ONE-DIMENSIONAL, PARTICLE BED MODELS
OF FLUIDIZED SUSPENSIONS*

P. SINGH{ anD D.D. JOSEPH{

Abstract. One-dimensional unsteady models of a fluidized suspension based on modeling the
forces that the fluid exerts on the particles are considered. Four different theories are discussed.
The first, by Foscolo and Gibilaro [1984, 1987], gives a criterion for the loss of stability of uniform
fluidization. A second theory by Joseph [1989] which appears to carry the Foscolo-Gibilaro theory
to a logical conclusion with the addition of a term proportional to the particle velocity gradient,
leads always to instability. A third theory by G.K. Batchelor [1988] is formally similar to the one
by Foscolo-Gibilaro, but is more generally derived. A fourth theory which takes into account the
finite size of particles and can be used in any of the other three theories is derived here. We show
that the finite size of particles is a regularizer of the short wave instability of uniform fluidization
which occurs when the particle phase pressure is neglected. We introduce the problem of losing
range. If the fluids and solids fractions are both intitially in the interval (0, 1), will they stay on
that interval as they evolve? An answer is given.

1. Fluidized Beds. A particle is fluidized when it is lifted against gravity
by the drag of upward moving fluid. The particle is in equilibrium under weight
and drag. An assemblage of particles in a container which is not fluidized rests
on the bottom of the container. Below this speed, fluid passing up through such
a bed will see the bed as a porous media. There is a critical speed above which
the particles are fluidized. The bed expands to maintain a balance between drag
and weight when the flow rate is increased. A statistically homogeneous fluidized
bed with constant flow throughput is called a state of uniform fluidization. Such
states are notoriously difficult to achieve. It appears to be true that gas fluidized
beds of light particles can be stable above minimum fluidization. When the flow
throughput is large the gas collects into large gas bubbles which rise through the
bed. This is a failure of fluidization since the individual particles are basically
insufficiently fluidized to promote efficient heat and mass transfer. The transition
to bubbling is said to be a transition from particulate to aggregate fluidization, the
particles aggregate, with gas in clear regions. It is not clear that uniform fluidization
is the same as particulate fluidization; for example, waves may appear destroying
uniformity without marked aggregation of particles. The concept of stability itself
is not clear since stability is defined only in a statistical sense. The particles are
probably always shaking about.

Stability analysis for bubbling beds is a matter of great interest for the technol-
ogy of beds used in catalytic cracking and coal combustion. It also plays a certain
role in the theory of multiphase flow as a test problem.
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2. Two-fluid Equations. We can form continuum equations for two-fluids,
even when one of the two constituents is solid, by ensemble averaging (Drew, 1983).
Joseph and Lundgren [1989] have derived the following set of ensemble averaged
equations for incompressible fluid-particle suspensions.

B¢

(1) at~{~div5uf=0,
@) %’i +divgu, =0,

psE (%l;—f + uf.Vuf) + ppdiv(H(V — ug)(V — uy))
3 = —V(pge) + uVPu. — (55(O8) + pyeby
oot (S5 + 0.0, ) +py (1= YV =)V ~ )

(4) = —V(pp¢) + (62()()12) + pp¢bp ’

where

H(x) is an indicator function, 0 if x is in the fluid, 1 otherwise
(-)(x,t) ensemble average

¢ = (H) fluid fraction

¢ = (1 — H) solid fraction

uy = (HV) average fluid velocity, where V is the true velocity
u, = ((1 — H)V) average particles velocity

(1 — ¢)ps = (Hp) fluid phase pressure, where p is the mean normal stress
¢pp = ((1 — H)p) particle phase pressure

u; = euy + ¢u,

7T is the extra stress T = —pl + 7

b and b, ensemble averaged body forces in the fluid and solid
6y, is a Dirac delta function across the solid-fluid interface

t = n.T is the traction vector on the solid-fluid interface.
If we add equations (1) and (2) we get
(5) divu,=0.

The boundary conditions between the fluid and the particle involves the traction
vector term in (3) and (4) and it is probably best not to combine the two equations.
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3

The existence of two fluid equations even when one of the fluids is solid is per-
fectly justified by ensemble averaging. These equations, like other two fluid models,
are not closed and methods of closure, or constitutive models for the interaction
terms, are required to put the equations into a form suitable for applications. More-
over, since averaging over repeated identical trials is not a realizable proposition,
the ensemble average variables are conceptually abstract and their relation to more
physically intuitive variables, like the ones which arise from spatial averaging, is
uncertain.

Equations (1) through (5) are appropriate for fluidized suspensions with by =
b, = g, gravity. Particle bed models decouple the fluids and solids equations and
work with the solids equations alone.

3. On Losing Range. One of us (DDJ) was worried for a week in June 1989
about the possibility of losing range. The range 0 < e(x,t) < 1 must be preserved
by dynamics; if e(x,0) is between 0 and 1 is it possible for ¢ to go negative or grow
larger than one? This should not happen; moreover, the protection of the range
should not depend on uy and u, because these fields can be changed at will by
changing the constitutive equations or initial conditions. The problem is this: given
equations (1) and (2) and sufficiently smooth field uy and u, and 0 < &(x,0) < 1,
what are the conditions such that 0 < e(x,t) < 1 for all ¢t. This problem was given
to Sir James Lighthill, who gave the following solution (in one space dimension).
We write

6 —_— —_ —_—

and deduce that along a curve

dz
(7) = = uf
we have
de Ou
8 =2
(8) dt € or

Therefore, if € = ¢ on this curve at ¢t = 0, then we have

t
(9) € = €g €Xp —/?ﬂdt
Oz
0
which is always positive since g9 > 0. Similarly we have
d(1—¢) Ou

10 — 2~ _(1-¢)—=2
(10) 7 (1-¢) Fat

Then, if € = €9 on this curve at ¢ = 0, we have
Fo
(11) l—e=(1-¢p)exp —/—yl dt
oz
0
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* which is always positive.

Ou .
This proof works for the three dimensional case with B under the integral
replaced by divu. It also works for compressible constituents, not discussed here.

It is clear that we can protect the range if and only if both (1) and (2) are
satisfied. In particle bed models only (2) is satisfied, so we are in danger of losing
range.

4. Particle Bed Models. If we knew the force on each and every particle
we could in principle track their motion. The ultimate in particle bed calculations
would be a molecular dynamic simulation. For this to work we would need to know
the force that the fluid exerts on the particles. There is no perfect way to do this
without doing the fluid dynamics. In fact, exact numerical solutions correlating
certain small motions of particles with forces generated by the flow of a Navier-
Stokes fluid is a viable proposition (for example, see Singh, Caussignac, Fortes,
Joseph and Lundgren {1989]) with a great future. Unfortunately it is not possible
to know perfectly how the fluid forces will effect a particle without actually doing
the fluid mechanics. The hope behind the particle bed models discussed below is
that our experience and undertanding of fluid-particle interactions will allow us to
guess correctly what form these interactions ought to take, at least in an average
sense. It is by no means certain that this hope can be realized.

One-dimensional particle bed models have been given by Foscolo and Gibilaro
(1984, 1987] and G.K. Batchelor [1988]. These theories will be reviewed below.
They use mass conservation of the solid in the ensemble averaged form (2)

0

—% +divgu, =0.
This equation does not acknowledged either structure or size effects of particles on
the continuity of flow. Approaches, like the one given below, based on geometry
rather than ensemble averaging may be preferred.

5. Mass Balance Equations for Balls of Radius R. We are going to
derive a one-dimensional mass balance for spherical particles of uniform radius R.
Consider a plane at z = Z, perpendicular to gravity, in figure 1. Let us consider the
area A = L? of a square in this plane with L > R, so many spheres intersect the
plane at Z. Let = be the distance from the plane z = Z. All spheres whose centers
are at || < R pass through the plane Z. Spheres with |z| > R do not touch Z.
The area of the hole cut out by the sphere at |z| < Ris 7(R? — z2).
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FIGURE 1. Cross-section of fluidized spheres of radius R in the plane at z = Z.

Now we define a wafer of influence for the plane at z. Its area is A and thickness
is 2R, — R < 2 < R. The total volume of the waver is 2RA.

The next quantity to be defined is the number density per unit area

N(z+z,t) = number of spheres whose centers are at z + z

A

(12) _ number of holes in the plane Z of area 7(R? — z2)
= ) .

Let V; be the volume of spheres in the water of influence and ¢ = Ve be the solid
. 2RA
fraction. Then

dVs = N(z + z,t)A{n(R? — 2%)}dz

is the element of solids volume swept out by number of holes of area m(R? — z?)
times the volume of one of these holes as £ moves through dz. Then

R .
(13) Vs = / N(z+z,t)An(R? — 2%)dz
R

and

(19) 4=

S~

1 2_ 2
R N(z+z,t)n(R° — 2%)dx .

]
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" If N = Ny is constant, then

(% 7rR3) (NoA) 9

2
= 2 IR® N,
(15) do 2RA 3 i 0

is the solid fraction for a uniform distribution of spheres.

Now we write out a mass balance. Let u,(z + ,t) be the velocity of a sphere
whose center is at z + z. Then

A N(z +z,t)uy(z + z,t)r(R? — 2?)

is the flux of area through the plane at z of spheres centered at 2+z and the increase
of concentration at z is balanced by the fluxes of all areas of spheres intersecting z;
that is

(16) 5 /N(z+z t)(R?— 2)d:c+—-— /N(z+:r: up(z+z,t)(R?—2?)dz = 0.

6. The Particle Bed Model of G.K. Batchelor. Batchelor [1988] estab-
lished the form of the momentum equation for one-dimensional unsteady mean
motion of solid particles in a fluidized bed or sedimenting dispersion from physical
arguments. He works with area averaged quantities which because of statistical
homogeneity can be identified with ensemble averages. He asserts a definite point
of view preferring to establish equations carefully, with plausible physical reasoning
and a minimum of hypotheses concerning the relation between mean quantities. He
avoids the introduction of any parameters that do not have a clear physical meaning
and are not calculable or measurable, at least in principle. He obtains the following
differential equations for the area averaged mean quantities balancing momentum

(17)

ov
mn ¢Pf'7'_x
mn(lw)( +vvv) XD i BV, )~ Pu(w, )2 2 ( - )

where
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m = mass of particle,
n local number density, mn = p, 9,

g = 2£¢ virtual mass term, where C = C(¢) depends on ¢. But here we take
Pp ‘

C to be a constant for convenience which makes the term dependent on
the derivative of C to drop out.
V mean particle velocity. The axis of reference is such that the mean
of material volume across a horizontal plane is zero.
When V # 0; the axis of reference moves with a constant velocity,
v velocity fluctuation with a zero horizontal average, (v) = 0.
Horizontal averages are assumed to be same as ensemble averages,
Fi(V, ¢) mean force exerted by the fluid on a particle whose mean velocity
is V in a homogeneous dispersion of concentration ¢,
(18)  Fa(U,¢) =
Pp — Pf

Pp
velocity in a uniform bed in which the particles are in equilibrium under

where G =g¢ is the reduced buoyancy and V = U(¢) is the mean particle

weight and drag
B bulk mobility. This is the ratio of the small change of velocity produced
by a small change of force,

D local hydrodynamic diffusivity. % is a diffusivity coefficient,

$psn' a viscosity coefficient.

He considers first the approximate form of the momentum equation when the

departure from homogeneity is small and the spatial gradients — and ?-K are small

z
in some sense. Withoug going very deeply into these approximations we list them
below: First

V-U vV=U
7 Fyp(U) = —ymg i

(19) Fu(V,9) — Fa(U,8) = v

OF)
where F(V) = Fp(U) + #(V U) defines «, believed to be slowly varying in V

and ¢, and (18) is used to eliminate F},(U). Second

(20) (%) = H@U? = n"(9)5- 1" ($)U 32

where following kinetic theory n'"'(& 5" > 0) is discarded, H(0) = 0 and H(¢q) = 0
where ¢y is for the close packing because fluctuations must vanish in these two limits.
After inserting these approximations, Batchelor obtains

(21)
ov
av d($HU?) 3¢ _ 13 N ("5’735)
(1+9)( +va> Ta_x““ﬁ(‘ﬁ(v U)+ Do ) et
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* where pyn = pp 7" + ps n' can be called the particle viscosity and pp 7" is an eddy
viscosity. ‘

To compare Batchelor’s theory with that of Foscolo and Gibilaro it is convenient
to make a Galilean transformation to a laboratory fixed frame from the zero material

flux axis. Thus
.’E‘—.’L‘Q-I-Uot V"'U0+'U,p

where Uy = U(¢y) is mdependent of z and ¢t and Uy = u. is the composite or the
fluidizing velocity. Then we have equation (2) and

o((gnZe
(22) ¢(1+6) (—'— + up. Vup> Q——(é — 7—9 ¢V —U —up)+ _La.x_a_)
where SHD? i
Q=———(¢’d¢7 )+7§D.

In the next section we will present some results which suggest that there ought

to be a term proportional to %‘% on the left of (22).

The total coefficient of _9 in (22) can be interpreted as a bulk modulus of
elasticity of the configuration gf particles. This term could also be identified as
arising from a particle phase pressure. Batchelor regards the contribution of the
part proportional to D to be the more important of the two. He thinks of this as
new contribution representing the diffusion of particles against a gradient. We will
see later how these gradient terms regulate the short wave instabilities which arise
when the derivative terms on the left of (22) are put to zero.

7. The Particle Bed Model of Foscolo-Gibilaro. Foscolo and Gibilaro
[1984] start with coupled one-dimensional equations for the particles and fluid phase.
The particle phase equations are

8¢ 8¢u,, _
(23) at 8z 0,
Ou, Oupl Ipy
(24) ¢Pp [ at +up az ] - ""¢ppg +9._ az .

where J is the interaction force, the force that the fluid exerts on the particle, and
Pp is the particle phase pressure. The fluid equations are of the same form except
that the subscript p is replaced by f, ¢ is replaced by ¢ and F by minus F.

Foscolo and Gibilaro modeled the interaction force 3 and the particle phase
pressure in a manner that decouples the equations for the fluid and solid phases.

This gives rise to a system of equations for the particles only, called the particle
bed model.

It is convenient to introduce a dynamic pressure 7, into (24) by writing

pp==P+m,
opP
épp9 + By = 0.
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~ Then (24) reduces to

Ou, Ou, %

(25) épp [—ét— +“P§;] =77

To get their equations they first derived an interesting expression Fy(1) for the
drag force exerted by the fluid on a single particle in a uniform fluidized suspension.
This expression relies strongly on the well-known correlation of Richardson and Zaki
for fluidized and sedimenting beds of monosized spherical particles

(26) u, = Ve

where

(27) Ue = Up + UsE

is the composite velocity, the volume flux divided by total area and u, is independent
of z, _(9_11_.: =0. Of course V = uy when ¢ = 1,t1;e steady terminal velocity of a freely

z
falling single sphere in a sea of fluid. The exponent n depends on the Reynolds

number Re = —— where d is the diameter
v

( 4.65 for Re < 0.2,
4.4 Re™ %% for 0.2 < Re < 1,

(28) n =
4.4 Re~ %! for 1 < Re < 500,

L 2.4 for Re > 500.

Foscolo-Gibilaro replace 4.65 with 4.8=2(2.4) for reasons to be made clearer later.
There is a huge amount of fluid mechanics buried in the Richardson-Zaki cor-
relation. This is hidden in the drag law for particles falling under gravity in steady
flow. Let Fy(e) be the drag on a single particle in a freely falling suspension with
a fluid fraction e. When ¢ = 1 we get a drag law for the free fall of a single sphere
which is Stokes drag when V is small enough; for larger V' the drag is given by

pV? nd?

(29) Fy(1) = TTCD

where Cp is given by an empirical correlation. Foscolo and Gibilaro produce the
formula

(30) Fd(s) = 6Fd(1)

from an argument which says that in a fluidized bed in a steady flow, the total force
F on a sphere is the sum

F(e, Re) = Fy(e) — Fy(e)
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where 2
T
Fy(e) = —6“(Pp — pe)g

is the buoyant force using the effective density
pe = €pp + $pp

of the composite fluid. Since ¢ =1 —¢ ,

d3
Fp(e) = T(Pp — prlge = eFp(1)
in steady flow, F' = 0 and
(31) Fu(e) = Fp(e) = eFp(1) = eFy(1) .

We never see steady flow in a fluidized bed, the particles always jiggle about; steady
is in some statistical sense, whatever that may be. In any interpretation

up =0 in steady flow.

Equation (31) is all that is required to get the drag on a single particle in a
fluidized suspension in steady flow. The hydrodynamic content is all buried in the
drag correlation (29). We may write Fy(e) = Fy(1). To see how Fy(¢) depends on
the fluidizing velocity u,, Foscolo and Gibilaro note that (29) implies that

3ruV (laminar)
€
0.055mpd?V? (turbulent).

They next note that in the Richardson and Zaki correlation (26) and (28), with 4.8
replacing 4.65, implies that

(32) Fy = -3 { 3rudu, (laminar)

0.0557 pd?u? (turbulent).
This is good, we have Fy(uy,e) = e=3® Fy(uy), independent of V for low and high

Reynolds numbers. Now we look for an equivalent expression, valid for all Reynolds
numbers in steady flow and

Fy(e) = Fa(e,uf, V) = 8—3'8g(uf, V)

which will reduce to (32) at low and high Re. Clearly

g(ue, V) =e**Fy(1) = (3‘17)3_ F 4(1).
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Hence

4.8

n

(33) Fa(e,ue, V) = =38 (1“7) F 4(1).

This is just another way of writing Fy(e) = €F4(1) when 4.65 is replaced with 4.8
which is useful in motivating the constitutive equation (34) below.

Foscolo and Gibilaro assume that in unsteady flow the force on a particle is
given by the expression (33) with u, replaced by the slip velocity

Ue — Up = (1 = €)up + eus —up = e(up, — uy).

Then the unsteady drag force is

4.8
(34) Fa(e,ue — up, V) = 33 (“—;—"’i) F 4(1).

In steady flow, u, = 0, and (34) reduces to
Fy(e) = eFq(1)

where balancing drag and buoyancy for a single sphere gives

wd?
(Pp — Ps)9-

The total force on single particle in a fluidized suspension is given by

wd® te —up]
F=Fd—-Fb=-—-—6g(Pp_Pf){€—[ CV p] 6—3'8} .

The force per unit volume due to all n spheres is
F=NF
where

¢ n

= 7d3/6  volume -

Hence, the total force on the particles per unit volume is

(35) F=d(pp —ps)g {s - [uc ;u”] N 5‘3-8} .

In steady flow, u, and F = 0.

To compare their theory, Foscolo and Gibilaro need to model the particle phase
pressure and they do so, but their argument is unclear. Their final expression
appears to leave out terms that ought to be included. This issue was addressed in
a recent paper by Joseph [1989] which is discussed below.
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The same force of the fluid on the particles acts at the boundary to keep the
particles from dispersing. However, we need to multiply the force on a single particle
by the number N4 per unit area

__ ¢
Na= nd? /4’
Hence, the dynamic pressure is given by
(36) mp = NaF = N"sf— 347

The idea of making a constitutive equation for the pressure is more allied to gas
dynamics where the pressure is a state variable than to incompressible fluid me-
chanics. In discussing forces which fluids exert on particles G.K. Batchelor noted
that in his list (2.3) of forces there is a “...mean force exerted on particles in this
volume by the particles outside the volume.” Further he notes that the nature of
these two forces

“...may be explained by reference to a hypothetical case in which
the particles are electrically charged and exert repulsive electrostatic
forces on each other. The range of action of these electrostatic forces
is small by comparison with the dimensions of the dispersion, and so
the mean resultant force exerted on the particles inside 7, that is, by
stress, -S say, which is a function of the local particle concentration.

“Electostatic interparticle forces are conservative, and in that
case one can interpret -S as the derivative of the mean potential
energy per particle with respect to the volume of the mixture per
particle. The contribution to the net force exerted on particles in
our control volume by external particles is then

B.S’
—A a—zdl'

1
A repulsive force between particles corresponds to a positive value
of S (relative to zero when the particles are far apart), in which case
S plays a dynamical role analogous to the pressure in a gas.”

The equations of motion (23) and (24) are now reduced to

o9
(37) N + c}Sup 0,
Ou Bu 2 97
8 P bt Bt Auadl
(38) p¢[ +p Oz ] 7 3daz

where J is given by (35) and

05 _ 030 _ 95 du,

9
(39) 0z 0c 0z Bu,, 9z

12 one 12/5/1989 DRAFT



and

o7 _oy  or.

(40) _3; = e e

Equations (37) and (38) are two nonlinear equations in two unknowns, ¢ and u,.
These equations differ from the ones derived by Foscolo and Gibilaro [1984] to which
they reduce when the two additional terms

0F Ou,
(41) Bu, 0z
and
ON
(42) 57

are put to zero. The term (42) vanishes in the analysis of stability of uniform
fluidization but (41) does not.

The term (41) also is absent from the list of forces which act in this problem
developed by Batchelor. Hence, we are obliged to consider the physical origin of such
term. We may regard the term (41) as arising from changes in the microstructure

of the mixture. This has been well expressed in a recent paper by Ham and Homsy
[1988].

“Analysis of the mean settling speed leaves unresolved the prob-
lem of microstructural evolution in suspensions. Such changes in
the relative positions of particles are likely because each particle in
a random suspension sees a slightly different local environment and
is therefore expected to have a velocity which is, in general different
from that of any neighboring particle. The variations in particle
velocities will lead to an adjustment of the particle distribution.”

They note further that

“...the microstructural dependence arises from the fact that the time
between the velocities of the faster-and slower-setting particles, and
the difference will be influenced by the relative position of the parti-
cles. The influence of ¢ comes about from the change in interparticle
spacing with concentration of particles.”

8. Classification of Type and Hadamard Instability.
The theory of classification of type of a second order partial differential equation
0% 2P

43 A— _— =
(43) 5 + Bataz + Caz2 + lower order terms =0

is well known. Everything depends on the discriminant
D = B? - 4AC.
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Equation (43) is parabolic, elliptic or hyperbolic depending on whether the discrim-
inant D =0, D <0 or D > 0, respectively. Its characteristics are given by

dz B+ /B2 —4AC

dt 24 '

Hadamard instability is an explosive instability to short waves, the growth rates

27
of unstable disturbances tend to infinity with a, that is the wave length —— > 0.

Problems which are Hadamard unstable are ill-posed as initial value probollems. In
the analysis of short waves lower order terms are unimportant because the highest
order derivatives dominate and the coefficients of these derivatives can not vary
much in the length of short wave. This gives rise to the second order equation (43)
with no lower order terms and constant coefficients. To show that the initial value
problem is Hadamard unstable when it is elliptic we use normal modes

$(z,t) = P (=)
in equation (43) and obtain
A(aw)? — Bo?w + Ca® = 0.

Hence

B+ B 140
aw =« = .
2A
Then the growth rate is

o = Imlaw] = aIm

§ TT
VB 440 L @ VD
2 A 24

where I'm[.] stands for the imaginary part. Clearly, if D > 0 then ¢ = 0 so the
problem is not Hadamard unstable. but if D < 0 then 0— > 00 as a— > o, i.e.
if a problem is elliptic it is also Hadamard unstable in the sense of an initial value
problem.

9. Stability of Uniform Fluidization. In a state of uniform fluidization
¢ = ¢o and U = U(¢o) = Up are constant and u, = 0. Equations (2) and (22)
are satisfied. Since F = Fy = 0 for uniform fluidization and =, is constant, (23)
and (25) are satisfied. The mass balance equation (16) for balls of radius R is also
satisfied. The state of uniform fluidization satisfies all the required equations.

Now we linearize the equations around the state of uniform fluidization. Let ¢
be the perturbation of ¢9, N(z + z,t) be the perturbation of the uniform number
density Ny and u, be the perturbation of u, from zero. The mass balance equation
(2) becomes

9 4 42
(44) at+¢oaz =
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The mass balance equation (16) becomes

R
(45) N(z + z,t) (R* —z?)dz + No % / up(z + 2, t) (R —2?)dz = 0.
oy

m\w

9
o |

The momentum equation (22) becomes

0
I3} (¢o’70"6_l;£>

aup ¢ (a¢ ¢+up)+ 32

6 so1+0 2= @ Y

The linearization of (38) becomes

2 0¢ Ou
£ + ¢0dBa

aup _

(47) ¢o = —B(¢oup — C1¢) — C3—

48§ (1—¢o) , Cr = n Uc¢0

Nuc 1- (]50
After eliminating u, between (44) and (47) we get the following second order equa-
tion

d%¢ d*¢ 29 0¢ 0o\
(48) Ef?—_dBata 0282+B(at+018)—0.

where B = and C? = 3.2405d.

Similarly, (45) and (47) give the following second order equation

R
8%u 2 8%y o2
SE-sdB2-Cics /up(z+x,t)(R2—-a:2)dx

R
(49)

R
+ B (agtp +C168 /u,,(z+:z:,t) (R? —xz)dx) =0,

-R

and (44) and (46) give

0?2 up _ o up ou aup Ou,p o? Up
(50) (1+9) QO + ( ¢oa¢0 +—a—£-) +7703t6 > -

For (48) D (see section 8) is
9 2
D= (§ dB) +4C?
and the characteristics are given by

dz 1 1 r e
E—-gdBi\/(gdB) +C% .
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This shows that if B and C; are not both zero (there is a particle phase pressure)
then the governing second order equation is hyperbolic and has two real character-
istics. This means the initial value problem for this equation is well posed and will
not give rise to Hadamard instability. In equation (49) the second order term with
an integral can be considered to be of a lower order and hence the expression for D

becomes .
2 2
D= (gd B) ,
and the characteristics are given by

dz 2
Et--O, -3 dB.

If the third order term in (50) is dropped then D and the characteristics are given
by

D=1/4Qo (1+96),

We next look for normal mode solutions of (48), (49) and (50)
¢(Z,t) =P eia(z—wt), up(z,t) — Q eicx(z—wt)
where ¢ = +/—1, P and @ are constants, « is the wave number and aw is the angular

frequency. By putting the above solutions in (48), (49) and (50) we get following
dispersion relations

2
(51) (aw)? + §d Ba’w — Cja® + Biaw — Cy ia) =0 ,
2
(52) (aw)? + §d Bo*w — C}a*0(e) + B(iaw — Cy taBO(a)) =0,
(53) (1 +6)(aw)? = Qpa? + X2 (qso@- i+ iaw) — 0 aPwi,
Uo \" " 040

sin R cos aR

(aR)® aR)?

where ©(a) = 3 [ } (see figure 2).
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FIGURE 2. For R =1, ©(a) is plotted as a function of a.

From (51) we find that the system is unstable if

2
(54) C’1+%dB>\/C§+(%dB) .

2

otoz

term in (48) is

This reduces to the well known criterion of Wallis when
dropped. From (52) the bed is unstable if

(55) 8(a)C, +§ dB> \/ O()C? + (% d B) .

This also reduces to a form very similar to the well known criterion of Wallis when
2
o4 term in (49) is dropped. In the present case, the inequalities (54) and (55) are
z

always satisfied and so the uniform state is always unstable. From equation (53)
the bed is unstable if

7§¢ ou

29 4, 2L .

(56) %" 9o, 1Q°9.
LA o +
Up

Conditions (55) and (56) are different because of their dependence on the wave
number. The wave number dependence of (55) makes the modes with O(a) =
0 neutrally stable. Relation (56) shows that Batchelor’s equations are stable to
short waves and there exists a lower bound on a above which all modes are stable.
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Viscosity stabilizes short waves. We want readers to notice that the criterion for
stability in the absence of finite size of particles or viscosity effects is independent
of the wave number (cf. Jones and Prosperetti [1985], Prosperetti and Jones [1987]
and Prosperetti and Satrape [1989]).

Now consider the case when in (52) terms coming from the particle phase pres-
sure are dropped. We solve for aw

aw =+ (—Bz’:!:\/—82 +4 B C; ia 6)

2
: 40120@
(—1* 1“—3—)

- (57) =%—i(—1:{:\/1—2i)

(s

l

|

4 C1 Ot@
——B .

For |Z| < 1 we can take Taylor series expansion

where ¥ =

The growth rate

o=ttt =2 (2 (14 2 1.))

where Im[aw] is the imaginary part of aw. The above expression for the growth
rate and (57) implies

(1) Instability is weak when ¥ is small.

(2) T is a bounded function of a with &— > 0 as a— > 0 or a— > co (see
figure 3). Thus both short and long waves are neutrally stable.
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(3) ¥ is maximum for amax ® — and Tpax & —=—=— (see figure 3). Note

(58)

(59)

(60)

that both amax and Xyax increase as R is decreased. Hence the problem
becomes ill-posed as a— > oo for R = 0 (because Epyax— > 00). To see that
the problem is Hadamard unstable we put R = 0 in equation (57) and find

that
ow = —132—' (-—'1 +4/1- %‘—i)

where we have used Rlirgg@ = 1. Therefore 0 = Im[aw] = c\/a for some
constant c, independent of «, for large a. The growth rate is unbounded for
large «. Hence, the uniform fluidization is Hadamard unstable. Consider

again equation (49) which reduces to the following form in the present case

¢ 9¢ 9\ _

This equation is parabolic because D = 0. So Hadamard instability here
does not arise because the characteristics are imaginary. This kind of
Hadamard instability is similar to that of the backward heat equation, here
with the roles of time and space interchanged. One can see this by looking
for spatially growing modes

#(z,t) = P e'*te’?
where o is complex and a is real. After combining (59) and (60), we get

2 Bia

aal
. G

g =
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This is the kind of dispersion one get for the Hadamard instability of the
backward heat equation.

(4) If we put the values of C; and B in the expression for £ we get

C?

Ymax & 6.9—% .

Soif C; > /6.9 C; then ¥ is smaller than one. In this case the instability is expected
to be weak. This may be compared with the criterion C, > C; for stability derived
in the (1984) paper of Foscolo and Gibilaro.

REFERENCES

BatcrELOR, G.K., A new theory of the instability of a uniform fluidized bed, J. Fluid Mech.
193 (1988), 75-110.

Foscoro, P.V. AND GiBILARO, L.G., A fully predictive criterion for transition between partic-
ulate and aggregate fluidization, Chem. Eng. Sci. 39 (1984), 1667.

Foscoro, P.V. aND GiBILARO, L.G., Fluid dynamic stability of fluidized suspensions. The
particle bed model, Chem Eng Sci. 42 (1987), 1489-1500.

Ham, J.M. anD HoMsy, G.M., Hindered settling and hydrodynamic dispersion in quiescent
sedimenting suspensions, Int. J. Multiphase Flow 14 (1988), 533-546.

JoNES, A.V. AND PROSPERETTI, A., On the suitability of first-order differential models for
two-phase flow prediction, Int. J. Multiphase Flow 11 (1985), 133-148.

JoserH, D.D., Generalization of Foscolo-Gibilaro analysis of dynamic waves, To appear in Chem
Eng Sci. (1989).

PROSPERETTI, A. AND JONES, A.V., The linear stability of general two-phase flows models- II,
Int. J. Multiphase Flow 13 (1987), 161-171.

PROSPERETTI, A. AND SATRAPE, J., Stability of two-phase flows models, Proceedings of the
January, 1989 workshop of the IMA on “Two phase flows in fluidized beds, sedimentation
and granular flow”. To be published by Springer-Verlag (1989).

SiNGH, P., CAUssIGNAC, PH., FORTEs, A., JoserH D.D. AND LunNDGREN, T., Stability of periodic
arrays of cylinders across the stream by direct simulation, J. Fluid Mech. 205 ( 1989), 553-571.

20 one 12/5/1989 DRAFT



