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Summary

We consider the steady flow of an upper convected Maxwell fluid through
a pipe with wavy walls. The analysis is an extension to round pipes of the
methods introduced by Yoo and Joseph [1] to study the same problem in
plane channels. As in the channel problem, the vorticity in a small cylinder
at the center of the pipe becomes hyperbolic when the centerline velocity is
larger than the speed of shear waves into rest. The region of hyperbolicity is
smaller, but the decay of vorticity is less, when the elasticity parameter is
larger.

1. Introduction

This work is an extension of the analysis given by Yoo and Joseph [1] for
channels to the same problem for round pipes. The history of this problem
and nearly all of the qualitative results can be found in [1] and will not be
repeated here. We take note of the following differences between the
problems. S
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We use a different scale to non-dimensionalize the stresses, which leads us
to an extra factor W, the Weissenberg number, in front of every stress
variable. There are of course extra lower order terms when the equations are
written in polar coordinates. These extra terms give rise to terms with
singular factors proportional to r~! and r~2. These singular factors give rise
to difficulties in the numerical solution which we have avoided by comput-
ing directly from the first order quasilinear system (2.1) rather than the
stream function equation used in [1].

It is necessary to call attention to the fact that the analysis of characteris-
tics in the linear approximation does not depend on the type of perturbation
of Poiseuille flow, provided it is small. Though we do analyze wavy walls,
the characteristics for the vorticity would be the same for any other problem.
We are obliged then to consider the relevance of the analysis of the type of a
partial differential equation for the flow near the exit of a pipe from which a
viscoelastic fluid is extruded. The experiments of Joseph, Matta, and Chen
[2] do suggest a strong dependence on a change of type correlated with the
viscoelastic Mach number; but apart from this the relation of this analysis to
those experiments is obscure. The appendix of this paper discusses the
characteristics for perturbations of uniform flow, which is relevant for the
flow after the pipe exit (see also [2], section 5).

2. Governing equations

We consider the steady flow of an incompressible upper convected
Maxwell fluid through a pipe whose radius varies sinusoidally along the axis.
The equations governing this flow are

divu=0,
puvu=—-vp+vVr,

AMuvr—vur—vu"| +r=n(vu+ vuT), (2.1)

where p is the density, A is the relaxation time, n is the viscosity, u is the
velocity, p is the constitutively indeterminate part of the Cauchy stress
tensor, and 7 is the determinate part.

In the analysis we will assume axisymmetric flow. Hence, in cylindrical
polar coordinates, all dependent variables are independent of the polar angle
60, and there is no velocity or shear stress in the 6 direction.

A list of symbols used in the analysis are:

(r, 2) radial and axial coordinates for the pipe
b ~ mean pipe radius
(u, w) components of velocity: u = ue, + we,

W centerline (7 = 0) velocity |
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(6, 0,, 63, T) components of the determinate stress:

T=08e, 1 0,e.¢,+ 0,¢e,
+1(ee,+e.e,)

Reynolds number = pwyb /7

Weissenberg number = Aw/b

elasticity number = g\ /pb?

viscoelastic Mach number = w/(n/Ap)'/?
Note that E is a material parameter, and the shear wave speed

c=(n/Ap)? (2.2)

is also a material parameter. Of the four parameters R, W, E, M, only two
are independent, since

Rty ™

M?=RW (2.3a)
and
W=RE. (2.3b)

Newtonian fluids arise in the. limit A —= 0 for finite fixed values of the
viscosity 1. In this limit, ¢ - o0, M — 0, E — 0 in such a way that

R=M/E? (2.4)

remains finite.
The boundary value problem for our problem is the system (2.1) together
with no-slip conditions at the wall of the pipe

u=w=0at r=>5b(1+e¢ sin nz), (2.5)

where € is the amplitude perturbation of the sinusoidal variation of period
27 /n of the wall. We assume flow symmetry about the centerline

u=%—:—)~=0atr=0, (2.6)
and that all flow variables are periodic in the axial direction z.

We solve this problem by considering a linear perturbation of Poiseuille
flow. We first compute the solution for Poiseuille flow when € = 0. We then
derive and solve a perturbed problem for 0 < € < 1, using the technique of
domain perturbation (see Yoo and Joseph [1]). We consider only the first
order perturbation here. The perturbed problem will be linear and of mixed
type; that is, if M > 1, then in a region near the centerline of the pipe the
vorticity equation will be hyperbolic, and elliptic elsewhere.
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3. Poiseuille flow

By a Poiseuille flow we mean a solution of the form
u=0, w=w(r) _ (3.1a)
in a pipe with straight walls, e = 0. We also assume a constant axial pressure
gradient

p__ .2
2= =k, (3.1b)

and that the stress components o,, 0,, 0;, and 7 are functions of r only. A
solution of system (2.1) and boundary conditions (2.5) and (2.6) for € =0 is

an b2
p = —k?z + constant, (3.2)
0,=0,=0,
AKS
0= 5.
T=—k2r/2.

Using b, w,=w(0) =k?b%/4n, and bk’/4 as characteristic values for
lengths, velocities, and stresses, respectively, we can write (3.2) in the
non-dimensional form

u=o0,=0,=0,

w=1-r2

p = —4z + constant, (3.3)
o, = 8Wr?,

T=—2r.

We are using the same symbols for the physical variables in (3.2) and the
non-dimensional variables in (3.3), and we will rely on the context to make
our intention clear.

4. Characteristics for the vorticity

Before continuing with the perturbation problem, we remark on the
change of type of system (2.1). Using the scales introduced after (3.2) we
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may write the dimensionless form of the system (2.1) for axisymmetric
problems as a quasilinear system:

dg g _

A(g), +B(g)7, =f(8), (4.1a)
where
8= (u’ w, p, 0, 0,, 03, T), (41b)

1 0 0 0 0 0 0

Ru 0 1 -1 0 0 0

0 Ru 0 0 0 0 -1
A=|—2(Wo, +1) 0 0 wu 0 0 0 (4.1¢)

0 0 0 0 WwWu O 0

0 —-2Wr 0 0 0 Wu O

0 —(Wo,+1) 0 0 0 0 Wu

0 1 0 0 0 0 0

Rw 0 0 0 0 0 -1

0 Rw 1 0 0 -1 0
B= —-2Wr 0 0O ww 0 0 0 (4.1d)

0 0 0 0 Ww 0 0

0 —2We,+1) 0 0 0 Ww 0

—(We, +1) 0 0 0 0 0 Ww
and
—u/r
(0, —0,)/r
T/r
f= -0 (4.1¢)
2(Wo,+1)u/r—o,
—o,
—(Wu/r+ 1)1

The characteristic curves of such a quasilinear first order system are given

by (see Joseph, Renardy, and Saut [3])
dr "
det[A - Ba] ~0. (42)

That is,

dr3[/dr\? dr\? dr
[u—wa—;] [(E) +1][02(E) +2ala +a0] =0, (433)
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where

ay=M?w?— W, — 1,

= M?*uw — Wr,
a,=M?>u?>— Wo, — 1. (4.3b)
Hence there are always real characteristics
dr _u
dz w’

which are streamlines, and imaginary characteristics

dr
dz

The streamline characteristics may be associated with the convective deriva-
tive, and the imaginary characteristics may be associated with the incom-
pressibilty condition.

The remaining pair of characteristic curves are determined by

dr __a (al—aya,)”

L. b
dz a, a,

= +i.

(4.4)

and these are real if and only if

a? — ayay=(M*uw— Wr)* — (M*w? - Wo, — 1)( M*u? — Wo, - 1) > 0.
(4.5)

There is therefore the possibility of a change of type from imaginary to real
characteristics in crossing from one region of the flow to another, depending
on the local relative magnitudes of the velocities and stresses in (4.5).

The characteristics given by (4.4) may be associated with the vorticity
equation. A routine manipulation to derive the vorticity equation from
system (4.1) gives the form

9% % %
azaz +2a 188 +a 082

where a,, a;, and a, are given in (4.3b), { is the non-zero component of
vorticity (§ = curl # = {e,), and g is a function of the flow variables and
their first and second derivatives, which includes { and its first derivatives.
Thus the vorticity equation is locally hyperbolic if condition (4.5) holds, or
elliptic if the inequality in (4.5) is reversed. In regions of the flow where (4.6)
is hyperbolic, there is the possibility that the derivatives of the vorticity may
be discontinuous across the characteristics given by (4.4).

=g, (4.6)
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The results of this section, so far, apply to any axisymmetric problem,
linear or non-linear, and not just to the problem introduced in section 2.
Since the problem of section 2 does not have discontinuous boundary data,
we do not expect to discover discontinuities of the vorticity derivatives in the
hyperbolic region of the flow.

For definiteness, let us now consider a perturbation of the Poiseuille flow
solution given in section 3. That is, we may write g = g, + g,, where g, is the
Poiseuille flow variables and g, is any perturbation. The linearization of
system (4.1) would take the form

0 N
A(80) 5> + B(80) 5> =£i(8:; 80). (4.7)

That is, A, B are given by (4.1c, d) with all variables given by the Poiseuille
flow (3.3). Here f(g,; 8,) represents the linearization of f(g). The char-
acteristics given by (4.4) represent characteristics for the g;, and may be
found by substituting the solution (3.3) into (4.4):

& owr+ [M2(1 - ) — 4w - 1], (4.8)
d:z

with the condition (4.5) for real characteristics becoming

M*(r? =17 —aw?2-1>0. (4.9)

This condition always fails near » = 1; but is satisfied near r = 0, provided
M? —1> 0. Hence there is a region near the centerline of the pipe for which
the perturbed vorticity equation is hyperbolic, if M >1; and a region of
ellipticity near the wall. The radius at which the change of type occurs is
found from (4.9) to be

1/2

o= (1+2E)1~[1- (M2~ 1)M2(1+2E) "] (4.10)

In the next section we return to the pipe flow with wavy walls discussed in
section 2. The linearized problem derived will have characteristics given by
(4.8), with a region 0 <r <r* in which the perturbed vorticity satisfies a
hyperbolic equation (for M > 1), and a region r* < r <1 in which it satisfies
an elliptic equation.

5. Linearized problem for pipe flow with wavy walls

The problem for the steady flow of an upper convected Maxwell fluid
through a periodically constricted pipe is governed by system (2.1) (non-di-
mensionalized as in (4.1)) with boundary values (2.5) and (2.6) in the domain

V.={(r, z): z€ (-0, ), r€[0,1 +¢sin nz]}. (5.1)
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There is a one-to-one map of ¥V, from the straight wall pipe

Vo= {(r5s 20): 25€ (0, ), re(0,1]} (5:2)
given by
z=1z,, ; (5.3)

r=r,(1+ € sin nz;).

To solve the problem we use the technique of domain perturbation (see Yoo
and Joseph [1]), and solve the first order perturbation problem. Thus, the
flow variables (4.1b) may be written as

g(r, z, €) =g%ry, z,) +egM(r,, 2o) + O(€?), (5.4)
where
d or og'®
1] - = oL -
g (r09 ZO) dég(r’ Z, E) |£=O g (rO’ ZO) + a( =0 8r0 ’ (55)
and where
0
g (r, 20) = 5:8(r, 2, €) | =o» (5.6a)
and
ar .
3 . =1, sin nz,. (5.6b)

Of course, the zeroth order variables are precisely the Poiseuille variables
given by (3.3).

The problem for the fist order perturbation is found by simply taking the
derivative with respect to €, and evaluating at € = 0, of system (4.1) and of
" the boundary conditions (2.5) and (2.6). For simplicity of notation, we will
drop the subscripts of 0 on (7,, z,), and we will not use the superscript (1)
for the flow variables. With these notations, the problem for the first order
flow variables g<V(r,, z,) is the system of PDE’s

u,+w,=—-u/r,

RA-r?)u,+p,— (o, +7)=(0,=0,)/r,

R[(1=r*)w,—2ru] +p,— (1,+03,) =7/r,

w(Q-r?)o, +4ru,] - 2u,= —0,, (5.7a)
W1 —r*)o,,= —2u/r—o,,

W[ =r?)o, +4rw,| —28W*r*+ D)w, = —o, — 4Wr(r + 4Wu),

wQ —r2)r,— Wi+ D)u,—w,= —7+2W(Q2u —ro,),
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together with the boundary conditions

u=0; w=2sinnzatr=1, (5.7b)
and
u=w,=0atr=0. (5.7¢)

In (5.7), subscripts of r and z denote partial derivatives. In addition, the
perturbation of the vorticity equation may be written as

[M2(1-r2) = sw2r2—1]¢, + 4wt — ¢, = —[R(1 - r?) + 6W]¢,
+2W[wrz + uzz + 30lr - 8I/erzz - r(olrr - 0322)]
—(w,,+w,,)/r—Qu,—w,+4Wu)/r%. (5.8)

In section 4 we noted that the system (5.7) has characteristics given by (4.3),
and the vorticity equation (5.8) has characteristics given by (4.8). There is a
change of type from hyperbolic to elliptic at r* given by (4.10) provided
that M > 1.

The linear system (5.7) was solved numerically, after first reducing it to a
system of ODE’s. The system of ODE’s arose by a separation of variables of
the form

g(r, z) =g,(r) cos nz + g,(r) sin nz, (5.9

where g = (u, w, p, 0, 0,, 6, 7) is the vector of perturbation variables. The
form of (5.9) makes explicit the assumed periodicity of all flow variables;
which combined with the boundary conditions (5.7b,c), is sufficient to
complete the determination of the first order perturbation.

The system of ODE’s was solved numerically by using an available IMSL
routine, DVCPR, on the Cyber mainframe system at the University of
Minnesota. This routine is a finite difference routine for a system of ODE’s
with two-point boundary data, with the grid points chosen adaptively in
order to make local errors approximately the same size everywhere. The
solution was checked by also using a multiple shooting routine provided in
the IMSL package, routine DTPTB. The results agreed. Further, the prob-
lem solved by Yoo and Joseph [1] was also solved by the finite difference
and multiple shooting routines, with excellent agreement. In passing, we
note that the finite difference routine was the most efficient, using on the
average only 10-20% of the time required by the shooting methods.

6. Results

The characteristics of the perturbed vorticity, as given by (4.8) in the
region 0 <r <r*, are precisely the same as for channel flow, with (x, y)
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Fig. 1. Characteristics.

replaced with (z, r). Thus we refer the reader interested in further discus-
sion of the characteristics to the work of Yoo and Joseph [1], especially their
section 4, where graphs of the characteristics for several cases are displayed.

Here we display a graph of the characteristics, in Fig. 1, for parameter
values also used in Figs. 2 and 6. The value of r* is indicated in the figure,
and both sets of characteristics of (4.8) are drawn.

In general, the results of the perturbed pipe problem are similar to the
results of the channel problem of Yoo and Joseph [1]. The isovorticity curves
presented there are like the isovorticity curves of pipe flow with the same
values of M, E, and n. In addition, we have plotted contours of constant
perturbed stress for both the channel and the pipe problems, again with
similar graphs for corresponding parameter values. We found that the
stresses are slightly larger in the pipe flow case, about 10-20% larger.

A particularly striking feature of both problems is the behavior of the
vorticity for different values of E. When M > 1 is fixed, the vorticity in the
hyperbolic region oscillates (see Yoo and Joseph [1]). For larger values of E,
the oscillations are not damped as r decreases to zero. This feature appears
in the isovorticity plots as isolated regions of positive and negative vorticity,
with little change in maximum absolute value. This is seen in Fig. 2 (see also
[1]). For small E, however, the oscillations are damped severely as r
decreases. In fact, the perturbed vorticity nearly vanishes in the center of the
pipe. To make this more apparent, we have graphed the vorticity in the
separated form

WM (ry, 2o) = §1(7y) cos nzy+ $,(7,) sin nz,. (6.1)
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E= 0300,M= 10.00.R= 33.33,W= 3.00 .FN= .50
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Fig. 2. Isovorticity curves.

In Figs. 3-6 we present graphs of {,(7,) for various values of E. In those
figures FN=n/2m=1/2 is fixed, and §, is labelled VORI1. Notice the
strong decay of the vorticity for small E, Figs. 3-5, and the lack of decay
for larger values of E, Fig. 6. Also clear from these graphs is the observa-
tion, noted already by Yoo and Joseph 1], that the oscillations have a period
governed by M. That is, in Fig. 5, where M = 20, the interval between the
zeroes of the oscillations is nearly precisely half that in Figs. 4 and 6, where
M =10. This can be shown from the vorticity equation (5.8) by assuming
M>1 and W= ME'/? <O(1), and keeping only terms of highest order in
powers of 1/M. In performing the expansions the radial derivatives are
scaled with M, in accordance with the observation of the period; that is,

Se=1/M{,. (6.2)

After using the separation (6.1), we find the following pair of equations

2
ot - ) - 20 e o),

— r2)2
p+n- )+ M= e o, (6.3)

We take 1 — r? to be constant and look for exponential solutions for {; and
§,. This leads to

$1,8, ~ exp(Ar), | . o (6.4)
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Fig. 3. Pipe flow vorticity.

where

A=E12/2+n(1-r*)Mi. (6.5)
Hence, the vorticity has a period of about

2a/n(1—r)M, (6.6)

which for the value n =7, and 1 — r? =1, agrees very well with Figs. 3-6. In
addition, the perturbed vorticity decays, as r decreases, by the exponential
rate governed by E~1/2/2. This agrees with the observation that the damp-
ing is most rapid for small E. This damping factor also agrees, though only
approximately so, with the measurements of the damping taken from Figs.
3-6.

The lack of decay of the vorticity for larger values of E, coupled with the
fact that the values of the vorticity are larger for larger E, gives large
gradients of vorticity. These large gradients prohibit computing solutions for
larger values of E. In fact, the acceptable limit on computing costs limited
computations to W= ME/? < 3. For the corresponding channel flow prob-
lem the limit was W< 7. ‘
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E= .0100.M= 10.00,R= 100.00,W= 1.00 ,FN= .50

Fig. 4. Pipe flow vorticity.

An attempt to further use the idea of the change of type of the vorticity
equation for Poiseuille flow was made by trying to correlate the data from
some recent experiments on the die swell phenomena by Joseph, Matta, and
Chen [2]. They found that when the flow rate through a die is larger than
some critical rate, the initial swelling of the extruded material does not occur
at the end of the die, but is delayed to a position further downstream. The
appearance of the swell is much like an hydraulic jump. If one assumes that
the dynamics can be related to a perturbation of Poiseuille flow at the pipe
exit, then the characteristics of the vorticity equation in the hyperbolic
region might play a role. To use the analysis of the characteristics, we must
also assume that the Oldroyd model (2.1), or another model which responds
elastically and not viscuously to step velocity data, is sufficient to predict the
behavior of actual fluids in the die swell flow conditions. Joseph, Renardy,
and Saut [3] show that models with Newtonian viscosity, like Jeffreys
models, which smooth discontinuous initial data do not have a vorticity
equation which changes type.

Another difficulty in applying the present analysis is the determination of
the fluid constants appropriate for the Oldroyd model (2.1). The main
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Fig. 5. Pipe flow vorticity.

difficulty is the determination of a relaxation time A. The conclusion of
Joseph, Riccius, and Arney [4] is that the wave speed of a shear wave and
the measurement of a viscosity require the concept of at least two relaxation
time scales (and in fact even two time scales are not enough). The shortest
relaxation times give very large shear wave speeds, ¢, and decay quickly.
They give rise to an effective Newtonian viscosity. The elasticity is associ-
ated with slower modes. Hence we have an elastic response smoothed by an
effective viscosity. The elastic response has a characteristic rigidity and wave
speed which appears in the tables published by Joseph, Riccius, and Arney
[4]. We used these data. Even when the fast modes are dumped into an
effective viscosity the relaxation spectrum cannot be well described by one
relaxation time. So our choice for A in the Maxwell model is really not
possible except within wide limits.

Using the relaxation function for 1% CMC (Fig. 18 of [4]) we estimated
the relaxation time in two ways. First, we used the simple formula

G(0)=mn/A (6.7)

for a Maxwell model. This gives A =0.176 s. Second, we assumed an
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Fig. 6. Pipe flow vorticity.

exponential decay from the shear wave modulus G(0) = G, to the peak at
which the instrument began to record G(#). This gives A = 0.005 s. The first
estimate is too large since 1 includes relaxation modes that are much slower
than the initial modes. Using b= 0.05 cm as a typical die radius for the
experiments of Joseph, Matta, and Chen [2], these values of A give

25 < E < 32,000. (6.8)

The delayed die swell was observed to occur at about M = 4 for this fluid,
so that (4.10) gives the hyperbolic region to be 0 < r < r* where

0.003 < r* < 0.10, (6.9)

where the larger value of E gives the smaller value of r*. For such large
values of E, and of M, (4.10) may be expanded to give
r*=E"124+ 0O(1/E). (6.10)

This agrees with (6.9), and also shows that r* is proportional to the radius b
of the pipe for any given fluid. Thus the hyperbolic region is larger in larger

pipes.
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The large values of E we estimate in (6.8) for the experiments of Joseph,
Matta, and Chen [2] should be related to our previous remarks on the
analysis of the wavy pipe problem. The perturbation vorticity is very robust;
it does not decay across the pipe. Thus the smallness of the hyperbolic
region for large E may not be important since the vorticity is not damped
even in the elliptic region. In addition, the Weissenberg number W = ME'/?
is very large:

20 < W< 715. (6.11)

This is beyond the range which we can compute numerically for the wavy
pipe problem; and is in fact beyond the range of any reported numerical
study. This indicates that any numerical study of the delayed die swell
would be extremely difficult with present techniques.
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Appendix
Characteristic cones for motions perturbing uniform flow

The discussion given in section 5 of the paper by Joseph, Matta, and
Chen [2] on delayed die swell makes reference to characteristic surfaces for
viscoelastic fluids perturbing uniform flow. It is well known (see, for
example Joseph [5]) that the linearized stress about uniform flow in the
direction of the x-axis for any incompressible simple fluid is given by

r=f_th[t—7]A[u(A, t)]dr, (A1)
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where
x—Uft—1)
—3 y )
z

Alu] =vu+vu.
The linearized vorticity equation was given in [5] as
2 2 2
I
dx? dy?  9z°
where M?=pU?/G(0). Only in the lower order terms are the details of

particular models evident. For the hyperbolic analysis, however, these terms
play no role.

The characteristic surfaces of (A.2), S(x, y, z) =0, satisfy (see [3])
(M2 —1)(3S/3x)* — (8S/3y)* — (38 /3z)* = 0. (A.3)

Provided M > 1, this is the usual characteristic equation for the wave
equation, and a solution is the family of cones

1 2
Xlz___l(x—xo)z—(y_%)z—(z—zo) =0. (A.4)
The apex (x4, ¥y, 2,) Of the cone is arbitrary, and the axis of the cone is
parallel to the flow direction (the x-axis) with the cone semi-angle 4 given
by

tan § = (M2-1)""2, (A.5)

) = terms of lower derivative order (A2)



