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The stability of core-annular flow (CAF) in pipes is analysed using the linear theory
of stability. Attention is confined to the potentially stable case of lubricated
pipelining with the less viscous liquid, say water, in the annulus. The effects of
surface tension and density are included, but gravity is excluded. We find upper and
lower branches of the neutral curve in a Reynolds number (R) vs. wavenumber («)
plane. A window of parameters is identified in which CAF is stable to small
disturbances. When R is below the lower critical value, CAF is destabilized by surface
tension and long waves break up into slugs and bubbles. The sizes of slugs and
bubbles of oil in water observed by Charles, Govier & Hodgson (1961) are given by
the wavelength of the fastest growing long wave. This long-wave instability is a
capillary instability, modified by shear, which reduces to Rayleigh’s instability in the
appropriate limit. At higher R, the capillary instability is stabilized by shear. At yet
higher R, above the upper critical value, the flow is unstable to generally shorter
waves which leads to emulsification, water droplets in oil. The theory agrees with
experiments. The analysis seems to be applicable to the design of lubricated
pipelines; for example, there is an optimum viscosity ratio for stability, greater
stability can be obtained by using heavy liquid as a lubricant when the flow is
unstable to capillary modes on the lower branch and by using light liquids when the
flow is unstable to emulsifying disturbances on the upper branch.

1. Introduction

There is a strong tendency for two fluids to arrange themselves so that the low-
viscosity constituent is in the region of high shear (Joseph, Nguyen & Beavers 1984).
This gives rise to a kind of gift of nature in which the lubricated flows are stable, and
it opens up very interesting possibilities for technological applications in which one
fluid is used to lubricate another.

We can imagine that it may be possible to introduce a beneficial effect in any flow
of very viscous liquid important in applications by introducing small amounts of
lubricating fluid. Nature’s gift is evidently such that the lubricating fluid will migrate
to the right places so as to do the desired job.

There are significant reserves of heavy viscous crude oils in the United States,
Canada, Venzuela and Europe. Heavy crudes may have viscosities of 1000 P at room
temperature. These viscous crudes cannot be transported by the usual pipeline
methods. It is customary to reduce the viscosity of the oil either through the addition
of a hydrocarbon diluent or through the installation of heating equipment at short
intervals along the pipeline. The former method can only be used in the unusual case
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in which there is an abundant supply of light oil in the same region as the heavy oil;
heating is inconvenient and costly.

Another method which has been proposed to facilitate the transport of viscous
crudes is the addition of an immiscible lubricating liquid, usually water. Experiments
to examine this possibility have been carried out by Russell & Charles (1959),
Russell, Hodgson & Govier (1959), Charles, Govier & Hodgson (1961), Gemmell &
Epstein (1962) and Charles & Lilleleht (1966). Oliemans & Ooms (1986) have written
a comprehensive review of pipe flows of oil and water, theory and experiment, prior
to 1984.

Various arrangements of the oil and water occur in the aforementioned
experiments. This type of non-uniqueness is typical of flowing bicomponent fluids.
The arrangements that appear in horizontal pipes are: (a) stratified flow with heavy
fluid below ; (b) concentric oil in water (core-annular) flow; (c) water drops in oil; (d)
oil drops (bubbles) in water (these include large bubbles and slugs of oil lubricated
by water).

The measured pressure drops indicated that the addition of water can greatly reduce the
pressure gradient. There is a powerful tendency for the water to migrate to the pipe
walls where the shearing is greatest, lubricating the flow.

It was found that the core-annular flow had the greatest volume flux for a given
pressure drop among all of the realized rearrangements. The pressure drop over the
pipe could be even smaller than the pressure drop in water alone at the same value
of the volume flux. The lubricating water layer was 10-40% of the pipe diameter.
The power requirements for moving the small amount of water in core-annular flow
is negligible.

Under widely applicable conditions, thin films of all kinds of lubricating layers are
stable. Theoretical results, using standard methods of linearized stability theory, are
listed below. Yih (1967) studied the stability of plane Couette flow in two layers
separated by a planar interface with respect to long waves. He suppressed the effects
of gravity and density differences and focused his attention on the viscosity
difference and the volume ratio. He found that some of the these flows are stable and
others unstable. Flows with a small layer of less viscous fluid on one wall, which we
call lubricating flows, are stable. Hooper & Boyd (1983) considered the stability of
Couette flow of two fluids separated by a plane layer in an infinite region, without
boundaries. They find that the flow with a flat free surface is always unstable to very
short waves when the surface tension is neglected. Surface tension stabilizes the
shortest waves. Renardy (1985) and Hooper & Boyd (1987) studied the stability of
layered Couette flow to disturbances of arbitrary wavelength. They show that the
only stable flow with a flat interface at small Reynolds numbers, tending to zero, has
a finite surface tension and is a lubricating flow.

Hickox (1971) studied the stability of Poiseuille flow of two fluids when the less
viscous fluid is centrally located. He showed that all such flows are unstable. J oseph,
Renardy & Renardy 1083, 1984 (hereinafter JRR 1983 and JRR 1984 respectively)
‘studied the stability of Poiseuille flow of two fluids when the more viscous fluid is
centrally located. They found this flow, with an interface of constant radius, is stable
provided that the layer of less viscous fluid on the wall of the pipe is small. Than,
Rosso & Joseph (1987) studied the analogous problem for plane Poiseuille flow,
restricting perturbations to long waves. They found that the flows with thin fluid
inside were unstable and that the lubricating flows with thick fluid inside were
always stable. independent of the volume ratio. Y. Renardy & Joseph (1983) studied
the stability of rotating Couette flow in two circular layers. Again, the only stable
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Ficure 1. The sketches reproduced above are taken from the paper by Charles Govier &
Hodgson (1961). The experiments are discussed and the results compared with theory in §13.

flows with a cylindrically perfeet interface are the lubricating flows, with a thin layer
of less viscous liquid on one of the cylinders. The stabilizing effect of lubrication can
be strong enough to overcome centrifuging when the lubricating fluid on the inner
cylinder is heavy.

In this paper, we study the stability of core-annular flow with viscous ﬁu1d in the
core using the linear theory of stability. Our analysis goes beyond that given by
JRR, because the effects of surface tension and density differences, neglecting
-gravity, are considered. Surface tension is very important. It is not possible to derive
a theory without it that could be used in the design and control of lubricated-pipeline
technologies. :

The results computed here, taken together with that given in JRR, appear to be
in quantitative agreement with the results of experiments of Charles, Govier &
Hodgson (1961, hereinafter referred to as CGH) on bicomponent flow of water and
oil-carbon tetrachloride solutions density matched with water. Gravity is made
negligible by density matching, so that their experiments and our analysis are
compatible. Their results are summarized in figure 1 and discussed in §13. For now,
it will suffice to note that (a) there is a minimum speed, observed in experiments. but
not previously treated by analysis, below which core-annular flow is unstable and
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gives way to oil slugs in water; and (b) there is & maximum speed, observed in
experiments, but not previously treated by analysis, above which core-annular flow
is replaced by emulsions of water in oil.

The conditions of the experiments of CGH are not those of interest in lubricated
pipelining. In pipelines one usually sees a form of wavy core flow when the oil
viscosity is greater than 500 CP. In terms of the parameters used in this paper the
viscosity ratio m in practice is less than 0.002, much smaller than the value of 0.0532
for the experiments of CGH. Moreover, in some Practical applications the density
difference between oil and water causes the oil to ride high in the pipe and at low
speeds the oil may rise up and seize the wall, leading to a failure of lubrication (see
Oliemans & Ooms 1986 for a photograph and discussions of the effects of gravity).
Fortunately the oil core need not touch the upper wall. A lubricating layer can
persist. The exact hydrodynamics, which maintain the lubrication layer at the top of
the pipe, is not understood. Oliemans & Ooms think that a lubrication effect
associated with ripples is important. Oliemans ( 1986) has developed a lubricating-
film model for core-annular flow which agrees with experiments in some details and
disagrees in others. Evidently, the stronger shear in the small gap at the top of the
pipe stabilizes the big capillary waves which are evident in the large gap at the
bottom of the pipe. M. Renardy & J oseph 1986 have shown that travelling ripples
will occur as a bifurcation of core annular flow so that wavy core flow which is
observed in pipelines may arise as a subcritical bifurcation of core-annular flow.

We have carried out experiments on water-lubricated transport of SAE 30 motor
oil and number two fuel oil and on 30 % and 40% dispersions of 70 pm coal in these
two oils. The oils are usually well lubricated if the pressure gradient is not too small,
even though the oil rides high in the pipe due to gravity. In general, we get lubricated
flows, though not concentric core-annular flow, even when the oil at the top seizes
the wall. In these cases the oil in the core is still lubricated by a film of water which
lies underneath the oil on the top of the pipe and the oil core below it. The effects of
gravity are not so serious as to impede successful lubrication in our small pipes, but
these effects could be more serious in pipes of larger diameter. There are some
interesting situations in which the density of the oil and water are nearly the same,
so that the gravity effects are greatly diminished. This is the case, for example, with
heavy oil extracted from the Alberta oil sands and with the dispersions of 40 %
coal in SAE 30 motor used in our experiments. The most serious problem for the
technology of water-lubricated pipelining associated with stratification due to
gravity is start-up from rest. The effects of gravity under transient and steady
conditions have not yet been treated in a theoretically satisfactory manner.

In this paper we confine our attention to parameter values in the range of the
experiments of CGH. The second type of failure of lubricated pipelining,
emulsification of water in oil. already occurs in these experiments and is apparently
correlated with the higher-Reynolds-number instability identified in our linear
theory. In a second paper (Part 2 of this paper, by H. Hu & D. D. Joseph), we
implemented a finite-element program with an adaptive mesh in the boundary layer
at the wall. The finite-element calculation agrees perfectly with the pseudospectral
code used in the present caleulation but it also works well at the small values of
m < 0.002 characteristic of field practice. We compared the results of our finite-
element caleulation with field data provided from experiments in 6in. diameter
pipes. The linear theory predicted wavy core flow when the oil viscosity was greater
than a eritical one. with emulsification of water into oil for smaller viscosities. These
predictions agree with the field data.
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2. The equations and basic flow

Two liquids are flowing down a pipe of inner radius R,. The interface between the
two liquids is given by r = R(f,x.f) where (r,0,x) are cylindrical coordinates and
U= (C.T,17) are the corresponding components of velocity. The region 0 < r < R(6,
x.t)is occupled by the first liquid with viscosity and de11s1ty 4, and p; and the second
liquid (x, and p,) is located in R(6, x.t) < r € R,. The pipe axis is at r = 0 and the pipe
is infinitely long — o < & < 0. The mean value of R over §,0<6<2rnis R, =
R(8,x.t), a constant fixed by the prescribed volumes of each of the two liquids,
independent of ¢.

The equations of motion, gravity neglected, are

p,(iiU=—-VP+,u,VU div U = 0, (2.1)

where [ =1 when 0 <r <R and =2 when R < <R,,
U=0 on r=R,, (2.2)

and U is bounded at r = 0. The equations on the interface are

~ OR, -0R T cR
7=__ PSRN EUASpR. = 2.
. def "
[0 =U),-(),=0 (2.4)

is the jump in T over r = R, and
—([P}+2HT)n+2uD[U]])-n = 0, (2.5)

where D[U] = }VU+VUT), 2H is the sum of the principal curvatures, 7T is the
coefficient of surface tension, n = n,, is the normal to r—R = 0 from liquid 1 to 2.
We shall study the stability of core-annular flow

U=(0,0,W(r),] (2.6)
A= Pl =T/,

where VP = — F,F > 0 is the magnitude of the constant pressure gradient, and

4F (r —R2)+ F (R —Rf), 0<r<R,
W(r)= ;,‘1 4, (2.7)
o — (R2—1?), R, <r<R,

To study the stability and bifurcation of core-annular flow, it is necessary to
introduce an extended core-annular flow, where in (2.7) we write 0 < r < R(8, z,¢)
and R(0,x.t) < r < R,, respectively.
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3. Perturbation equations
We now perturb extended core-annular flow

U= (u0,W+w), P=P+p, R=R +50,zt (3.1)
and consider the linearized equations for (u, v, w, P,0).
[ ) e U 20w )
p’[at L™ I [V “'F“Fa‘é]’
Jow | ov] 19p v 20u
P [‘52"' W‘é‘;: =—;5§+ﬂz[vzv"’—2+pa§], (3.2)
ow  __dw 1 dp 19 1 ow
ZaWL e Wul|=-2 2p, e e
pf[at MR It A e e R e R 9)

where (p;, ;) = (py, #4,) in 7 < R, and (p,, p,) in r > R, and W’ = dW/dr. Moreover,
u=v=w=0 at r=R,, ; (3.3)

u,v,w are bounded at r =0 and satisfy other conditions to be stated later. On the
interface at r = R,, we find that i

u= Wi, +4, 6=0, (3.4a)

[«] = [¢] = 0, : (3.40)

[[/t (%+%¥)ﬂ =0, ‘ (3.4¢)

[[ﬂ (%%-}-ng—:—v)ﬂ =0, (3.4d)
—-[[p]]+2[[/tg—?:u = %5(809+R§ 8.z +0) (3.4¢)

Equation (3.5) shows that w is not continuous across r = R,, and it can produce
instability. We can eliminate § = —[w]/[W’] from our problem.

4. Dimensionless equations and parameters

We shall now make our equations dimensionless. Lengths are scaled with the mean
racius Ry, velocity is scaled with the centreline velocity

Wo = F{RY (s — p) +BG g} 41t

and time with R,/J}j. After introducing these scales, we find equations in
dimensionless variables. We shall use the same symbols for dimensional and
dimensionless variables.

The differential equations satisfied by the dimensionless u, v, w0, p are of the same
form as (3.2) with p, = 1 and g, replaced by 1/R, where

Rl=pl II:)‘RI/IMZ: l= 1~2 (_'Ll)
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A dimensionless function W(r) also appears in these equations and is given by
1-mr?/(@*+m—1), 0<r<1

ST (4.2)
(@*—7rY)/(a*+m—1), 1<r<a,

W(r) = {

where m=p,/u; <1
is the viscosity ratio, and a=R,/R, >1

is the dimensionless radius of the outer cylinder. The ratio of the volume of the liquid
outside to the volume of liquid is a®~ 1. The boundary conditions (3.3) are required
.to hold at = a. Equation (éi/iishows that W(r) is continuous across r = 1,

W(1) = (a®*—1)/(a*+m—1), (4.3)
but, because the shear stress is continuous, the derivatives of IV are different on sides
1 and 2 of r =‘f1 Wi(t) = —2m/(a2+m——1),1

Wy(1) = —2/(@+m—1). )

The dimensionless interface is at r = 1. Equations (3.4a, b) and (3.5) are unchanged
in form. Equations (3.4c—¢) take the following form in dimensionless variables:

(4.4)

Hé(%?%’:)ﬂ =0, (4.5)

| Hé(%gdrg;—v)ﬂ 0, (4.6)

0 -

~tph+2[ § 2] = Sy +0..+9), @)

where p, is scaled by p, W2, ¢ = %‘, (4.8)
T

is a densitv rati __T 49

is a density ratio and S TR, (4.9)

is the dimensionless surface tension. :

The parameter § has been used in all previous studies of instability of two fluids,
but it is not a good parameter because it depends strongly on the velocity or the rate
of shear in the basic flow. It is better to write

J TR,

= ——E’ = 2
Rf ap, vy

S (4.10)
where J is a surface-tension parameter introduced by Chandrasekhar (1961) in his
study of capillary instability of jets of viscous liquid in air.

For core-annular flow the parameter J* = TR,/p, »? is more convenient than J

because
' J* =qJ (4.11)

is given when the oil and pipe radius are known. o
The problem is characterized by six dimensionless parameters: m, a, ¢,, J, R, and
R, of which five are independent, R,/R, = m/{,, where m = u,/u,.
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5. Normal modes

We replace [w;, v, w;, p;] (v, 6,%,t) and 8(9, z,¢) with amplitude functions [iu;, v, i,
p,](r) and an amplitude constant 8 times exp [inf+ia(x—Ct)] in the usual way. The

i
equation u(L,6,z,t) = 8,+ W(1) 4,
then reduces to ' u(l) = a(W(1)—C) 4, | (5.1)

giving 8. In each of the two regions, corresponding to l=10<r<1) and I =
2(1 <r<a), we get

LI
u +r+rv+az 0, . (5.2)
’ i ” uw n2+1 2n .
a(W}—-C’)u =P —E{u +7—(d2+ 2 )u-——ﬁv}, (53)
g [V [ . 1) 20
a(W,—C)v - RL{v + " (a + 3 )v U (5.4)
. , .
oc(W;—C)w+W;u=—ap—R%{w”+?——(a2+%)w}. (5.5)
1 r r

The boundary values of the amplitude functions are such that
ula) = v(a) = w(@) =0,  u(0),v(0),%(0), p(0) finite. (5.6)

On the interface r = 1, we have

[l =Dbl=0,
W) +a(W(1)-C) fw] =0, . (5.8)
[[ﬁ%(w’—au)]} =0, (5.9)
[[—g—(r'—v——nu)ﬂ =0 (5.10)
R o )
sl€ulle Lmqem gy
-—[Iép]l+21{[Ru]]—R.§(l al—n )a(W(l)—C)‘ (5.11)

We eliminated p from the system (5.2)-(5.11). Equations (5.3) and (5.4) are

- reduced to

Dt W, [ (e mtr\ W) 2ind
—u +(E).+a)ll {Rl<x+ r2> " a(1h C)}u—@?r_‘*l

i, i1, i, n*+1 ; P EAULS! . -
+}ZR72L +&‘Erll { (OL+ 2 ) (' 0)}“ +{m;‘—3+11,}u =0 v(.).lZ)

2671 W1 i, i, [if, n*+l . ni 1
—— e e —— =} =) A —— o
{R, r"+ 2 r) n R{l R, r { (l : ) (P C)}l aR; r )

nil,n[i 2'71"' i ’ .
R r\xR,(a “"F>“(”‘_C)}l"'0’ (5-13)

where (R,. 1) correspond to regions 1 and 2.
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We eliminate [{p] from the normal-stress condition (5.11) by equating to [¢p]
obtained by evaluating (5.5) at r = 1. After some simplifications, using the other
interface conditions, we get '

%(1—a2~n2)%+2i [[%u’j”+§ﬂé{zv"+w’—(x2+7zﬁ) w}}]
+(U"—C){[[w§ﬂ—%[[w]]} =0. (5.14)

The governing equations are (5.2), (5.6)-(5.10), (5.12), (5.13) and (5.14).

The conditions (5.6) at the origin may be stated more precisely using the method
of Frobenius. Conditions may also be inferred from the fact that u(r, 6, x,t) is single
valued, hence independent of 8 at r = 0 (see J oseph 1976, p. 23). We may decompose
u into an axial part e, w and a tangential part e, u, = e, u+eyzv. Of course, w(0, x) e!"?
is independent of 6 when n =0, or when n + 0 and w(0,2) = 0. The tangential
velocity '

u, = cos f[iu(0, x) e'"*] —sin G[¢(0, x) e'"?]

is independent of § when

A
%éi = —{(nu+v) cos @ +isin B(u+nr)} el = 0.

When n % 1, u, is zero; then, (0, z) = v(0,z) = 0. When n = 1, it is enough to have
u(0)+2(0) = 0. The tangential component u, need not vanish when n = 1. Sc?me
further conditions at » = 0 can be deduced from (5.2) at r = 0, using the results just

obtained,
u+nv

lim {aw +u +

-0

} = aw(0) + 2u’(0) +nv’(0) = 0,

Summarizing our results,

n=10: u(0)=v(0)=aw(0)+2u'(0) =0,
n=1: u(0)+v(0)=w(0) =0, (5.15)
n22: u(0)=1v(0)=w(0)=0.

We define system I for 4, v and w to be (5.2), (5.7)—(5.10), (5.12), (5.13) and (5.14).

We also worked with the system II of equations for « and v alone which can be
derived from system I by using (5.2) to eliminate w. System II is defined by the

condition w(a) = v(a) = w'(a) = 0 (5.16a, b, c)

and the following equations in the two regions ! = 1,2 inside and outside the interface
at r = 1:

def

Ji = 1aR(Wi(r)—C)r?,

U+ 200 — [ i+ 2atr o+ nt 4 3] — [ f 4 2% —n — 3]’ + [ f(a*r + 1)
+alrt+ (n?42) a2 + 3n2 — 3] u+ nrv” — 2nr2”
=it + 0P —3]nrv’ + [ f,—iaR, W;
+3(a2r2+n2—1)]nv =), (5.17)
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nriu” + 2nrin” — [ f,+ a0+ 1] nrw’ —[ fi—iaR, W; 4+ 3a2r2 +n2—1]nu

&1 + (g2 4 n?) 12" + (@2t —n?) v’ — [ fy(aPr? + n?) + atrt
h +(@2n2 1) ot +nd(n—1)]v = 0. (5.18)
At the interface r = 1, we have
[l =[] =0, (5.19a, b)
(m—1) Wi(1) u,— (W(1)— C) [u] = 0, (5.20)
vi—mvy+(m—1)v+nm—1)u =0, (5.21)
uy +uy + (et +n2—1) (1 —m) u—muy —mu, = 0, (5.22)

ul +2uy — (f, + 3a® +n? + 1) uy +nvf —nv;
—muy —2muy + [ f; &+ m(3a® +n2 +1)]u;
+[fi(§—1) —iaR, Wy(1) (§—m)+ (m—1) (®+7*—1)]u
—nmv;’+hmv;+[f1(§2—1)+(m— 1) (at+n?—1)]nv
+ i
R,(W(1)—C)

Equation (5.23) may be put into a more convenient form, using (5.20),

(*+n:=1)u=0. (5.23)

wl +2uf — (3 + n?+ 1) uf + ney —nv] —muy — 2mug +{f,({,— 1) +m(3a®
+n?+1)} u;+{f1(§2—1)"‘i“R1(‘:2_ D) Wy(1)+ (m—1) (&?
+n2 =1} uy+{fL({,— 1)+ (m—1) (@ + n?— 1)} nv, — nma,

iaJ(a®—n?—1)
R,(W(1)—C)

In the axisymmetric case, when 2 = 0, the equations for » and v decouple and the
unstable eigenvalues are determined from the equations for u(r). The r-equation
gives rise only to stable eigenvalues. Most of the results given in this paper are
computed for the case of matched density {, =1 and axisymmetric disturbances,
n = 0. In this case, u is governed by

+nmvy+ Uy = 0. (5.24)

a2 — [ f,+ 2+ 3] - f, + 202 =3 ru’ + [ fi(a*r®+ 1)
+atrt+ 227 -3lu =0, (5.25)

where u,(0) = 0 and u,(r) has bounded derivatives at r = 0,

and, at the interface, r = 1.

(m—1) W) u— (1) —~C) (1;—u3) = 0,
Wi+ 4+ (@ = 1) (1=m)u—muz—mu, = 0,

W)+ 2] — (32 + 1) ug—muy —2maug + m(3a® + 1) uy

ixJ (2 —1)

+{m-1) (1’_1)2‘2+W

u, =0. (5.270)
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6. ‘Numerical method -
We used a pseudospectral method to integrate system I. This is a collocation 111etllod
using Chebyshev polynomials which is particularly suited to ODE’s with variable
coefficients. Following Orszag & Kells (1980), we expand (u,v.w) (r) in terms of

T.(r) = cos(karccosr), k=0,1,2,.....\, (6.1)

where N is a truncation number. To use this representation, we must map each of the
regions occupied by the two fluids into [—1,1], 7>y, 0= 1,2,

y, = (l'ai)y1+1+ai

; . (6.2)

(@1, a,) = (0,0). (6.3)

The interface , = 1 and r, = 1 maps into itself, y, = 1. In each region i = 1,2, we
define interpolation functions of y
v

Uy, Iy v, Lyw] = T [y, B, ] To(y). (6.6)
k=0
Collocation points are i [
Yy = cos-Z—V‘Z, j=01,..N, (6.5)

where j =N is a boundary point and j =0 an interface point. In the core, the
centreline conditions are counted as a boundary point. The interpolation functions
are determined when the coefficients (4, ¥y, ;) are known. The N+1 coefficients
i, can be determined by u(r;) at points of collocation by requiring that

Iy u(y;) = u(ry). (6.6)

The coefficients 7, and o, can be obtained in the same way. We can find all the
coefficients if we can determine the 3(N+1) values (u,v,w)(r;) at the points of
collocation. The required values are generated numerically from system I. This
system is to be satisfied at points of collocation. The derivatives in the differential
equation at points of collocation can be expressed in terms of the functions at points
of collocation through the derivative formula

d?Iyu N ‘ -
w . = Eo w(y;) Dp)ipr (6.7)
G, (—1)** . )
where D),; = = , k7,
(Dy)es C yo—1; J
D),=—— _ 1<k=j<N-1,
( l)jj 2(1_y12)
2N+ 1 (6.8)
(Di)oo = 6 = —(D)nx>
GN = 00 = 27
C=1, 1<j<N-1
and D, = (D)". )
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There are 3(N— 1) equations for u, v, w arising from (5.2), (5.12) and (5.13) at interior
points of collocation in the annulus and 3(N— 1) equations in the core. There are three
boundary conditions at the wall, three centreline conditions in the core and six
interface conditions, hence 3(N+1) in each region and 6(N¥+1) in all. The 6N+ 6
linear equations in 6N+ 6 unknowns form a linear eigenvalue problem of the type

(A+cB)-x = 0. (6.9)

This eigenvalue problem was solved using the IMSL routine EIGZC.

We test for convergence by increasing the truncation number N. Converged
eigenvalues C(N) do not change as NV is increased. There are spurious eigenvalues in
the discretized system which do not converge. We find satisfactory convergence
when N > 14.

We compared our numerical results based on collocation methods with those of
JRR (1983), which are based on Galerkin methods. We find good agreement in all
cases. To compare our results with theirs, we put the density ratio §, = p,/p, to one,
S = 0. Their Reynolds number is Re and their complex wave speed is designated as

Cy, related to our R, and ('Z-I,)Y/\-/"-
3

a at+m—1

Be=@tm—pntr ®="a ¢ (6.10)
where m = p,/p, < 1. The m used by JRR is u,/u, > 1. We get agreement up to
fourth-place accuracy even when the truncation number N = 14. The agreement is
. better when the azimuthal periodicity number » is small; the error is always within
the bounds allowed by JRR. The results just cited imply that our results also agree
with stability results for one fluid presented by Salwen & Grosch (1972) and Salwen,
Cotton & Grosch (1980), which JRR (1983) reproduced.

JRR (1983) noticed some difficulties in achieving convergence at low Reynolds
numbers using their Galerkin method. These problems seem not to arise when a
collocation method is used.

Our numerical results for the longest waves agree perfectly with analytical results
to be derived in §8. The numerical results for short waves are in agreement with those -
computed by Hooper & Boyd (1983, 1987) when account is taken of the difference
between their problem and ours.

7. Axisymmetric and non-axisymmetric disturbances

Our numerical codes work well for non-axisymmetric as well as axisymmetric
disturbances. However, we were unable to find situations in which instability
_ definitely occurs for n # 0, with stability for n = 0.-For this and other reasons, which
we shall discuss below, we have presented results only for n = 0.

Some numerical results for a few discrete values of « were presented by JRR (1983)
and more results by JRR (1984). In their work, density differences and surface
tension are neglected and {, = 1. Their computation showed that in most cases of
instability with R,/R, < 0.7, it is the axisymmetric mode which is most unstable.
However, at the critical value R, /R, = 0.7, they computed growth rates as a function
of u,/p, for Re =100. aR, =1 (R, =26.42.a = 1.43,2 = 0.7) and found that the
growth rates associated with n = 5 were positive and the growth rates for n = 0 were
negative. This case then appears to be stable for n = 0 and unstable for n = 3, but
appearances are illusory in the following sense. We computed growth rates
corresponding to the parameters in figure 4 of JRR (1984) for n =5 and n = 0, and
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Ficrre 2. Growth rate 2C = 2Tm C vs. wavenumber a for a = 1.43. m = 0.5, R, = 26.42. J = 0.
The addition of surface tension J > 0 should stabilize the curve with azimuthal wavenumber
N=35.

for all values of 2 we found that the highest growth rates are achieved for the
axisymmetric mode (see figure 2). The most unstable mode for the parameters used
in figure 5 of JRR (1984) is axisymmetric. ‘

JRR (1984) also found that at any radius ratio, high azimuthal modes are
unstable, but the magnitude of Im (C) decreases asymptotically with mode number.
This instability of high azimuthal wavenumber and also to large « is a manifestation
of the short-wave instability of Hooper & Boyd (1983) and occurs only when surface
tension is zero. :

We did numerical studies with different n and always found that » = 0 was most
unstable.

There are some theoretical arguments which suggest that the axisymmetric
disturbances ought to be most dangerous. The effects of surface tension appear
only in the normal-stress condition (5.14) at the interface and are in the form
J(1—a?—n?) where « is a positive real number and n is the azimuthal wavenumber.
It is known that long waves are destabilized by surface tension; for example, there
is instability even with n =a = 0. For long-wave instability, J (1—a2—n?) > 0;
hence, n = 0 (also « < 1). This instability, it turns out, is analogous to a capillary
instability and it is axisymmetric. On the other hand, short waves are stabilized by
surface tension so that waves with n > 1 tend to be stable: the larger », the greater
the stability. Also, the fact that Squire’s theorem holds for the plane analogue of our
problem (Hesla, Prankh & Preziosi 1986) shows that two-dimensional disturbances
in the plane of flow are most dangerous. Hence, axisymmetric disturbances may be
most dangerous even when surface tension is not important.
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8. Perturbation solution for long waves

The stablhty problem can be solved explicitly in the limit of infinitely long waves
(¢—>0) in a power series of & using the method of Yih (1967). The axisymmetric
problem can be obtained from (5.164, ¢), (5.17), (5.19a), (5.20), (5.22), (5.23). The v-
problem (5.16b), (5.18), (5.195), (5.21) is decoupled and gives rise only to stable
eigenvalues. Thus,

u(r, @) = u®(r) + au(r) + O(a?), (8.1)
Cla) = C +aC® 4 O(a?). (8.2)
" 2(n?
- 2@ =1)
At zeroth order, we get C pr—— (8.3)
. 1—=m(@?—1)*G—(a*+m—1)H :
M — iR
At first order, C iR, — @Erm—D) @ tm=1) "’ (8.4)
where A
G =—2(3a*+2m—3)d, —3(8a’+5m—8) B, + 2(a®+3a® +3m—4)&, )
at +3(a3+8a2+6m—9);§2 2i+m—-2 Vi,
h = (20°—3a* +6a*—5—12Ina)d, +(3a° — 4af 23—48Ina
26 Cal il f&t,-l- 42 » /S%ﬁ
P +m—1m P 2a%+2m— 2 ma2 8.5
T attm—124 T (@4m— 1)(a4+m—1)24 (85)
A ——7’n2 A --1
b= 2 —1): By = 144(a2 +m—1)’
144(a*+m—1) 144(a*+m—1)
';’ i (@+m—1)(a*+m—1)§ (J—1)(a®—1)*(@*+2(m—1)a®—m+1)
? - 16(1—m) A8 (@+m—1)(@+m—1) )
L To find points of the neutral curves for a = 0, put C® = 0 and solve for
g )
2R%(1—m)
8l(a*+m—1) Hy—(a®*~1)2G,]
(@+m=1)(a*+m~1)[(—4a*+ma®*~3m+4) (@®*—1)+4Ina(a* + m—1)]
((,—1) (@—1)[a*+2(m—1)a*—m+1] 36
(@+m—1)*(a*+m—~1)> ’ (8.6)
where H, and G, are the same as H and G after £ is put to zero.
The flow is unstable for long waves & = 0 when
J* _J* -

The coefficent of c,-l in (8.6) is positive whenever a > 1. Increasing the density of
the liquid in the annulus stabilizes the flow against long waves w ‘hen m < 1 and
destabilizes when m > 1. but the effect is relatively weak. The effect of increasing the
density of the liquid in the annulus destabilizes short waves when m < 1. onfht
lubricants are efficient against emulsification and heavy ones against caplllaut\
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FieuRE 3. R,/(J*)? as a function of m with @ =0 and @ as a parameter. The numbers on the
vertical axis give values of R /(J*):.

We can write the criterion (8.7) for instability as

R, < R.. (8.8)
A greater than critical amount of shearing (R, > R,) can stabilize capillary
instabilities. It is clear that 8, = f-}a, m). (8.9)
Hence, R = J*f(a,m)/a. (8.10)

The lower critical Reynolds number varies with (J*)!. In figure 3, we show
R,/(J*) as a function of m with a as a parameter. For each value of a < 1.4889,
the values of R, are finite for all me[0,1) and R, o as m— 1. When a > 1.5803,
R, = oo for all me[0,1). When 1.4889 < a < 1.5805, R.(a,m) is finite for some m
and is infinite for others. We may define d(m) as the a such that

R,(d(m), m) - 0o0. (8.11)
A graph of é(m) is shown as figure 4.
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FierrE 5. The best viscosity ratio #i{a) for minimizing instability to long waves (x = 0)
aceording to (8.12).
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FiGURE 6. Stability limit for long waves >0 defined by (8.12). When a = 1.5805. R(a) = + .
and the interface will undergo a capillary instability to long waves {¢->0) at any R,. At a = 1.55,
R/(J*)t = 40.4.

When a < 1.5805, there is a best viscosity ratio m = m{a) minimizing the region of
instability to long waves: ‘

R@) = min R,(a,m) = R(a,n(a)). (8.12)
osmgl
The graph of 7 (a) is shown in figure 5 and the graph R(a) in figure 6.
The solution just derived sets a correct standard for testing our pseudospectral

‘numerical method. In all cases, we get four-place accuracy from the numerical
method truncated at N = 14.

9. Comparison with results of Hooper & Boyd

Hooper & Boyd (1983) have considered the linear theory of stability of an
unbounded plane Couette flow with constant shear rates above and below a flat
interface matched so that the shear stress is continuous. Their analysis is relevant
locally in the limit of short waves, & - 00, and it predicts universal instability in all
cases in which surface tension vanishes. Surface tension can be included in their
analysis for S small enough that

a*S < 0(1) (9.1)

as a— 0. Surface tension stabilizes the short-wave instability.

Renardy (1985) did a numerical study of plane Couette flow of two superposed
liquids between parallel walls, and she found an instability which did not reduce to
that of Yih (1967) as a0 or to that of Hooper & Boyd (1983). Hooper & Boyd
(1987, hereinafter referred to as HB 1987) studied Renardy’s finite-z instability for
shear flow of two fluids in a semi-infinite region above a flat plate using an
asymptotic method and also a numerical evaluation of the secular equation arising
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from an Orr—Sommerfeld type of analysis, using Airy functions. They characterized
the o interval for the finite-o instability as ‘

az % 1
(@‘i‘i) <1, (@xaRug)> 1. 9.2
HB.

Basically, this is a large Ryy instability.

The problem of HB (1987) looks locally like core-annular flow when the
lubricating layer in the annulus is thin. However, the two problems are not
comparable because of the effect of the curvature terms, which are probably of
secondary interest, and because their plane problem does not admit capillary
instability. The first term in the surface-tension expression S(1 —a?) is responsible for
instability to long waves and it is absent in the plane problem. Surface tension in
HB’s problem appears as —Sa?® and can only stabilize short waves.

Useful formulas for frequencies and growth rates were derived by HB (1987), and
they were able to identify the new instability with the viscous boundary layer at the
wall. They note, however, that their asymptotic results are not uniform in the
viscosity ratio u,/p, and they fail in the limit u,/u,— co which is of interest for
lubricated pipelining (cf. §10 of this paper).

In figure 7, we superimposed the results of our pseudospectral code on the
numerical results computed by HB and exhibited as figure 5 of their paper. The
comparison requires that we identify the constant shears. which represent the
parabolic arcs of core-annular flow. When a 3 1 and § = 0, the instability is local in
the sense of HB (1983). For this limit the choice of the local rate of shear at the
interface is obligatory.

There are some discrepancies between our results and HB (1987), as can be seen
from figure 7. To facilitate the explanation of these discrepancies, we shall need a list
of conversion factors. We attach the subscript HB to the symbols used by HB
(1987).

2(a—1)? \

B m)
g o (@+m—1y
HBE ™ Yla—1)3
Mmyg = 1/m, . . ’ (9.3)

ayg = (a—1)a,
Cup _ m(a*+m—1)
Rys  Ha—1)

¢
-

Figure 7 is identical to figure 5 in HB (1987) except for the dots, crosses and squares
which are values computed from our numerical program. The notation on figure 7 is
as originally presented by HB (1987) except that we have assigned a subscript HB
to all the symbols.

The vertical bars on the curves Syp = 0.1 and Sy = 0.00498 are at a5 S5 = 1.
Given the difference between our problem and HB’s problem the comparison for
alpSyp < | suggests agreement. The difference between our results and those
of HB vanish for large ayy when Sy = 0. There is disagreement for large a5 when
adpSyp > | because the curves marked Syp = 0.00498 and Sy = 0.1 are computed
from the short-wave formula given in the caption. which was derived in HB (1933).
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Asymptotic form for Im (Cy5)/Ryp When
ayp > 1
0.002 ~
Sun=0
0 b Xup
X
-0.002 ~ x *
Sy = 0.00498
—0.004 -
—0.006 -
ImCun _ 008 |-
HB — Asymptotic form for Im (Cyg)/Rus
—0.010 & when oy > 1
~0.012
—-0.014
-0.016 - Syus =0.1

FioURE 7. (After Hooper & Boyd 1987) ImCyp/Ryp ts. &yg When myg =2 and Bys > 1 for
different values of S,5. The upper branch shown at each value of Sz is the asymptotic form for

Im Cyp/Ryp. which is
1 L—mus)
—a .
2(1+mys) “gxs[( Mys ) HBSHB]

The dots. crosses and squares are points computed from our pseudospectral code for CAF. See text
for explanation.

and the formula is not valid when o Sgp > 1. Evidently surface tension is much
‘more stabilizing for short waves than is indicated by the asymptotic results of
HB (1983).

10. m—0Q for R, = 0 is a singular limit

e have already mentioned that m =0 is an important limit for lubricated
pipelining. Since m = p,/u,, we get very small m when lubricating viscous crudes
4, = 1000 P with water g, = 1/100 P, m = 107°. v

Consider the axisymmetric problem (5.25), (5.26) and (5.27). The Reynolds
number for the water R, appears only in the water equation (5.25) when 1 Sr<a
and R, = R,/m. If R, = 0 and m -0, the water equation is inviscid,

rul —roul + (a2 + 1) r*u, = 0, (10.1)

two derivatives are lost. To solve this singular perturbation problem at zeroth order,
it is. necessary to discard certain boundary and interface conditions. The no-slip
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condition ug(a) =0 and (5.27b) are set aside. The shear-stress condition (5.22)
reduces to
u tu (e —1)u, =0, | (10.2)

which is an uncoupled condition on u;. On the other hand, (5.23) reduces to

uy +2u — (fy+ 30+ 1) ug +f, &, )
iaJ(a?—1)

+H{ilGe— 1) —iaR, Wy(1) 4+ 1—a%u 1+m=0, (10.3)
whereas (5.24) reduces to
uy +2uy — (3 + 1) ug +£,(L— 1) u;
T _ , _ iaJ(a®—1)u
+{fi(§e— 1) —1aR,(§,— 1) Wy(1) +1 “2}“1+—"—”_°1(W(1) 0)1 0. (10.4)

These two equations couple the flow in the water to the flow in the oil through terms

proportional to w,. Equations (10.3) and (10.4) are equivalent when (5.27b) holds. If

(5.27b) is discarded ab initio, we are obliged to use (10.3). This is the form of the

normal stress when the outer fluid is regarded as inviscid from the start and the

continuity of the axial component of velocity (3.5), which leads to (5.27b), is
omitted.

Equation (10.3) decouples from the water when {, = 0. Then (5.25), (10.2) and
(10.3) are enouuh to determine the family of eigenvalues given by Chandrasekhar
(1961) in his study of capillary instability of a viscous jet. To 1dent1fv our problem
with his, we note that when m =0, Wj(r)=1. Then put R,(1— O) C, which
is equivalent to rescaling the time. To complete the formal identification of
this problem with Chandrasekhar’s, put W, =v/R,. In dimensionless variables,
Chandrasekhar’s problem can be written as

u,=-Vp/p+Viu on 0<r<1
with u=20, u,+w, =0, —p/p+2u,=J(04+5,,+8) on r=1.

It follows that € depends on a wavenumber « and the surface-tension parameter J.
The limit v-0,J > 0 corresponds to an inviscid jet, leading to Rayleigh’s theory
with maximum growth rate at & = 0.697. The w avenumber a(J),0<a<1 which
maximizes o = C’(oc J) is an increasing function with &(cc) = 0.697. For small J,
Chandrasekhaj&%l) showed that to a good approximation ¢ = T(1—a?)/6u, R,
hence, &(0) =<. Small J corresponds to situations in which viscosity is paramount.
The most dangerous wave for very viscous jets is very long.

11. The limit R, -0 and m % 0

This is not a singular limit, R, = R,/m tends to zero with R, and we get Stokes
linearized equatlons in the oil and in the water. It is again appxopuate to calculate
eigenvalue C'= C/R,. Then, when R,~0, f, = —izC and fo=—ial/m, (5.27b)
reduces to

wy=u, at r=1

and the last term of (5.270) is replaced by
—ia (@ —1)u,/C.
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Ficrre 8. Neutral curves R (a. m.J*), J* = 930, a = 1.15. m = 0.05 (-=-); m = 0.1 (—). The
band of Reynolds numbers between the upper and lower critical branches is stable.

This problem is independent of R, and also of Wj(r),l=1.2, as it should be in the
Stokes’ flow limit.

Surface tension J is stabilizing when & > 1 and destabilizing when « < 1. In all
cases for which R, -0, we found core-annular flow (CAF) to be stable' when o > 1
and unstable when « < 1. This is shown clearly in figure 12 and in the neutral curves
exhibited in §§12 and 13. Values of &(a,m, J) of the fastest growing waye show that
the Stokes’ flow limit R, -0 depends on a,m, J. We recover the capillary instability
of Chandrasekhar (1961) numerically by fixing m € R,~0, and the capillary
instability of Rayleigh (1879) by putting J - co when m/R, is small and R, —0.

12. Neutral curves

There are many different types of neutral curves. We have computed some
representative types, shown in figures 8-10, and 12-16. The results given in §13 are
a fairly complete representation of what linear theory has to say about the results
described in figure 1. ‘

Figure 8 shows a fairly representative situation, with disjoint neutral curves, an
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Ficure 9. Neutral curves Ri(a.m,J*), J* =930, a = 1.25, m = 0.9 (—):im=08 (—.—.—);

m=078 (OO0Q); m=0.75 (----): m=0.7 (-—=). The stable band of Reynolds numbers
disappears between m = 0.78 and m = 0.75.

upper and lower branch. The lower branch is associated with long waves leading to
capillary instability caused by surface tension at low Reynolds numbers. This region
is in the bottom left-hand corner of the (¢, R))-plane. It terminates on « = 1 for
R, = 0. The values R, = R, as a function of @ and m when & = 0 were given in §8.
When a > 1.5805, disturbances with « = 0 are unstable at all R. We may define a
critical stability limit for the lower branch:

@L(a,m, J*) = max R, (a,m, J* a). (12.1)
x20

The flow is unstable to generalized capillary instability when R, < R,.

The upper branch of the neutral curve is associated with larger a, shorter waves
and larger Reynolds number. We may define a critical stability limit for the upper
branch:

Re(a.m.J*) = min R.c(a. m, J* a). (12.2)
220
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Fieure 10. Neutral curves R (a,m,J*), J* =930, a=125. m = 0.01. The lower critical
condition and upper critical condition have merged. Stable CAF is not possible.

Core-annular flow (CAF) is unstable, evidently leading to emulsions when
R, > Ry.

When
R, <R, <Ry (12.3)

we have stable CAF.

The topology of the neutral curves can change with parameters. This is shown
clearly in figure 9 which shows a change of topology leading to destruction of the
upper and lower branches and the formation of left and right neutral branches for
J* = 930, = 1.25 for some m between 0.75 and 0.78. Left and right branches of the
neutral curve R, is also shown in figure 10. '

In figure 11, we have given a graphical representation of (12.3) for J* = 930,a =
1.25 for different values of m. CAF is stable in the enclosed region of the figure.

Figure 12 shows that increasing J* stabilizes short waves @ > 1 and destabilizes
long ones a < 1.
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Fietre 11. Upper @l,(m) and lower ﬁ,‘(m) critical Reynolds numbers for g = 1.25 and
J* = 930. Core-annular flow is stable in the enclosed region.

13. Comparison with experiments

Now we shall compare the results of experiments of CGH (1961) with predictions
of eigenvalues of the linear theory of stability. In their paper, they presented pictures
of the flow in eleven different cases. These pictures are exhibited in figure 1. We have
calculated neutral curves and growth rates for these eleven experiments. The neutral
curves are exhibited in figures 13-16 and the growth rates for the fastest growing
wave are listed in table 1.

(1) We used linear theory to predict the windows of operating parameters for
stable CAF.

(2) We used the neutral curves to identify the nature of the instability that should
be observed in the experiments. We aim to discriminate between conditions in which
they got bubbles and slugs of oil in water from those in which they got emulsions of
water in oil.

(3) We used the calculation of the length of the most rapidly growing wave to
predict the length of slugs and bubbles that should arise from the capillary
instability.

Inalleleven experiments. except Experiment 2. CAF is unstable in the experiments
and in the theory. In prineiple there is no reason why the flow observed under
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FIGURE 12. Neutral curves in the (z,S)-plane for @ = 1.4, m = 0.5. Increasing S at a fixed R, is the

same as increasing J. Increasing J at fixed a and R, destabilizes long waves (2 < 1) and stabilizes
short waves (x > 1).

Experiment Theory

£ a R, S g o(&) !

3 142 6980 45 (shortslug) 0.6  7.83518x107 5.2665
7.5 (long slug) ,

4 224 26.98  0.85 (bubble) 0.66  2.91616x 107! 0.8596
6 15 406.90 > 15.75 (slug) 0.22 5.85969x107° 12.1856
7 174 287.41  13.1 (slug) 0.08  2.34663x107° 21.4686
8 280 134.50  0.69 (middle-most bubble) 0.61 5.23881 x 10~* 0.7060
~a= x = 0.32  6.8402x10* 4.7682
9 181 795.97 6.0 or > 15.75 (slug) 0023 5.39895x 10~ 66.3405
10 2.65 433.70  2.70 (longest slug) 0.11 1.82720 x 1072 4.4199
11 4.63 221.69 - 0.3125 (largest bubble) 0.64  2.41483x107° 0.4202

TasLE 1. Comparison of theory and experiment. The # refers to pictures shown in figure 1.
o(e) = aC(a) is the growth rate and & is the wavenumber of the fastest growing wave. IR, is the
length of a slug or the radius of a bubble.

unstable conditions should correlate with the predictions of a linear theory. The
bubbles, slugs and emulsions seen in the experiments are not small perturbations of
CAF. Nevertheless, the predictions of the linear theory do seem to correlate with
observations. ,

To apply the results of our stability calculation to the experiments, we need to

12 FLM 201
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Freure 13. Neutral curves corresponding to Experiments 1, 2: q = 1.08, 1.21; J*=2102;: m =
0.0532. The horizontal lines correspond to the Reynolds number of the experiments. For
Experiment 2, the minimum value R, = 138.2. Stable core-annular flow is observed with R, =

138.6. The maximum growth rate dc, (&) = 2.747 x 10~ occurs at a = & = 2.24. This flow is almost
stable.

convert data given in the experiment into parameters used in the analvsis. The
superficial velocities are the volume flow rate divided by the area of the piiJe. From
these flow rates and the values of material parameters, we may compute R, and
W, for stable CAF. This fixes all of the dimensional, hence, dimensionless, parameters
used in the analysis. The solution is carried out in ¢.g.s. units. The viscosity of water
is given as 0.984 cP. For the oil viscosity (16.8 cP) listed in figure 1, we get m =
0.0532. Carbon tetrachloride was added to the oil to increase the oil density. The
density was matched, {, = 1. The interfacial tension between the 16.8 ¢P oil and -
water was measured by the method of capillary rise and is given as 45 dyne/cm. (The
capillary rise method is not accurate and the evaporation of carbon tetrachloride
makes it likely that the surface tension value is not accurate and could have changed
by as much as 5 dynes/cm from experiment to experiment.) In all the cases exhibited
in figure 1, water wets the wall of the cellulose acetate-butyrate. Let 1, be the
superficial velocity of the oil (called V', in figure 1) and I}, the superficial velocity of
water with £ = W/} from =8) and
23
e {1+§+(1+mg)-‘z}% .20

no=:ﬁ(l+mg)%[m—1+(1+mg)%} (13.1)
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Ficure 14. Neutral curves «corresponding to Experiments 3, 5: a = 1.42,1.31; J*=2102; m =
0.0532. Oil slugs in water are observed in Experiment 3. Water drops in oil are observed in
Experiment 5.

WoR, p,W,R
Then, R. = PV Ly, Py g ht,
en 1= 4 = ap, (13.2)
S T aT J*

- pR,WE R, W aRY

The values of the superficial velocities are given in figure 1.

The comparisons between theory and experiments are made in figures 13-16 (in
which the neutral curves corresponding to the 11 drawings shown in figure 1 are
exhibited) and in table 1. The table gives the waselength o = & corresponding to the -
maximum growth rate - urowvimdatn,

aG(&) = max Im aC(a). (13.3)

az0

The dimensionless wavelength corresponding to & is A = 2r/@ and the dimensional
one is AR,.
The window of parameters for stable CAF may be expressed as an interval

R, <R, <R, (13.4)

between the maximum R, on the lower branch ‘of the neutral branch and the
minimum R, on the upper branch. Such an interval exists when the lubricating layer
is small but not when it is large. Recall that the flow is always unstable to long waves

12.2
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Fretre 15. Neutral curves corresponding to Experiment 7: a = 1.74, J* = 2102, m = 0.0532. Oil
slugs in water are observed. For Experiments 9, 4, 10, 8, 11 (a=1.84,2.24,2.65,2.80,4.63,

14

respectively) the neutral curves are very similar to the one shown here except for some scale
changes. These other neutral curves are available from the authors on request.

a0 when a > 1.5805. The minimum Ry, decreases rapidly as a is increased. We may
describe this result in terms of a critical Reynolds number
Re= BmB)Th _ Ry(a—1)
v, m

in the lubricating laver. The numerical results show that Re.is a rather weak function
of @ and Re x 660. Hence, we get a weak approximation

R ~ m660  35.21
v (a—1) " a—1

On the other hand, the maximum value @L on the lower critical branch is an
increasing function of a—1 (see figure 6). Hence, as a increases, the interval (13.4)
shrinks: and the construction implied by the foregoing argument, shown in figure 17,
indicates that CAF is always unstable under the experimental conditions (m =
0.0532.J* = 2102) of the experiments of CGH when a > «,; where a, ~ 1.23. The
same argument shows that CAF is more stable when the lubricating is thinner with
maximal intervals (13.4) of stability as a — 1. B

CGH observed stable CAF in Experiment 2 and only in Experiment 2. The
theoretical result for this experiment is shown in figure 13. The experiment lies very
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F16URE 16. Neutral curves corresponding to Experiment 6: a = 1.50, J* = 2102, m = 0.0532.
CAF plus water drops in oil are observed at R, = ¢ 407.

nearly in the stable band of Reynolds numbers with a weak short-wave instability
(cf. growth rates, figure 13) in a narrow interval centred on a = 2.2. Very minor
adjustments of the values of operating parameters, well within the errors expected
of these experiments, would place the flow entirely within the stable band.-All the
other ten cases are unstable in the experiments and in the theory.

We next consider category (2) of the comparison between theory and experiment.
There are two cases and only two cases of emulsification of water into oil, shown in
figure 1 as experiments 1 and 3, with associated neutral curves in figures 13 and 14.
In both cases, we get an instability for high Reynolds number R, > R, above the
upper critical, short-wave branch. :

The flows in all the other experiments (3, 4, 6, 7, 8, 9, 10, 11) shown in figure 1 are
unstable and the theory, exhibited in figures 14-16, show that the instability is to
long waves and not to short waves. For these long-wave instabilities, there is always
a wavelength A = 2r/d& which maximizes the rate of growth (13.3) of an unstable
wave. The length of slugs and bubbles of oil in water, shown in figure 1, can be
compared with a theoretical value we get from computing &. The procedure we use
is to identify the volume of a cylinder 7

o 2x®
TR}(AR,) = —&—-Ri (13.5)
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FierrE 17. Upper and lower stability limit as a function of a for J* = 2102, m = 0.0532. CAF
Js never stable when a is larger than a = 1.23 at the point of intersection.

of radius R, and length AR,. We say that this volume is preserved in the nonlinear
breakup of the oil. hence, is the same as the volume of slugs and bubbles observed
in the experiments. (The words ‘oil drops’ used by CGH in Experiment 11 is a
misnomer. Small oil bubbles are shown there.) If & is very small, then the wavelength
is many times the circumference of the core. The oil in such a long wave can gather
together to form something like a spherical bubble only if the pipe is large enough.:
Otherwise the bubble cannot collect into a closed spherical shape; it takes form as a
cylinder, perhaps long, which we call slug. Slugs and bubbles, like CAF, seem well
lubricated by water at a radius something like a ~ 1.20, as in Experiments 3, 6, 7 and
9. Hence, R,x R,/1.20 and the volume (13.5) is equal to volume of the observed slug
with area n(R,/1.2)* and length [R,,

R, Y 2t s .
13 (R =R} (13.6)
Hence | = 1.441/a® = 2.887/da. (13.7)

The volume of observed bubbles is 3nd°. Equating this to (13.5). we define

=2 (3—“>1 (13.8)

23/ a
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We measured the length lexp R, Of observed slugs from the pictures in figure 1. The
lexp give the number of pipe radii in the length of one slug and it can be compared
with the / in (3.17). An identical measurement of the ratio of the bubble radius b to
R, determines an lexp to compare with theoretical ratio in (13.8).

Theory and experiment are compared in table 1, where we have identified the
experiments by the numbers shown in figure 1. In the table, we list the value R, the
wavenumber & of the fastest growing wave, the growth rate ¢ = a&((&) of this wave,
the theoretical value I from (13.7) (for Experiments 3, 6, 7, 9 and 10) or (13.8) (for
Experiments 4, 8 and 11) and the measured value lexp: The size of bubbles and slugs
that can be observed in figure 1 under any particular operating condition is not
unique. Since we compute a unique size based on the assumption of constant
volumes, our comparison is only suggestive and not precise. Some remarks about the
comparisons shown in table 2 are necessary. In the table, we have identified which
slug or bubble has been used for comparison. We do not know if the size of slugs and
bubbles, so identified, is representative. For example, there may be a longer or
shorter slug upstream or downstream of the section showing the single long slug
exhibited in Experiment 7 of figure 1. In some of the experiments, like 6, 9 and 10,
there is a great variability with different sizes and configuration occurring
simultaneously. Only Experiment 2 of the three labelled ‘oil in water concentric’
seems to be associated with stable CAF. The other two, Experiments 6 and 9, are
unstable to very long waves, leading to slugs whose lengths (12.186R,, 66.340R,) are
nearly as long or longer than the 15.75R, length of frames shown in the pictures of
figure 1. We cannot distinguish such long slugs from ‘oil in water concentric’. A
shorter slug can be identified in Experiment 9 of figure 1 as the region between the
narrow black lines running from top to bottom. The smaller water bubbles shown in
Experiments 6 and 9 and the oil bubbles in Experiment 10 are unexplained by this
analysis. They could arise as a reaction to turbulence in the water, or as kind of
secondary instability of slugs.

14. Conclusions

The analysis of the spectral problem of linear stability leads to the following
conclusions: :

(1) Core-annular flow (CAF) is stable to disturbances with infinitely long
wavelengths, o -0 for some R, when the ratio @ = R, /R, of the radius of the pipe to
the mean radius of the interface does not exceed a critical value d(m) which depends
on the viscosity ratio m = p,/u, < 1 alone (see figure 4) and '

1.4889 = 4(0.15) < d < d(1) = 1.5805. o (14.1)

When a > @, CAF is unstable to waves a-»0 at any R,.
(2) CAF is unstable to long waves a < 1 when the core Reynolds number R =
WoR, /v, where W, is the centreline velocity, is smaller than a critical value

Ry(m,a,J*) = max R (a, m, J*, ), (14.2)
az0
where Ry, is the lower branch of the neutral curve (see figures 8-10, 13 and 14). This
long-wave instability is induced by surface tension and is a generalized capillary
instability which leads to the formation of oil slugs and bubbles in water. When
@ > 1.5805, this instability is always present.
(3) The limit m -0, R, > 0 is singular and leads to inviscid flow in the water,
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whereas the flow in the core reduces to the problem of capillary instability of a

viscous jet which was studied by Chandrasekhar (1961). This problem depends on a

surface-tension parameter J = J*/a = TR, /p,v}. When J->0, the wavelength

of the disturbance with maximum growth tends to infinity, when J- 0 then

Chandrasekhar’s problem reduces to Rayleigh’s with a most dangerous a = 0.697.
(4) Increasing J* stabilizes short waves & > 1 and destabilizes long ones & < 1.
(5) The limit m > 0, R, 0 is a Stokes flow limit. CAF is always unstable to long

waves a < 1 and is always stable to short waves a>1 in this limit when J* > 0.
(6) CAF is unstable to short waves when 4

R, > Ry(m, a, J*) = min R,y(a, m, J*, @), (14.3)
a0 '

where R,y is the upper branch associated with shorter waves,  can be greater than
one (see figures 8-10 and 13-15). Instability above the upper branch appears to lead
to emulsions of water in oil. The emulsions may arise as a second capillary instability
after water fingers into oil. ;

(7) There is a window of parameters (a,m, J*) such that CAF is stable; that is,
there is an interval

R, <R, <Ry (14.4)

of stable CAF. In this interval, we may say that capillary instability has been
stabilized by sh¥ar. A section of such a w'ndow is shown in figure 12. This figure
shows that there is an optimizing value of m &~ 0.5 which makes the stable interval
(14.4) largest when J* = 930 and a = 1.25. :

(8) The density difference, without gravity, affects the stability of CAF, with
opposite effects on the lower and upper branches. If we increase {, = p,/p, so that the
fluid in the annulus is more dense, then R, is decreased and there is a smaller region
of generalized capillary instability; that is, the lower branch is more stable. The
effect on the upper branch is opposite; increasing ¢,, decreases R.y increasing the
region R, > R,y of instability. The destabilizing effect of increasing ¢, on the upper
branch is much greater than the stabilizing effect on the lower branch (see figure
11.2). ‘

(9) The numerical results show that there is a critical Reynolds number in the
water

~

lRe = Ry(a—1)/m.

-~ m
d . R T = —'—R .
‘Hence, v= T e

In the experiment, Re ~ 660 is nearly independent of a for a < 1.42. Hence,

~ 35.2
Ry = .
a—1

On the other hand. @L increases monotonically from zero when a =1 to o¢ at a
finite a (cf. figure 6). It follows that the interval (13.4) of stable CAF is maximal
0 <R, <cc. when a—1.

(10) There is a critical value a = d@(m. J*) such that when a > d. the interval (14.4)
of stable CAF closes (see figure 9) and CAF is unstable. Moreover,

aim, J*) < d@(m).
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For m = 0.0332, J* = 2102, corresponding to experiments of CGH (1961),
a~123

(see figure 17). It is arguable that one of the most important parameters in lubricated
pipelining is the volume fraction of oil to water

In the experiments, CAF is unstable when ¢ > 0.5376. The pictures of the
experiments shown in figure 1 suggest that long slugs are stable in a lubricated flow
with a x~ 1.2, . :

(11) The linear theory of stability has shown that all the cases of emulsified water
drops in oil seen in the experiments of CGH (1961), and only these cases, are at
Reynolds number exciting the short waves on the upper branch R, > Ry and that
long waves are not excited R, > Ry, (see figures 13 and 14).
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Foundation, Fluid Mechanics and the Army Research Office, Mathematics. Computer
results were obtained under a grant from the Academic Computing Services and
Systems of the University of Minnesota.
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