches some constant level. When the fluctuations
from the uniform state are small, ditferent modes grow until the nonlinear
terms become comparable in magnitude to the linear terms. The
nonlinear terms in our case act so as to stop the growth of the
fluctuations; that is the power contained in the fluctuations remains
bounded. In figure 4 we have plotted the power contained in the area
fraction of solids and the velocity fluctuations as a function of time for two
different initial conditions. In the first case the power contained in the
fluctuations is small and in the second case it is large, and in both cases
the spatial distribution for N and u fields is random at start. In the first case
the power contained in the fluctuations grows with time until & reaches a
level determined by the parameters and then that level is approximately
maintained. in the second case the fluctuations lose power with time untit
the power is down to the same approximate level as in the first case, and
again, this level is then approximately maintained. The form of the power
spectrum for the two cases is also similar. This results holds for both N
and u. This shows that the power spectrum of the final bounded soiution
is independent of the initial conditions. Bounded solutions of (5.1.4) can
be decomposed into two parts, the uniform state and the fluctuations.
The power contained in the fluctuating part remains bounded and has a
well defined mean which is solely determined by the parameters Em, n

and ¢g. Forfixed n and ¢( the power contained in the fluctuating part is a
monotonically increasing function of }:m. The results of the numerical

simulations are shown in figure 5§ and table 1. For aglven nand ¢q there
is @ maximum value of }:m for which a bounded solution exists, and for }:m

larger than this there is no bounded solution. For n=4.8 and ¢g, the
largest value of }:m for which a bounded solution can be obtained is 0.93.

Bounded solutions of (5.1.4) are very complicated and chaotic. Only the
statistical nature of these bounded solutions is described here. The
numerical solution is two-dimensional, in space and time. The temporal
variation of the area fraction at a point is chaotic, see figure 6. The spatial
distribution of the area fraction contains all wave numbers. The large



wave numbers contain small energy, and the neutral modes given by the
linear theory also contain small energy (see figure 5). All this is consistent
with the experimental observations reported by Singh and Joseph
[1991].
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Fig. 4. The power contained in the fluctuations of the area fraction (a) of
solids and the velocity (b) is plotted as a function of time for two different
initial conditions.
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0.758| 0.860[ 5.9661.702

0.337 | 0.597/2.892 {0.4109

0.0958| 0.261 |0.3151/1.19e-2

0.0374( 0.119 |0.0492]7.09 ¢-4

0.0094| 0.031]0.0021f 747 -6

Table 1. The power contained in the fluctuations of the area fraction of
solids and the velocity, and the maximum area fraction of solids
fluctuation for bounded solutions obtained for different £y, values

are tabulated.
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Fig. 5. For Ly, = 0.0094, the power spectrum of bounded solution is
shown. The blocked modes have very little power. (a) Area fraction of
solids, (b) Velocity.
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Fig- 6- The power spectrum of the area fraction of solids at a point is
shown. [t contains a band of large power, which implies that the
voidage fluctuations are chaotic.

In a real fluidized bed there are always some fluctuation; particles
move around and the area fraction of solids fluctuates. The magnitude of
these fluctuations depends on the parameters of the bed under
consideration. For application purposes one wanis these fluctuations to
be small because then the heat and mass transfer rates are maximum.
The judgement whether the fluctuations are small enough or not is
usually arrived at by looking at the spatial distribution of the particles and
their motion. Now we will try to establish some connection between the
numerical solutions obtained and a real fluidized bed. As we have stated
before, when £ m is small the area fraction fluctuations are small and so

the bed looks uniform. For a somewhat farger }:m the area fractiont

fluctuations are larger and the bed does not look that uniform, and for a
still larger value of }:m the fluctuations are big enough to produce regions

where the area fraction solids is very small. From a physical point of view
this means as ):m becomes larger the ability of the system to distribute

particles uniformly throughout the bed diminishes. Also, whenever
there is a fluctuation in the area fraction, the particles experience an
unbalanced force and accelerate. If in a region the fluctuation is such that
the local area fraction is larger than the average then the particles
experience more drag and accelerate upwards. Similarly, in the regions
where the area fraction is smaller the particles fall downwards. Clearly,
the acceleration force acting on a particle and its final speed is
determined by the magnitude of the area fraction of solids fluctuation.
But the magnitude of these fluctuations is in tumn determined by zm. Ina

nut-shell both the velocity fluctuations and the area fraction of solids
fluctuations are determined by zm. This can also be seen intable 1. Itis

interesting to write © 'm 35 follows

5 - 2170200 ud

m 502 Da
Cq2
=694 —5 4.
C22 ' (5.4.1)

ny, -
where Cq -—:39 and Co2 = 3.2 ¢ogD are the kinematic and dynamic

i wave speeds proposed by Foscolo and Gibilaro. They also propose the
following criterion for the stability

Ca>Cy.

Or

2., 5.4.2
——a>1 .

Cy2 (5.4.2)

This criterion has been used successfully by then 1o predict the onset
bubbling. Using (5.4.1) we can write this criterion in terms of £ m

6.94

? >1 or Zm<6.94. (5.4.3)

So the Foscolo-Gibilaro criterion predicts bubbling if % m Is larger than
6.94. As we have stated before the numerical solution blows up if 2m is

larger than 0.93. One must note the remarkable similarity between the
two, but at the same time we must remember that we are comparing two
different things. The nonlinear numerical solution blows up when the
particle distribution becomes 100 uneven, whereas the criterion for
bubbling arises in the linear Foscolo-Gibilaro theory when the kinematic
wave speed becomes larger than the dynamic wave speed. The
numerical solution blows up much eariier, but the factor by which it is off
is a constant and does not change. One last point is that as }:m increases
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the wave numbers which carry the maximum power become smaller. This
was also observed in the experiments described by Singh and Joseph
[1991]).

The power spectrum of the Lagrangian velocity, position and
acceleration is broad banded (see figure 7). This implies, the particle
motion is chaotic. One way to understand the chaotic dynamics of a large
dimensional dynamical system is to look at its projection in a phase space
of much smaller dimension. In order to see any structure a judicious
selection of such a sub space is very crucial. In figure 8 we show the
trajectories in several such phase spaces. The trajectories for all these
cases are bounded and stay close to the origin of the plot, the origin
corresponds to the uniform state. For small zm all trajectories are quite

close to the origin, but for a larger }:m the trajectories wander around

farther away from the origin. The basic nature of the phase portrait for all
these cases is the same, the trajectories go around the origin and the
time taken for one rotation varies from rotation to rotation. Now we look at
our system in the phase space spanned by the particle acceleration and
the local velocity gradient. These phase portraits are shown in figure 9.
In this phase space the nature of the phase portraits changes with £ m"

When X m is small, the trajectories do not have any well defined structure.
AsZ m is increased two distinct oval shaped regions emerge, one in the

second quadrant and the other in the fourth quadrant and the phase
portraits become more structured. From this figure we note that for a

large m when gz—y- is positive the acceleration is negative, and vice

versa. The fractal (capacity) dimensions for the particle accelerations are
shown in table 2. We note that for a larger }:m the capacity dimension is

smaller, which means the particle path is less chaotic for a larger }:m.
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Fig. 7. The Lagrangian acceleration a for £, = 0.0094. (a) a is plotted as

a function of time. (b) Its power spectrum, The power spectrum is
broad banded, hence the particle motion is chaotic.
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Fig. 8. The velocity u and the acceleration a are plotted with time as a
parameter. (a) Iy, = 0.0094, (b) £y, = 0.0374, (¢) £, = 0.0958. The
trajectories go around the origin, the time taken for one rotation
varies. For a larger I, the trajectories wander farther away from the

origin.
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Fig. 9. % is plotted against the acceleration a with time as a parameter.
(a) m = 0.0094, (b) £y, = 0.0374, (c) Iy, = 0.0958. The trajectories
do not have a well defined structure when Zn, is small. For a larger Zm

there are two oval shaped regions, one in the second quadrant and
the other in the fourth quadrant and the trajectory moves between



them. Also, for a larger Iy, the trajectories wander farther away from
the origin.

n = 4.8, 00 =03
—
Cese Zm D
¢ | 0.0958 | 1.700
2 0.0374 1.759
3 00094 | 1813

Table 2. The fractal (capacity) dimension is tabulated for different £y,
values. The fractal dimension decreases with Zn,.

6. EXPERIMENTS

Singh and Joseph {1990] made video recordings of experiments
on beds of fluidized spheres confined to move in two dimensions
between glass plates. Analysis of the digitized signals gives the area
fraction of solids as a function of space and time at a discrete set of
points. The amplitude of the measured spectra is a strong function of
frequency and wave number with deep minima at the blocked wave
numbers predicted by stability theory and the numerical integration of the
initial value problem. At low Reynolds numbers, the measured spectrum
looks like the growth rate function from linear theory. As the Reynolds
number increases, the graph of the power spectrum gets higher energy
at smaller wave numbers, consistent with the increasing importance of
wake effects.

In Figure 10 we have compared piots of the logarithm of the
growth rate log(Reo), (a), from linear theory as a function of aD with the
magnitude log® of the power spectrum from nonlinear theory, - (b), and
experiments, (c). The blocked values of aD are evident in all cases. Many
more and different comparisons of theory and experiments are discussed
by Singh and Joseph [1990] with similar agreements. We think that the
agreements between the predictions of the simple theory with finite size
but no gradient are astonishing, since there are no disposable constants
and nothing has been adjusted. On the other hand, the predictions of
the gradient theory do not agree with the experiments on two-
dimensional fluidizations.
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Fig. 10: Comparison of logjal, log |¢n| afd loglégl, where o is the growth
rate of the linear theory of stability of uniform fluidization, log lon] is

85

the amplitude of the power spectrum computed numerically for the
three variable nonlinear theory and log|¢g| where ¢g is the power
spectrum measured in the experiments. The value of the parameter
Zm which we estimated for the experiments is 1.79. For the
nonlinear numerical solution L, is 0.0958. The amplitude is a
strong function of £y, but the blocked wave numbers are robust,
independent of sphere size or Reynolds number.

7. CONCLUSIONS

« If the finite size of particles is accounted then the zeroth order problem
is not Hadamard unstable; that is, the finite size of particles is a
regularizer.

* We integrate the problem govermed by the zeroth order theory as an
initial value problem and find that bounded solutions with nearly
stationary power exist when In,is small, and no such solution exist when
Zm is large.  The power spectrum of bounded solution contains low
power for the blocked wave numbers and looks similar to the power
spectrum of the experimental data and the growth rate plot of the zeroth
order theory (see figure 10).

» Both experimental and numerical results show that uniform fluidization
is unstable.

o The experimental data and the data obtained numerically show that the
fluctuations at a point are chaotic.

« The particle paths computed using the nonlinear zeroth order theory
are chaolic, and as I, is decreased they become more chaotic.
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