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A binary sequence is defined for the Lorenz attractor. This binary sequence contains some information about the original
system. To extract this information we have used autoregressive methods from the theory of signal processing. The binary se-
quences and the associated methods could also be used to estimate the system characteristics when one does not have access to all
the variables involved in the underlying process; this is usually the case in an experimental study. We introduce an autocorrelation
function for binary sequences, a one-step predictor and associated power spectra and a macroscopic approximation of the largest

Lyapunov exponent.

1. Binary sequence for the Lorenz equations

The Lorenz equations

dz
@ =xy—bz,

(1.1)

with 6=10.0, b=%, r=28.0, were integrated numer-
ically using the NAG library, subroutine D0O2BBF
with different tolerance levels in the range 10~ to
1019,

We looked at the projection of trajectories gener-
ated by (1.1) onto the xz-plane. The z-axis divides
the xz-plane into two half-planes, called left and right
half-planes. The projected trajectory makes closed
loops in the left or right plane, or switches between
half-planes. We define a binary sequence by assign-
ing the number one to a loop in the right half-plane
and the number minus one to a loop in the left half-
plane. This binary sequence still contains some in-
formation about the original system with some in-
formation being lost in the process of defining the

4 =rx—y—xz,

dx d
- =0(y—x), s

dr
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binary sequence. We want to extract the information
contained in the binary sequence. Symbolic se-
quences have been used before to characterize dy-
namical systems [1-3]. We do not know any pre-
vious works on autocorrelations, predictors and their
associated power spectrum for binary sequences in
general, or applied to the Lorenz attractor. Our for-
mulas (4.9) and (4.10) for the macroscopic Lya-
punov exponent are new, though some referees have
suggested they are related to metric entropy. Shi-
mada [2] has used binary sequences for the Lorenz
system to discuss the system in the frame of the sta-
tistical mechanics of the Ising model. He does not
work directly on the measures of chaos on binary se-
quences discussed in this paper. There are many
problems of chaos in which the observable variables
can be precisely if not broadly defined by binary se-
quences. This might be the case in problems defined
by a double well potential or in experiments [4] in
which the underlying dynamics are not understood.
For such problems, and others, the approach taken
in this paper should be useful.

2. Autocorrelation

Now we are going to use the methods of estima-
tion theory to characterize chaos on a binary se-
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quence. A convenient reference for these methods is,
for example, ref. [5]. An estimate of the autocor-
relation function on an ergodic binary sequence can
be obtained as follows,

r(n)= %k; u(k+n)u(k),

n=1,2,.., N>n, (2.1)
where
{u(i)}, i=1,2,.,N, (2.2)

is a binary sequence, #(i) has values 1 and —1.

The value 7(1) represents the correlation between
immediate neighbors (1,2), (2,3), (3,4), etc. The
value r(2) gives the correlation between separated
pairs (1,3), (2,4), etc. A chaotic response is one for
which r(1)#0 and r(n)—0 for large n, predictabil-
ity only in the short run.

3. One-step prediction method

The problem of prediction from chaotic sequences
has been discussed in a general context by Farmer
and Sidorowich [6]. They show that in many situ-
ations nonlinear predictors are much better than lin-
ear ones. They do not consider binary sequences ex-
plicitly. In the appendix to this paper we show that
if the autocorrelation for the binary sequence decays
rapidly and is nonnegative, then the predictive power
of a polynomial predictor is not significantly better
than the linear one. Our binary sequence can be
treated like a sequence of real numbers. Hence the
one-step linear prediction method can be used to
measure the deterministic part. This gives a second
measure of chaos on a binary sequence. We assume
that the sequence is ergodic, so0 we may use time av-
erages as an approximation to the corresponding en-
semble averages. For our sequence we found

E{u(n)}= %kgl u(k)~0. (3.3)

This tells us that left and right (+1) have the same
probability of occurring. Also

N
Ew(m)=y ¥ w(k)=1, (3.4)
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where E stands for the expected value or ensemble
average.

Suppose that M past values u(n—1), u(n—2), ...,
u(n— M) are known; the problem is to predict u(»).
We note that the predicted value will be a real num-
ber between —1 and 1. Let us denote it by @(n). We
assume that our predictor is linear, that is, the pre-
dicted value is given by

M

a(n)= Y a(k)u(n-k), (3.5)

where a(k), k=1, 2, ..., M, are unknown constants
and M is the order of the predictor. The prediction
error is defined as

Su(n)=u(n)—i(n). (3.6)

Let P,,denote the expected value of the mean squared
prediction error,

Py(a)=E{f3(n)}, (3.7)
and P,, be its minimum value,
Py =min(E{f3,(n)}) . (3.8)

The right-hand side of (3.7) is quadratic in the
a(k)’s; for it to be minimum it is enough that

9

520 ELMM}=0, k=1, M. (3.9)

Using time averages to approximate ensemble av-
erages, the above equation reduces to

Ba(k) N-M 5, M -
k=1,.,M. (3.10)

This gives M equations for M unknowns, a(1), ...,
a(M). Once the a(k)’s are known, we can compute
the minimum B,; of (3.8).

A third measure of chaos, the autoregressive power
spectral density, is given by

-2

S(0)=By |1+ fa(k)exp(_iko) . (311)
k=1

where 0 is the normalized frequency variable.
There are several methods available for determin-

ing the order of the predictor. For the binary se-

quences we have considered in this paper, the slope

Lo
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Fig. 1. The autocorrelation sequence for the Lorenz attractor. N="76000.

of P, versus M curve becomes approximately zero
for some value of M= and remains approximately
zero for M larger than M. This tells us that there is
no increase in the performance of the predictor for
M larger than M. So the predictor order is taken to
be M. These discrete measures were computed for
the Lorenz attractor with the a(k)’s determined by
the Levenson-Durbin recursion (see ref. [5]), which
is a fast algorithm for solving the system (3.9). It is
based on exploiting the Toeplitz nature of the matrix.
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Fig. 2. The minimum mean square prediction error as a function
of the predictor order for the Lorenz attractor. For M=35, the
slope of this curve becomes approximately zero and it remains
close to zero for M> 5. So the order of the predictor is taken to
be 5. The finite slope for large M is due to the finite length of the
sequence.

Our binary sequence had 76 000 points. The dis-
crete measures of chaos were computed. These are
shown in figs. 1, 2 and 3. The predictor order was
found to be five. The tolerance level in the numerical
scheme had absolutely no effect on the nature of the
autocorrelation sequence, even though the sequences
generated were quite different for different tolerance
levels. For large n, r(n) approached zero uniformly
with the increase in the length of sequence, N.

The decay in the autocorrelation values is very
rapid. For large n, autocorrelation values decrease
monotonically with the length of the sequence. The
minimum mean squared prediction error decreases

0.2
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Fig. 3. The power spectral density for the Lorenz attractor.
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rapidly with M, for M smaller than M, and remains
almost constant for M larger than M. P,, equal to zero
corresponds to a totally predictable sequence and P,,

equals one when the sequence is completely unpre-

dictable. For example, the binary sequence gener-
ated by tossing a coin is a completely unpredictable
sequence. Totally predictable sequences are deter-
ministic, so Py gives some measure of randomness
in the sequence. For the Lorenz attractor Py; is very
close to one, which tells us that the sequence is pre-
dominantly random with a very small deterministic
part.

4, Lyapunov exponent

In this section the binary sequence is used to ap-
proximate the value of the Lyapunov exponent by
incorporating some of the information about the
original Lorenz process projected onto the xz-plane.
The projection of the Lorenz attractor onto the xz-
plane is shown in fig. 4. The trajectories projected
onto the xz-plane remain in the area shown in fig. 4.
Let AD be the line segment passing through the two
stationary points for the Lorenz attractor and AB and
CD be as shown in fig. 4. Then it is clear that all tra-
jectories in the right half-plane intersect the line seg-
ment CD and all trajectories in the left half-plane in-
tersect the line segment AB. Consider two
trajectories, selected randomly, starting at the line
segment CD. Since trajectories are selected ran-
domly the distance between them is random, with
mean value equal to one half of |CD|, where |CD|

4

(\_ 40
A B@ @c D

Fig. 4. The projected trajectories of the Lorenz attractor remain
inside the closed region shown. Two stationary points are marked
by crosses.
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is the length of the line segment CD. Similarly, the
trajectories starting at the line segment AB are on av-
erage |AB|/2 apart. For the Lorenz attractor
|AB|=|CD]|. Two trajectories selected randomly
stay in the same half-plane or both move over to the
other half-plane or one remains in the same half-plane
and the other moves over to the other half-plane.
When trajectories stay in the same half-plane or both
of them move over to the other half-plane the dis-
tance between them, on average, does not change.
But if one of the trajectories moves over to the other
half-plane the distance between them, on average,
after one period is equal to |AD|—(]AB|+
|CD})/2=|AB| -|CD|.

One can define the Lyapunov exponent by the
expression

1 X d(n)
A= Nigl log, (=)’ (4.1)
where dy(n—1) is the infinitesimal distance between
the trajectories at the beginning and d(#») is the in-
finitesimal distance between them after one time pe-
riod. We modify the above expression for the Lya-
punov exponent to obtain an expression for the
macroscopic Lyapunov exponent,
1 X d(n)

Am= N,-; log, Z(n=1)’ 4.2)
where d,(n) is the average distance between the tra-
jectories starting at the line segments AB or CD and
d(n) is the average distance between them after one
time period.

Our aim is to estimate the Lyapunov exponent us-
ing the binary sequence obtained in section 1. For
obtaining the Lyapunov exponent we need to select
two statistically independent sequences from the
given binary sequence, since for the given binary se-
quence r(n)=0 for n>M, where M=5 for the Lo-
renz attractor. If we consider two sub-sequences, ob-
tained from the given sequence such that they are
greater than or equal to A7 distance apart then these
sub-sequences are statistically independent. Con-
sider the product u(i)u(i+k), k= M. If this product
is one then sub-sequences starting from index i and
i+ k, in the main sequence, are in the same half-plane;
otherwise they are in different half-planes. To find
the sum in eq. (4.2) we need statistically indepen-
dent sequences which start in the same half-plane. If

Y
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the product u(i+1)u(i+k+1) is one then the se-
quences remain in the same half-plane and if the
product is minus one then the sequences end up in
different half-planes after one time period. Let

|AD| — |AB|

a=log, [AB| ,

then
log,[d(n)/do(n—1)]1=«

if sequences after one time period are in different
half-planes, and

log,[d(n)/dy(n—1)1=0

if sequences after one time period are in the same
half-plane. Note that the above function can also be
written as

d(n) . . .
10gzd0( -1 =da[l—u(i+u(i+k+1)],
(4.3)

provided u(i)u(i+k)=1. Let S;={i: u(u(i+k)
=1} and S;={iu()u(i+1)=—1} with { num-
bered in an increasing order in each set and let N,
and N, be the sizes of sets S; and S, respectively.
Then, from (4.2),

1 M d(n)

lm=1—v—”=11 2df(n 1)
o . ,
= 5]\7—”;& [1=u(i+Du(i+k+1)]. (4.4)

If N is large we may translate the origin of sum-
mation without changing r(k), equivalent to re-
numbering. Hence

N

r(k)= %; u(i+ D u(i+k+1)

N( Y u(i+1)u(i+k+1)

ieS)

+ Y u(i+1)u(i+k+1)),

ieS2

implies that
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Y u(i+)u(i+k+1)

ieS2

=Nr(k)= ¥ u(i+D)u(i+k+1). (4.5)

ieS1

Since for k> M, r(k)=0, we have

0=r(k) =]T/§ u(HDu(i+k)
l(Z u(Hu(i+k)+ Z u(z)u(z+k)>
N ieS) ieSa

1
=5 Mi=Ny),

hence N, =N,. But N=N,+N,, so we get

N=IN,=IN,. (4.6)

Wl
o

Now we relate the Lyapunov exponent to the auto-
correlation function of the given sequence. Consider

Z ﬁ u(i+m)u(i+m+Du(Hu(i+1)

i=1 m=1

= f: (u(z)u(z+1) Z u(i +m)u(z+m+l)>

= % u(Hu(i+1)Nr(1)=N2r3 (1) . (4.7)

By changing the order of summation in (4.7) we get
N3 (1) =
N N
y (Z u(i+m)u(i+m+1)u(i)u(i+1)).
m=1 \i=1
The breakup described in (4.3) reduces the above to
N
N3 ()= ¥ (Z u(i+Du(i+m+1)

m=1 \ieSi1

ieS2

-y u(i+1)u(i+m+1)).

Using (4.5) and the above equation we have
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N2r3(1)

= % (2 Y u(i+l)u(i+m+1)—Nr(m)) .

ieS)

After rearranging the above equation, we have

% (2 > u(i+1)u(i+m+l))

m=1 ieS|
=N%2%(1)— ﬁ Nr(m) . (4.8)

For our sequence r(m) =0 for m> M. Moreover, the
sum inside the square brackets in the above equation
is a constant for m>= M. Let

1 Y u(i+yu(i+m+1)=T(m),

Nl ieSy

where T(m)=T=const, for m>M. By using the
above two results in (4.8), we have

A (N=M)N, T+N,[T(1)+T(2)+..+T(M-1)]}

=N22(1)=N[r(1)+r(2)+..+r(M—1)].
Using the fact that A7, 7(1), T(2), ..., T(M-1),
r(1),r(2), .., r(M—1) are finite if we take the limit
N-co we have after using (4.6)

1

T=r*(1)= 5 Y u(i+Du(i+m+1).

1 ieS)
By putting this in (4.4) we get the desired result
=la[l-r3(1)]. (4.9)

Even though we have assumed N to be infinite this
result is approximately correct for large M.

Finally, we relate this value of the macroscopic
Lyapunov exponent to that in the continuous case,

d(t,)
log
ZN—lo 121 2do(ln 1)’

Ame

If we assume the ¢, to be equally 7 time units apart,
then the above equation becomes
d ( n ) A
Ame= l =—, 4.1
For the binary sequence 7 is equal to the mean time
period. We obtained the following results for the
Lorenz attractor: r(1)=0.13853, a=2.5, T=0.7519
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s, An=1.226 bits/period, A,.=1.630 bits/s. The
largest Lyapunov exponent computed directly for the
Lorenz attractor is 4.=1.30 bits/s (fig. VI.18 in ref.

[71).
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Appendix. A note on the binary nonlinear
polynomial predictor

For a binary sequence the most general form of the
Mith order nonlinear polynomial predictor is

1

a(n)= )

(k1 =0,..kar=0)

a(kl’ k2s vees km)

X u(n—1)*u(n=2). .u(n—M)=, (1)

where we have used the fact that u(k)"=1if nis an
even integer and u(k)"=u(k) if n is an odd integer.
So the degree of the binary nonlinear predictor is less
than or equal to its order.

The contribution of the nonlinear terms in pre-
diction depends on the magnitude of the higher or-
der correlations. For a binary sequence in which 1
and —1 are equally likely (i.e. P(1)=P(—-1)=
0.5) the higher order correlations with odd number
of terms are zero,

Elx(n)x(n—=1).x(n—m)]
=E[x(n)x(n—1)...x(n—m+l)|x(n—m)=1]
X P(x(n—m)=1)
—E[x(n)x(n—1).x(n—=m+1)|x(n—m)=—1]
X P(x(n—m)=-1)
=H{E[x(n)x(n—-1)..

x(n=m+1)|x(n—m)=1] —E[x(n)x(n—1)...

X x(n—m+1)|x(n—m)=—11}
=0,

Y

4
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where m is an even integer and P( ) stands for the
probability. In the last step, the symmetry of the
problem is used to equate the two conditional ex-
pectations. If least squares are used to find the coef-
ficients of the predictor the contribution of an even
degree term in (1) towards prediction depends on
the correlation of the above form. So we can drop all
terms of even degree in (1). Only the terms of odd
degree remain. For a binary sequence with a non-
negative autocorrelation sequence one can further
show that the following bound holds on the higher
order correlations with an even number of terms, m
odd,

E{x(n)x(n-1)..x(n—m)]
<E[x(n)lx(n—-m)]=r(m).

It follows that the higher order correlations for bi-
nary sequences will decay rapidly whenever the au-
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tocorrelation decays rapidly. This is the case for the
Lorenz attractor. In such a situation the largest non-
linear contribution will come from the fourth order
correlation which is smaller than (3). But r(3) is
already small, so the improvement obtained by in-
cluding the nonlinear terms will not be significant.
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