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Summary

In this paper 1 discuss concepts of viscosity, elasticity, hyperbolicity, Hada-
mard instability and change of type in the flow of viscoelastic fluids

1. Constitutive Equations

Constitutive equations relate stress and deformation. Too many constitutive
equations have been proposed by people to get one model which will describe all the
possible motions of a fluid. Since the variety of responses which are available to
viscoelastic fluids is very great, a single equation which accounts for everything
may be toc abstract to be of much practical use. Eqs. (1.10) and (1.12) are examples
of too abstract equations. More specific models are useful only when the domain of
deformations in which they live is specified. Therefore, in an ideal world we could
have a model valid within a prescribed class of deformations. "

There is a great simplification in the problem of constitutive modeling when the
deformations are a small perturbation of states of rest. These deformatjons depend
on a Newtonian viscosity u and a smooth relaxation function G(s), where G(s) > O,
G'(s) < O for O Ss-t-r S », and 1 is the past time, The stress 1 1is given by

©

1T = 2ub{u) + 2 [ G(s)D{u(x,t-s)] ds (1.1
0 .

where u is the Newtonian viscosity, u(x,t) is the velocity and D[u] the symmetric
part of the velocity gradient, Equation (1.1) is a Jeffreys' type of generalization
of Boltzmann's equation of linear viscoelasticity in which the presence of a Newto-
nian contribution is acknowledged. Eq. (1.1) also holds in the class of small per-
turbations of rigid motions. We might think that (1.1) models a polymeric solution
in which the solvent is Newtonian and the polymers add elasticity.
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A constitutive equation of the rate type may be obtained as the time derivative

of (1.1)

CANP g—g « 26(0)D + 2| G'(8)D[ulx,t-s)]ds. (1.2)

ot o

Jeffreys' model is a special case of {1.2) in which
a(s) = 3 72 (1.3)

where A is the relaxation time and n is the elastic viscosity. Combining (1.2) and

(1.3) we get

B Rovan - (1.5
A retardation time
A= ur/n (1.5)
is usually defined for (1.4). Wnhen u = 0, (1.4) gives rise to a Maxwell model
Ay Lo - 0.6

ot

Fluids with p = O are like relaxing elastic solids. They propagate shock waves.

Fluids with u # 0 are diffusive; they smooth shocks.
Equations (1.1) and (1.2) are perturbation equations and are naturally not invar-
iant under changes of frame which do not satisfy the same conditions of lineariza-

tion. various invariant theories which are said to be linear have been proposed.

For example Coleman and Noll {1961) linearized a functional depending on the history
of the right relative Cauchy-Green strain tensor. Naturally they arrive at a linear

expansion, linear in this non-linear tensor. They call this "the finite linear theory

of viscoelasticity.® When applied to incompressible fluids they get (1.1) with u = 0

and D replaced with the s derivative of Ce(x,t-s) - 1 = G(s), G(0) = 0. The lineari-

=s/\
zation of G(s) around 0 is D. If the kernel G(s) = % e is of Maxwell's type,

then Coleman and Noll's equation is a lower convected Maxwell model. If we suppose

that the stress functional depends on the Finger tensor, rather than the Cauchy
tensor, we arrive at Lodge's theory, which is the same as an upper convected Maxwell

model when the kernel is of Maxwell's type. Saut and Joseph [1985) under different
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hypotheses than Coleman and Noll arrived at (1.1) with G(s) in the place of D under
the integral and u # 0. If Saut and Joseph had used H(s) = C{'(x,t-s) - 1 instead of
G(s) they would have H(s) replacing D under the integral. The rate equations for an
equation of the Saut-Joseph type, with a kernel of Maxwell type, is an Oldroyd B.
None of these so called linear equations are completely linearized. When they are
completely linearized they reduce universally to (1.1) and (1.2). These two equa-
tions are model independent. They apply to all viscoelastic fluids in motions which
perturb rest. This shows tha}, the Newtonian viscosity p and the relaxation function
G(s) are genuine material parameters which are also model independent.

To our knowledge, the first person to introduce a rate equation with a Newto-
nian viscosity and relaxing elasticity was H. Jeffreys (1929, p. 265). Most of the

models arising from molecular modeling of polymeric solutions, like those of Rouse

and Zimm, have a Newtonian contribution from the solvent and are of the Jeffreys'

type. An invariant formulatjon of rate equations containing relaxation and retarda-~
tion (Newtonian viscosity) effects evidently first appears in the celebrated 1950
paper of Oldroyd. Green and Rivlin (1960) appear to have been the first to introduce
Newtonian viscosity to integral models. They get rate terms from integrals by
allowing delta functions and their derlvatives in the kernels. Saut and Joseph
(1983) derived integral expressions of the type introduced by Green and Rivlin from a
theory of fading memory in which the ensemble of all possible linearized stresses
coineides with certain topological dual of a domain space (say, a Sobolev space) for
allowed deformations. Maxwell models and the generalization of these embodied in
the theory of fading memory of Coleman and Noll (see SJ for references) cannot con-
tain a Newtonian viscosity. These models are all instantaneously elastic. Various
kinds of hyperbolic phenomena, waves, shock waves, loss of evolution, Hadamard inst-
abilities, change of type arise in fluids with instantaneous elasticity (see Joseph,
Renardy and Saut (1985), Joseph (1985A), Joseph and Saut (1985) and thia review).
Many distinguished scientists of the 19th and early 20th century, Poisson, Maxwell,
Poynting, Boltzmann believed that liquids were closer to solids than to gases, with
instantaneous and relaxing elasticity, and there is alsoc a line of interesting experi~
ments of this same perfod which explore this idea (see Joseph, 1985B for a recent
historical perspective). The results given in this paper are an entry in this his-
tory. The notion of instantaneous and relaxing elasticity can be reconciled with
polymers in Newtonian .solvents by supposing that the solvents are elastic and not
Newtonian,

We have argued that the response to motions perturbing rest (or rigid motions)
is completely determined when the Newtonian viscosity u and the relaxation function
G(s) are known. G(s) gives the relaxation for s 2 0 of stresses after a sudden step
in displacement. The name "shear stress modulus" or "shear modulus" or "elastic

modulus® will be reserved for the largest value G(0) of G(s).
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It is helpful that we understand viscosity in the following way. Suppose that
we are in the case of steady shearing with one component of velocity u(x) depending
on one variable x. The shear stress 1(x) = 1,, of v depend then on the rate of shear

k(x) = D;; of D and (1.1) reduces to 1 = (y + n)x where

W=u+n (.7
is the zero shear viscosity and
L.
n= [ G(s) ds (1.8)
0

is the elastic viscosity. Newtonian fluids have n = 0, u = p. Elastic fluids have u
~ 0, u=n In general

M2n (1.9)

with equality for elastic fluids. It is easy to measure the zero shear viscosity ﬁ,
but the measurement leaves y and n undetermined. Elastic fluids (y = 0) with short
memories can appear to be Newtonian in standard rheometrical tests.

We turn now to the problem of constitutive modeling in the general case. A
framework for such modeling could start from Noll's theory of a simple incompressi-
ble fluid. 1In this, the stress at a particle x is given by a functional on the his-
tory of right relative Cauchy tensor Cy(t1) or the history of G(s) = C¢(1) = 1; T =
F[G]}. To assign meaning to F[ ] it is necessary to specify its domain. The Cole-
man-Noll theory of fading memory is a conscquence of the assumption G(s) lies in a
weighted LA(O,=) Hilbert space with weight h which makes the large s values of G(s)
irrelevant. However, this large domain excludes some well established material
models and phenomena.  Saut and Joseph (1983) showed that by restricting the allowed
domain of F, the topological dual may be enlarged leading to distributions in the
dual and rate terms in the constitutive model. Another method, presented here, is
to keep the large domain with G(s) LA(0,=) but to add f£(D) where f is an ordinary

isotropic symmetric tensor valued function of D(x,t), Thus

v = £(D) + FIG(s)] , (1.10)
3=0 -

In this decomposition £(D) is the viscous part, and F the elastic. It may be assumed
without losing much generality that £(D) is a quadratic polynomial in D with coeffi-
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cients which depend on the invariant scalars of D. Equation (1.1) follows easily form
linearizing (1.10) on states of rest, by representing linear functionals with scalar
products (integrals) in the weighted L*(0,=) the domain space of G(s).

Joseph, Renardy and Saut (1985), hereafter called JRS, derived the general form
of the constitutive equation of rate type for any elastic liquid in any motion. This
equation arises from calculations following the time differentiation of the stress

functional and it may be written as

dry
'Tt‘i - sukpokp[u] + Apjipfkplul + Nij (1.
where all tensors are symmetric in (i,§), Dkp ls the symmetric part of the velocity
gradient duy/dxp and Rgp Is the skew symmetric part, The fourth order tensors S and
A are expressible by integrals and NU is of "lower order" in the sense of hyperbolic
analysis. More discussion of this eguation can be found in the paper of Joseph

(1985).
When the liquid also has a viscous response we may replace (1.11) by

a1y by
—J-t-al = Ryjkp dt.j * SijkpPkp * Atjkpfkp * Mij (1.12)

where R is a fourth order tensor valued function Ryjcg = 3f3j/3Dyg. In the fully
linearized case, Ryjkq = 2uéjydjg. JRS identified a class of models which are more
general than (1.11) but contain all the special models of rate equations which appear
in the rheological literature. In their model, the symmetric fourth order tensor S
is expressed as the most general form involving any second order tensor P. When

this is applied to (1.12) we find that

SR ppe T e ADT] N (1.13)
No assumption is made about the fourth order tensor A. The special models which are
studied in the rheological literature are such that the tensors P, A and N are
expressible in terms of the extra stress t. These models include those of Oldroyd,
Maxwell, Giesekus, Leonev, Phan Thien and Tanner and many others (see Joseph,
(1985)).

When R = 0 the dynamical system associated with (1.13) supports hyperbolic
waves of vorticity provided that the stresses do not enter a forbidden region in
which the @auchy problem i{s no longer well posed. These and some other phenomena
are related‘ to the type of a partial differential equation. :

(1) The unsteady quasilinear problem is called evolutionary if, roughly speak-
ing, the Cauchy problem for it is well posed (this is a notion strictly weaker than
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hyperbolicity). The loss of evolution is an instability of the Hadamard type in
which short waves will sharply increase in amplitude. For many models, those tre-
ated here, the problem of evolution may be conveniently framed in terms of vorti-
city.

(2) The steady quasilinear system may be analyzed for type. It is nelther
elliptic nor hyperbolic. On the other hand, the vorticity is either hyperbolic or
elliptic, and it may change type, hyperbolic in some regions of flow and elliptic in
others, as in transonic flow. We shall show that the full unsteady quasilinear
system will undergo a loss of stability in the sense of Hadamard when the steady
vorticity equation for inertialess flow is hyperbolic.

We consider a number of examples. Some models are always evolutionary and do
not change type in unsteady flow. The vorticity equation for steady flow of such
models can and does change type. Other models can become non-evolutionary and
therefore undergo Hadamard instability. Some flows of these models are evolution=-
ary, e.g.; shearing flows, while others are not evolutionary. In either case, the
steady problem can undergo a change of type. Loss of evolution is impossible in
flow perturbing uniform motion. To lose evolution it is necessary that certain
stresses should exceed critical values. In this sense the loss of evolution can be
identified with the problem of failure of numerical simulations at high Weissenberg

numbers.

2. Loss of Evolution
The loss of evolution is a concept associated with the well posedness of the

Cauchy problem. Let us consider a quasilinear system of the form

n
du 5 u - 21
Aé—cflsj?x—j‘b o, (2.1
J=1
where A, By, ..., By are m x m matrix valued functions and b is an m vector depend-

ing on u,x,t. The system (2.1) is evolutionary in some domain D of R™ x R" x R in
the t direction if for every fixed u,x,t in D and any unit n=-vector v, the eigenvalue

problem

n

=AA + z vj Bjlv = 0 (2.2)
J=1

nas only real eigenvalues. The system (2.1) is hyperbolic in the t direction if (2,2)

has m real eigenvalues, not necessarily distinct, and a set of m linearly independent
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eigenvectors.

To Jjustify these definitions, let us consider the simple case where b = 0 and
the matrices A, B,, ..., By are independent of u,x,t. Let v be a unit vector in RN.
If (2.1) is evolutionary, then any plane wave solution of (2.1) propagating in the
v-direction v(x,t) = v exp(ik(v'x - it)), k real, has necessarily A real. This pre-
vents the so called Hadamard instability, i.e., the fact that at any time t the amp-
litude of u could become arbitrarily large, even if u is bounded (but highly oscilla-
tory) at time t = 0. In this context hyperbolicity means that in every direction in
space, m independent plane waves can propagate.

The quasilinear systems for the velocity, stresses and pressure of fluids with
instantaneous elasticity are not hyperbolic in the usual sense. For these systems it
is proper to think of the loss of evolution. On the other hand, the unsteady equa-
tion for the vorticity is hyperbolic when it is evolutionary and is evolutionary when
hyperbolic.

The use of plane waves to study the well posedness of the Cauchy problem is
Justified, in general, for waves so short that A, Bj and b have constant components
in a small period cell defined by the wave,

Hadamard instabilities are much stronger than those studied in bifurcation
theory. One cannot expect a secondary flow whose dynamics would be governed by the
evolution of one or several modes. Rather, if the initial value problem becomes ill-
posed, there are flow fields which would not occur even as transient states, since
“random" disturbances containing all modes would blow up instantly. The importance
of loss of evolution in the flow of viscoelastic fluids was first recognized by Rut-
keviteh [1969, 1970, 1972]. Many other results were given by Joseph, Renardy and
Saut [1985), called JRS. Independént results, following in part out of discussions
leading to the paper by JRS, were given by Ahrens, Joseph, Renardy and Renardy
[1984], and Renardy [1984, 1985]. Dupret and Marchal [1984, 1985] have also given
some new resuflts on the problem of loss of evolution in three dimensional problems.
It has been suégested that models of viscoelastic fluids which lose evolution are no
good and should be discarded; this idea is wrong, the loss of evolution can actually
warn us about certain physical instabilities like melt fracture. On the other hand,
it is certain that the loss of evolution will produce a disaster in numerical simula-
tions.

Some systems of equations never lose evolution. This is true of the dynamical
system generated by Newtonian fluids and by upper and lower convected Maxwell
models. These systems are not always closer to physics than systems which can lose
evolution,-

The loss of evolution is associated with the initial value problem. It ecan
occur for some problems and not _for others. This is the case for incompressible in~
viscid fluids governed by Euler's equations in two space dimensfons. It is known
that when the initial data are smooth this equation has a unique smooth solution
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defined for all times. However, certain well known problems associated with Euler's

equations can become non-evolutionary. H. Aref [1985] has commented on this:

"Historically, this issue seems first to have arisen in the context of
the Kelvin-Helmholtz problem. When the "common" vortex sheet rolls up, it
apparently becomes singular after a finite time. One can gauge this fea-
ture already from the vantage point of linearized stability analysis: 1In
the Kelvin-Helmholtz problem the amplification rate of a wave of wave=-
length A is inversely proportional to A, Thus, short waves amplify faster
than longer waves at all wavelengths, and so, except for some delay in
actually exciting the short waves, the outcome is almost inevitably headed
for a singularity of some kind, The ill-posedness of the problem consists
in the loss of a certain degree of analyticity after a finite time. (This
is sometimes called ill-posedness in the sense of Hadamard.)

This feature in itself is of interest, at least mathematically. One
may ask, for example, what kind of "weak solution(s)" to the problem are
available after the singularity time? The physical significance of such
solutions {should they arise in some reasonable systematic way) is not at
all clear at present ... .

From a more pragmatic point of view one must regard the emergence of
a singularity as physically unacceptable, a feature that shows an inade-
quacy in the description of the problem. Clearly, the basic equations must
be augmented in some way that will remove the singularity. The notion
that perturbations of arbitrarily short wavelength grow arbitrarily fast
cannot be a physically meaningful statement within the framework of a
hydrodynamic theory. And, sure enough, any physically motivated mechanism
that provides a cut-off at small length scales will also lend a regulariz-
ing aspect to the solution. Sometimes, indeed, the problem can {appar-
ently) be completely regularized so that smooth solutions exist for all
time given smooth initial data. Regularizing mechanisms of this kind in-
clude diffusion, interfaciil tension and the introduction of a small but
finite thickness of the interfacial transition region itself."

The famous fingering instability of Saffman and Taylor [1958] is an instability
to short waves of the Kelvin-Helmholtz type. When the less viscous fluid in the
saturated porous materials fingers into the more viscous liquid, the short waves are
the most unstable; the system based on Darcy's law is not evolutionary. We do not
advocate throwing out Darcy's law because of this.

It is known that some popular hydrodynamic models of flowing composites, used
in the study of fluidized beds and for other applications arising in mixture theories,
lead to ill posed initial value problems (Gidaspow, 1974; Lyczkowski, et al, 1978).

An interesting discussion of the loss of evolution in the equation of magnetohy-
drodynamics with the Hall effect taken into account is given by Brushlinskii and Mor-
ozov {1968]. The equations of magnetohydrodynamics for a nondissipative plasma
plane flow will not be evolutionary if the Hall effect is taken into account. The
loss of evolution seems to be associated with certain physical instabilities.

On the other hand, Kulikovskii and Regirer [1968] have shown that electrody-
namic equations which change type in steady flow can lose evolution and go unstable.
Such solutions therefore cannot be realized. In the words of Kulikovskii and Regirer
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"Owing to the rapid increase of perturbations, nonevolutionary equa-
tions cannot describe correctly changes of any physical quantity in time.
Nonevolutionary solutions of the nonlinear equations in many cases can be
regarded as an oversimplification in the derivation of these equations by
discarding terms which are small for evolutionary solutions, but they can
be essential for the perturbations which display a rapid increase. As the
short wave disturbances increase most rapidly, then these could be the
terms containing space derivatives of higher order or mixed derivatives
with respect to space or time."

A similar point of view was adopted by Rutkevitch [1968] in his discussion of

loss of evolution in viscoelastic fluids. He says

*In order to describe the development of small perturbations in the region
where evolutionarity of the initial conditions is not possible, the effect
of supplementary physical parameters should be taken into account. 1In a
real system, these parameters can be extremely small, but they play a def=
inite role in establishing a finite upper limit for the rate of buildup of

perturbations.”

One such parameter, used now extensively in numerical simulations of non-Newto-
nian flows, is to add a Newtonian viscosity. In Section 8 we shall address this
question from the point of view of rheometrical science.

The paper by Ahrens, et al. [1984] reports a study of the stability of viscome=
tric rlow‘uslng the type of short memory introduced by Akbay, Becker, Krozer and
Sponagel [1980]. The instability found by Akbay, et al. can be identified as a loss
of evolution leading to the catastrophic short wave instability of Hadamard type

whenever

' 2
eI
K
EEOH O @3

:
where x is the .shear rate, 1(k) is the shear stress and N,(x) i{s the first normal

stress. Catastrophic instabilities to short waves of this type may be characteristic
for some of the types of instability called "melt fracture". Ahrens, et al.
addressed the question of justification for the short memory assumption and find
that it cannot be justified for some of the more popular rheological models. The
left side of (2.3) reduces to the square of the recoverable shear (N}/1?) when the
variation of N;/x* and 1/x is small. W. Gleissle [1982] found that flow instabilities
(melt fracture) commenced in 14 very different type polymer melts and solutions
when the recoverable shear varied 4,36 - 5.24 with a mean 4.63., This seems to be in
rather astoriishing agreement with the criterion (2.3). )

Hadamard instabilities may be endemic in the theory of flow of viscoelastic

fluids with instantaneous elasticity.



3. Loss of Evolution and Change of Type for Models with Hyperbolic Vorticity.
We could consider all the models which give rise to a vorticity equation which
can be hyperbolic in the steady case. These were identified by Joseph, Renardy and

Saut {1985] as JRS models. They include all constitutive models whose principal

paris are of 0Oldroyd type
A 'Ti = 2n Dlul + ¢, (3.1)

where L is of lower order (see JRS) and where 1 is the relaxation time, t is the
extra stress, n is the elastic viscosity, D{ul is the symmetric part of the velocity

gradient, and

T at
< = 5 * (u9)t + 12 - v - a(Dtr + D), (3.2)
1
where @ = 3(9‘& - vul) is the skew symmetric part of Yu and a [=1,1].

The iower order terms % in (3.1) may depend on u and ¥, but not on their deri~
vatives, The upper convected, corotational and lower convected Maxwell models arise
when & = ~1t and a = {i,0,-1]J. Different models can be obtained by different theo-
ries of tne lower order terms &. One version of the model by Phan-Thien and Tanner
9771 may be expressed by (3.7) with & = =(1 + c tr 1)t where c is a constant. The

Johnson-Segaiman model [i1977] with an exponential kernel is a special case of Phan-

J
hien and Tanner with ¢ = O

and in fact is one of the Maxwell type of Oldroyd
models. A simple Giesekus model ({1982] is given by (3.1) with a = i, & = ={1 +
= 1%) where 0 § a S 1 is a constant related to the relative mobility tensor.

We now turn to the analysis of evolutionarity for systems governed by (3.1).
The method used is a kind of 1linearized stability analysis for short waves of the
type already given in Section 2.

We shall study the problem of evolution of the ten field variables [u,t,p]

satisfying
A= e n(Tue D en,
p{% + (u'V)u] + Y -divt =0, (3.3)
divu =20,

where -—; is given by (3.2). We decompose the motion
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{u,1,p) = [B,7,p] + [u',v',p'],

where the roof functions satisfy (3.3) and the prime functions are small. We take
the liberty of calling the roof flow basic; but in fact it is an arbitrary solution

of (3.3). After linearizing, we find that

x[%‘r' + (GeW)x' + TR - @'T - a(D'T + ID'] = 2nD* + 2,

pl'gu_'_ . (ﬁ-‘v?)u’-I + ¥p* - div t¢ = =plu'*
L3 ]

div u' = 0,

where L' does not involve derivatives of u', t'.

We next fix our attention at a point X, of the field and define x = X - Xo.
Then we imagine that the basic flow and the derivatives of it in (3.3) are constant
and equal to their value at x,. We may then represent the cartesian components of

the disturbance as
[u',v',p'] = [w,055,9)exp i(kgxy - wt) ,

where the ten amplitudes [wj,04j,q] depend on the basic flow at X, The amplitudes

are governed by

cogy = 3 13gl(1-adugny - (1+adujngl - -‘z-[mxna,("a) - wgny(1-a)]tgy

+ uinjug + njuy) = O(1/K) ,
-pcuwy = =gny *+ O‘Jnj N (3.5)

wing = 0,

cef-Gm. (3.6)

These equations were first derived by Rutkevitch [1970] for the three values a
= [1,0,-1]. When k + =, the problem" (3.5) can be regarded as an eigenvalue problem

for w/k or c (see (2.2)).
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We can find the ten amplitudes [mi,a”,q] if and only if the determinant A of

the coefficients vanishes, where

1
A= [—pc‘ tus- 3 122{1-2) *+ ‘;‘n.(ha)][-pc’ CRTR %Tu(“a) - %1,,(1-3)].

(3.7}

The derivation of (3.7) follows along lines set down by Rutkeviteh; special
coordinates are selected such that n, = 1, N = ny =0, ;,, = 0 and ;u > ;,,.

The nontrivial values c¢? are then given by

ot - %[u + 3T v a) - 30 - a)] .
(3.8)

o2 - %[» ¢ 3T ) - 30 - a)] .

Departing slightly now from Rutkevitch, using the result proved in Section Y, we
call ¢ the velocity of propagation of wave fronts of short waves of vorticity.
In any case, one has c® = f, where f is real valued., If f > 0, we get propaga-

tion. If f < 0, then

c =t i/F =2 ilm[g] . - (3.9)
Equation (3.9) shows that if f < O, then there exist short waves of rapidly growing
amplitude, the flow undergoes a Hadamard instability.

If we now suppose that at X, the system is in principal coordinates of ;, the

eigenvalues of T satisfying

T 21271, (3.10)
Then f > 0, (and the system is of evolution type, stable to short waves) if and only
if
a, - - u -
we STy - [—-2——] >0, (3.1
Among the Maxwell models (& = 1) only the upper (a = 1) and lower (a = =1)

convected models are always evolutionary. This follows from the integral form of

these two models, The integrals are expressed by positive definite tensors restrict-
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ing the range of T to evolutionary regions (see JRS, 1985). Dupret and Marchal
[1985] have shown that if the criterion for evolution is satisfied initially it will
not fail subsequently. We will show in Section 7 that Maxwell fluids £ = -~y and
with a # + 1 can lose evolution in certain flows. The models Phan-Thien and Tanner,
19771, Johnson and Segalman [1977], Leonov [1976] and Giesekus [1982] may also lose

evolution in certain flows.

4, Evolution of the Vorticity
The vorticity equation for (3.3) in.3-D flows may be written as (see (6.4) in

Joseph, [1985])):

ek 3ty 3tk 1 Leurl t]
D[W + Z(U'V)_QT + UeUj sraxj * 5(3 = Nekejtiq _-Te_s

1 ¥ty
zla + Vimp m

- _il_vx,;k + Yy =0, R CAD]
where eyej 1s the alternating tensor and % are all terms of order lower than two
derivatives of the vorticity § = curl u.

The analysis for stability to short waves which was given in Section 3 may be
applied to (4.1). We find exactly the same formula A = O given by (3.7).

It follows that the quasilinear system (3.3) is of evolution type if and only if

the vorticity equation (4.1) is of evolution type.

5. First Order Quasilinear Systems ftor Plane Flow

In plane flow, we have six equations in six unknowns

o +ugy + Voy + vy = uy) = al2oug + Tluy + V)l - 2uuy = L

Tt uUT} *t VT ¢ %(0 = YMuy = vy) = %(o + Muy + vy) = wuy + vy) = L,

Yy +uYy + vYy ¢ t{uy = vg) = al2¥vy ¢ tluy ¢ vy)] - 2uvy = 2y,
(5.1)
plug + uuy + vuy) + px = ox =1y = 0,

plvg + uvy + vvy) + py = 1 = Yy = 0,

Uy + vy = 0,
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Y

not on their derivatives.
The analysis of evolution follows exactly along the lines laid out in Section 3

where 1 = [: ‘], u « (u,v), where &,, %; %, depend on 1 and possibly on u, but

and Section 6. Since there are only two normal stresses, we replace (3.10) with Lz

;, and (3.11) becomes

alt, * 1) T- T
0——2-—-—-—7-—)0. (5.2)

There is only one speed of propagation (3.8) in the plane. The condition (5.2)

for evolution is necessary and sufficient for the stability of solutions of (5.1) to

short waves. The same condition, but written relative to general coordinates,

1’-[;;- %(1 - a) «+ %(1 *a):l[u-%(i - a) + %(1 +a)] <0,
(5.3)

1
51(1-3)-%0(1*a)~u(0

was derived by Joseph, Renardy and Saut [1985] for the vortleity equation associated

with (5.1) (see also Section 6)

2 2
Ao 5+ 20 ¢ [pu= -u- g0 e . 30 - a)] a

2 Y 2
+ 2(puy = 1)%5% + [pv’ -p+ %(1 - a) - —2-(a + 1)] gy ]
- 1, (of lower order) . (5.4)

Condition (5.2) (or(5.3)) implies that the unsteady equation for vorticity is hyp-

erbolic.
The loss of evolution of system (5.1) should not be confused with the possible

change of type of the steady problem. We shall examine the connection with these
two phenomena now. The difference between the steady and unsteady problem is most
easily explained in terms of the vorticity. The analysis of steady pboblems for the

quasilinear system (5.1) may be written as

Hay + Jqy * & = 0.

where q is a column vector with components {u,v,0,Y,1,p] and H, J, L depend on q but

71

not on its derivatives. To analyze the type of this system we look for characteris-
tics 6(x,y) = const., 6,dx + fydy = 0.

The analysis is straightforward. The characteristics are given by dy
ax = %

where a is a solution of

det{=aH + J] = 0 . (5.5)

This leads us to (11.2) of JRS:
(1 + @(au + Hp-au ¢ 2 e Do igr g,
$2ta s (ot e DG s a9y g (5.6)

Tnere are imaginary roots a = # i, double real roots along streamlines o = ¥
u

and two roots for the last factor:

B VBT = AC
a = — 3
i i , (5.7)
where
- - 1
A=y pu‘*-e-o('loa)-%Y(l-a),
Bart-~
1 - puv , (5.8)
- - 1
‘ C=y DV”EO(E-I)4%Y(3'1)-
Wherever

B = AC = -1 + plu + ag + av](u? + v?) + %(Y - o)(u? - v3)

2 ‘N Y2
+ 1 ‘T“-al)‘T“'al)““a(G’Y)'2p1uv)0'

we have two more real characteristics.

o ;

ur system (5.5) is therefore of a mixed type: 1t has imaginary characteristics
and therefore is not hyperbolic; it has real characteristics and therefore is not

elliptic., This is not an unusual situation in fluid mechanies (the steady Euler equa-
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tions of incompressible inviscid fluids are of mixed type) but gives rise to mathe-
matical difffculties: the study of such systems is not well developed {see Saut
[1985]). What is new is the fact that the characteristics associated with the last
factor in (5.6) can be real or complex in the flow. JRS showed that the roots (5.7)
are in fact associated with the steady vorticity equation. This equation is either
hyperbolic (B? = AC > 0) or elliptic (B2 - AC < 0). The roots can be elliptic in one
region of flow and hyperbolic in other regions, as in the case of transonic flow.
The other characteristics have a simple interpretation: the imaginary roots a = t i
are associated with the equation Ay = -, where is the vorticity and ¢ the stream

function.

6. Vorticity in Plane Flow
In plane flow, there is one nonzero component of vortleity satisfying

2 NN | AP o S 1 -
n—az%¢2p(u7)at AGE - 2B g - C gt =0, (6.1)

where & 1s of lower order and A, B, C are defined by (5.4), i.e.,
A= -pule s 201 +a)- 201 -a)
2 2 *
2 [ Y
C = -pv ’0‘5(1'3)‘5(3'1). (6.2)

B=1- puv .
The analysis of evolution is most easily framed relative to (6.1). Let us start

with a general definition.
A linear partial differential operator of second order

Lg = P(x""t'-"tx."""txn"X,x.'cx.xa-""lxnxn) + lower order terms
is evolutionary with respect to t in some domain D of RN if for every unit vector k
= (Kyy..skp) In RM, for any t R and any x D, the quadratic polynomial in a

P(X,t,~a%,~aKyyessy=0Kp,~Kiy=KiKageae, <K} = O

In the case of constant coefficients, this definition implies

has only real zeros.
i.e., there

that there are no plane wave solutions with arbitrarily large amplitude,
are no Hadamard instabilities.
The polynomjal P = 0 evaluated for (6.1) becomes

3

pa® + 2ad(uk, + vk,) - Ak? - 2Bk;k, - CkZ = O .
This must have real zeroes for every unit vector k = (k,,k;}). This leads to
(A + puk? + 2(B + puv)kk, + (C + pv3ki > 0, ¥ K,k ,
which implies
A+ pu?> 0and (B + puv)? = (C + pv)(A + pu®) < 0 .
Using (6.2), this is equivalent to (5.3).
The same relatfonship arises from analysis of stability to short waves., We fix

u, 7 (hence A,B,C) at their values at X, and put £ = 0 and introduce y = X - xo, writ
lng or

2XY.t) = Exo,yodexp ilky(X = Xo) *+ Kaly = yo) - wtl. 6.3)

We find that, with k? = ki + k2

2 a 1
¢ [U + (0 + ’1)-2']l<z + E(o = Nk} - kD ¢ 21kk, , (6.4)

where

cz

= w® + 2w(uk; + vky) + uki ¢ vk ¢ 2uvk kK, .
For evolution it is necessary that ¢® > 0 for all Ki,k; R when k = (k¥ + k2)¥/? » o
If ¢ < 0, then l : .

w
Im ¥ = t positive constant

a i1k
nd we have a nasty instability to short waves. The criterion ¢? > 0 is exactly
(5.3). When expressed in principal coordinates ¢ 2 Y and t = 0, we find that the
vorticity is of evolution type provided that

ale + Y) Y-g
i e A (6.5)

We may relate the criterfon for a change of type in steady flow to the criter-

fon for loss of evolution. Consider 4 = B? - AC when p = 0. Therefore
def ) '
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A= =ff, ¢+ 1%,

Tro. oY (6.6)
fi=pu+a—— - 5

Y+ g =Y
fo,=nu+a 5 - 5 .

If we suppose that the system (5.1) (or equivalently the unsteady vorticity

LI
equation (6.1)) is of evolution type, then we have (5.3) which clearly implies B AC

< 0 for p = 0, i.e., the steady vorticity equation with p ='0 is elliptic. Thus hyp=

erbolicity of the steady vorticity equation with p = 0 implies that the full quasili-
near system (5.1) is not evolutionary. )
The converse is not true. The equation for vorticity with p = 0 in the steady

case is elliptic when

- - (o + Y)
T"[u'0,,Y0a(°;Y)][u’yzaoa < ]<0'

4 O does not imply the condition (5.3) for evolution when
inates ¢ 2 Y, 1 = 0; for example, (5.3) is violated when a <
To understand this, consider the equation

This inequality with a
viewed in principal coord
0;1=0;Y>>l;o)>1;0(u-¥<<1.

z .oy .1
£ -a 58 cgE 0.

The steady equation is elliptic when AC > 0. But the unsteady equation is evo-

>0
lutionary (hyperbolic) with respect to t, if and only if AC > 0 and A > O. If AC

and A < 0, (6.7) is an elliptic equation!

We recall that the quasilinear system (5.1) is evolutionary if and only if (6.1)
We can study loss of evolution by using results from the study of
It is perhaps useful to remark that we

is evolutionary.
change of type in steady inertialess flow.
must have a loss of evolution, instability to short waves, whenever the vorticity
Conversely, if the vorticity of an

o-Y’aa-

an inertialess steady flow becomes hyperbolic.

A , then

inertialess steady flow is elliptic and A > O, where A = y *

the system (5.1) is evolutionary.
All of the models considered here, except the upper and lower convected

Maxwell models may change type in an inertialess steady flow.
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7. Examples Taken From Linear Theory

In fact, the theory of evolution is based on equations linearized on an arbi-
trary flow, called basic. We may evaluate the criteria for evolution and change of
type on the basic flow. Many examples of this procedure were given in JRS [1985]
and by Yoo, Ahrens and Joseph [1985] for the study of change of type in steady flow.

It is of interest to examine the relationship of change of type in steady flow
to the study of short wave instability in unsteady flow. Section 11 of JRS gives
analysis for change of type in motions for an upper convected Maxwell model per-

turbing shear flow, extensional flow, sink flow and circular Couette flow. All

these problems are elliptic when p = 0 and all undergo a change of type for p ¥ O,

A similar type of analysis, using an upper convected Maxwell model, was given
by Yoo, Ahrens and Joseph [1985] for the three dimensional sink flow and by Yoo,
Joseph and Ahrens [1985] for Poiseuille flow in a channel with wavy walls. These
flows also change type when p # 0 and are always evolutionary.

It is of lnterést to study these problems in cases in which it is possible to
lose evolution. We shall examine the examples treated in JRS for Oldroyd models (a
4 ¢£1, & = -t in (3.1)) and some new examples. The corotational Maxwell model (a =
0) seems to lose evolutlon at the lowest levels of stress (the smallest Weissenberg
numbers).

7.1 Simple Shear Flow

(a) Oldroyd models (JRS p. 244). For simple shear flows of Oldroyd models we find
that u = ky, v = 0, T = nx/D, D = 1 + 23?1 - a?), g = Ac{a + 1), Y = Ac(a = 1). The

steady vorticity equation for the linear perturbation is hyperbolic in a strip outside
the origin defined by

s YT AR - (7.1)

When p = 0 we cannot satisfy this inequality. The steady vorticity equation with p =

0 is always elliptic. Moreover A = y + 2 ; Y .a (_".%_l). = u o+ Ac(1 + a® > 0.

From Section 6, the linear systems perturbing shear flows are evolutionary.
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(b) A Glesekus model (a = 1, £ = =(v + % ).
The system (5.1) has the form:

a
Op + uoy + Voy = 20ux - 2Tuy = 2uux = -%(o’ + 1) - g

Tyt UTg * VIy = Yuy = ovg = uluy ¢ vy) = -%(01 Y1) -3

Vg + u¥y ¢ VYy = 27vyg = 2Yvy - 2uvy - -%(1‘ + Y -

> <

(7.2)

plug + uuy + vuy) + py = ox = Ty = 0,
p(vt*uvvavy)'py—tx-’(y-o,

uy + vy = 0.

In simple shear flow, we find u = xy, v = 0, T = %1?, 0 = Ak1, Y = =0.

The steady vorticity equation for the linearized flow is hyperbolic in a strip out-

side the origin defined by
px3y? > u .

This inequality cannot be satisfied for p = O and the steady equation for vorticity
)Y 2
is always elliptic in inertialess flows. Moreover, A=u+o=yp+ 1—3‘:—,:, > 0, and

the linear system perturbing shear flow:is of evolution type.

7.2 Poiseuille Flow of an Oldroyd Model
In this example, px = K, K > 0 is a prescribed constant and
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Ty-‘K,

0+ aluy = o/2,

(7.3)
(1 = ajuy = =Y/) ,
[12<a -n-3G+n- 2]--,, --3
I ke J
Putting uy = x = k(y), we find that
- nx
R L St FL s
Anc?(l + a)
o - T (1.4
vy = Ank¥a - 1)
T - adk? + 1 °

Flows perturbing Poiseuille flow of an Oldroyd fluid will become unstable to
short waves and lose evolutionarity wherever the steady vorticity equation with p =

0 is hyperbolic. This condition may be expressed using (5.8) as

2 2 2
a’-Acs-%,*t=¢(°—;”-(1-a’)—-}a(o*Y))O. (7.5)

In the present case, this condition reads

2.2 2
1’[1 LA - a‘)] - 2a’nkt - :ﬂ >0, (7.6)

¢

2

where 1 is given by (7.4). After a short computation, the left-hand side of (7.6) is
evaluated as a positive coefficient times -%(1 - a“) = A** - 1, hence the inequal~-
ity (7.6) cannot be satisfied for any a (-1,1).

The flows perturbing Poiseuille flow of an Oldroyd model are always evolution-

ary, it is only necessary to verify that

- |n 1+ 2)%2
A [T][1+Al-ax]>o‘
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7.3 Extensional Flow
(a) Oldroyd Models (JRS p. 244). We find that

2 2ns
[u,v,7,0,Y) = [sx.-sy,O,-Tns-.--‘g-]

where p = 1 - 2aks, @ = 1 + 2ais. We take s 2 0 and small enough so that p and q

1
are bounded from above, s* < it

The steady vorticity of motions perturbing extensional flow is hyperbolic when

a2 n . 2ns(2a’rs - 1) aefn ., 2ns( + Za’As)}
DSX[T* Pq resyix Pq

5 [n, znstr + 2a’As)][g , 2ns(2a®rs - ‘)] . 7.7
A Pa A Pq

If the second factor on the right is positive, the region outside an ellipse is
hyperbolic. We put p = O for inertialess flow. Then we get hyperbolicity for the

vorticity with p = 0 when

n, 2ns(1 + 2a¥as)l{n _
Q> [_X + _‘EV—:H:'\ 2na]/pq .

Therefore we lose evolution when
pq + 2is(2a®* s - 1) < 0.

That is, when 8 > —2—]7 This value of s is in the allowed range s? < 1/4a®)\? provided
a (-1,1). The linear systems governing ‘flows which perturb extensjonal flow are

unstable to short waves whenever s > 1/2i, Steady flows with inertia change type in

1
the manner specified by (5.4) and are evolutionary when s < 7 (It is easily veri-

> 0).

) 2ns 4a?nis?
fied that A with p = 0 is equal to u + pL v ——

Pa
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(b) A Model of Phan-Thien and Tanner

The analysis given under (a) above applies here also because tr t = O for

1

extensional flow. This model is nonevolutionary when s > 37

(c) A Model of Giesekus

The system (7.2) is satisfied by the following extensional flow: u = sx, v =
sy, t = 0 where 0 and Y are given by

3R

02’0(%‘28)"2311-0,

i

Y’+Y(%~25)‘23u-0.

It follows that the stresses in extensional flow are given by

2 1/2
- Nj2sk -1 1 - 2s) 8sa
o2 u“x—‘*[[“;—‘]*—r] '

2 /2
v, - Df.2s2 1, [[1 + 2sl] _ Bsu] .
= a A A A

2
< 1 + 2s) 8
Since 0 £ a £ 1, [——T-—] - -—ig is positive and the stresses double valued.

Let us suppose now, following Giesekus [1982, pg. 79], that the configuration

tensor C = 1 + % is positive definite. Then 1 + % > 0 and 1 + % > 0, These in-

equalities cannot be satisfied for the negative roots of (7.9) when s < %. To show

this we set

O
rx[l + —] =a+2sh -1 =[(1-2s)0)2+ 8saA}2 = f(a) .
u
def

One has

£(0) = 2(2sx - 1) < 0 and £(1) = -1,

On the other hand
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fa) =1 - i)
[(1 - 25))% + 8sar]/?
and
, 1 - 6s) 1 - 25)
e - U e TS

Since f'(a) = O has one and only one zero, we see that f(a) < 0 for a [0,1].

g
It is easy to verify that a[1 + -ul] >0 for a [0,1] and o, is admissible under

the supposed restriction on the eigenvalues of the configuration tensor.

Y-
Similarly the reader can easily verify that m[1 + T] < 0 for a (0,13, and

Y
that a[l + -T‘] > 0 for a [{0,1] provided s < ﬁ!'k' It follows that under the

assumed restrictions, o = o, and Y = Y, for extensional flow.

The steady vorticity of motions perturbing extenslonal flow is hyperbolic when

p3ixM (Y, + p) ¢+ psPyMas + p) = (o4 +* WYy ¢ ) > 0. (7.10)

Since p + Y, n + o, are positive, (7.10) describes the exterior of an ellipse.

When p = 0, (7.10) reduces to

(o, + WY, ¢+ W) <O,

[(0,1] and 0 € s < T4‘_x': the linear system perturbing

which is impossible for a
extensional flow is always evolutionary in the Giesekus model whenever the configu-

ration tensor is positive. It is perhaps necessary to note that unlike the upper and

lower convected Maxwell models, the Giesekus model does not restrict the range of

stresses to an evolutionary domain; an extra condition, perhaps inconvenient for

numerical analysis, has to be imposed.
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7.4 Sink Flow in Three Dimensions (Yoo, Ahrens and Joseph [1985])

Maxwell models allow an irrotational solution for flow into a sink:

u=-S, veo,

where u is the radial component of velocity, Q > O is the sink strength, v is the
other component of velocity. The stresses [: ;] in polar spherical coordinates

are given by 1 = 0,

3 - - -q?
%-Ner /3A0r l&aI s'la 1 es/}HQ ds ,

r

2 - . -g?
_;1;_ —2e" /31Q r?af s 2a-1 e 8%/3)Q ds .
r

The vorticity of all steady axisymmetric flows perturbing this solutfon 1is

elliptic at large r where the stresses are weak and the steady flow changes from

elliptic to hyperbolic as the radius is decreased past certain critical values, The

flows for a = t 1 are always evolutfonary. For a = 0, Yoo, Ahrens and Joseph found
that the vorticity of steady flows perturbing sink flow becomes elliptic again near

the origin.
In the elliptic region near the origin we have (see (5.7))

2 2
.3O)Bz'AC=-uz*p[uo%(y-q)]u1+.__u “‘Y .

Moreover,

Y-¢g=6bpinr<Q0asr+0,
Hence, as r + 0,
R s - al + yi
0> su (Y = 0) + —q—
and Y - ¢ is a large negative number and the criterion (6.4)

Y-o¢
—
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for the loss of evolution is satisfied in the elliptic region near the origin. This
region is obviously hyperbolic for the steady vorticity with p = 0. Smooth, stable
(i.e., evolutionary) sink flows of corotational Maxwell fluids are impossible.

8. How to Compute a Newtonian Viacosity From Stress Relaxatjon or Sinusoidal

Oscillations Even When it is Zero

We have seen that fluids with instantaneous elasticity may undergo Hadamard in-
stabilities to short waves at high levels of stress (high Weissenberg numbers). We
already noted in Section 2 that these short wave instabilities may be avoided by in-
troduclng various regularizing terms. One effective method for regularization which
is also natural for viscoelastic fluids is to add a viscosity term to the constitu~
tive equation (for an example, see Dupret, Marchal and Crochet, 1985). Many popular
models of fluids have a Newtonian viscosity, The models of Jeffreys, Oldroyd, Rouse
and Zimm and molecular models of solutions with Newtonian solvents lead to Newto~-
nian contributions to the stress. To make this method useful it is necessary that the
viscosity used should be appropriate to the fluid under study.

To decide about elasticity and viscosity we could consider ever more dilute
solutions of polymer chains of large molecules in solvents which might be thought to
be Newtonian. What happens when we reduce the amount of polymer? There are two
good ideas which are in collision. The first idea says that there 1s always a vis-
cosity and some elasticity with an ever greater viscous contribution as the amount
of polymer is reduced. On the other hand, we may suppose that liquid is elastic so
that y = 0 and the viscosity n is the area under the graph of the relaxation func-
tion. Since n is finite in all liquids, we have n = G(0)X, where X is a mean relaxa-
tion time. Maxwell's idea is that the limit of extreme dilution is such that the
rigidity G(0) tends to infinity and T to zero in such a way that their product n is
finite. Ultimately, when the polymer is gone, we are left with an elastic 1liquid
with an enormously high rigidity. This idea apparently requires anomalous behavior
because G(0) appears to decrease with polymer concentration when the concentration
is finite.

The contradiction between the two foregoing ideas and the apparent anomaly can
be resolved by replacing the notion of a single mean relaxation time with a distribu-

tion of relaxation times. This notion is well grounded in structural theories of

liquids in which different times of relaxation correspond to different modes of
molecular relaxation. It is convenient again to think of polymers in a solvent, but
now we can imagine that the solvent is elastic, but with an enormously high rigidity.
In fact many of the so called Newtonian solvents have a rigidity of the order 10°
pascals, which is characteristic of glass, independent of variations of the chemical
characteristics among the different liquids (for example, see Harrison, 1976). To
find this glassy modulus it is necessary to use very ingenious high frequency devices
operating in the range 1C° Hertz and to supercool the liquids to temperatures near
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the glassy state. In these circumstances the liquid acts like a glassy solid, the
molecular configurations cannot follow the rapid oscillations of stress, the liquid
cannot flow. For slower processes it is possible for the liquid to flow and if the
relaxation is sufficiently fast the liquid will appear to be Newtonian in more normal
flows. For practical purposes there is no difference between Newtonian liquids and
liquids with rigidities of order 10° and mean relaxation times of 10~'°seconds or so.
In fact it is convenient to regard such liquids as Newtonian, even though u = 0 and
U=

The presence of polymers would not allow the liquid to enter the region of vis-
cous relaxation at such early times. Instead much slower relaxation processes asso-
clated with the polymers would be induced. The second epoch of relaxation occurs in
a neighborhood of very early times t = t, (or at very high frequencies). A plateau
modulus G(t,) may be defined at t = t, or for any t in the neighborhood of t,. The
plateau modulus is not so well defined since G(t) is a rapidly varying function in
the neighborhood of tat,,

The relaxation function may be measured on standard cone and plate rheometers,
using, for example, stress relaxation after a sudden strain. Examples of such
stress relaxation, taken on a Rheometric System 4 rheometer is shown in Figs. 1 and
2. The rise time of this instrument is roughly 0.01 sec and the more rapid part of
the stress relaxation cannot be obtained with such devices. The modulus Ge was
measured by Joseph, Riccius and Arney (forthcoming) using a wave speed meter. They
measure transit times of impulsively generated shear waves into ‘a viscoelastic liquid
at rest. A Couette apparatus is used; the outer cylinder is moved impulsively; the
time of transit of the shear wave from the outer to inner cylinder is measured,
They set up criteria to distinguish between shear waves and diffusion. One criterion
is that transit times 6t should be reproducible without large standard deviations and
such that d = cét, where d is gap size, and ¢, the wave speed is a constant indepen-

dent of d. In ofther words, transit times are independent of gap size. Then, using

theoretical results for propagation of shear waves into rest, ¢ = v c/p- We could

regard Go as the plateau modulus or the effective rigidity.

It is clear from Figs. 1 and 2 that the rapidly relaxing part of the shear relax-
ation function, even ignoring the possibility of enormously fast relaxations in times
of order 10710 seconds’in the glycerin and water solutions associated with glassy
states of the two solutions, is missed out on the data of the Rheometrics four. We
may also note that the tail end of G(t) is also not accessible on standard rheome-
ters because the transducers do not work when the levels of stress are too low.

Similar-iimitations of capacity are characteristic for the gap loading devices
used for sinusoidal oscillations in standard cone and plate rheometers. The high
frequency devices which are used to determine glassy responses of low molecular
weight liquids do not work well for polymeric liquids.
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To compute a good value for the Newtonian viscosity even when it is zero we
need to find a way to put the part of the viscosity which is associated with rapid
relaxation into a Newtonian viscosity. For this it suffices to have, say, 3i(t) for
01 <t <t We can get this from any standard rheometer with a stress relaxation
capacity. Or, we could use the complex viscosity, computed by standard rheometers,
which have upper limits of 100 rad/sec. In addition it {s necessary to measure the
zero shear or static viscosity e given in Figs. 1 and 2 as the area of the box.

The computation procedure, starting from stress relaxation is as follows.

1. We fit a shear relaxation spectrum to the given relaxation function. From
the measured values of G(t), t, st S t,, we get a theoretical function G(t), 0 St §

«. We should make the curve fitting in an honest way such that
-
R J G(t) dt
0,
is as small as {t can honestly be. Of course G(0) < Gy (S G(0)) may be much less.
2. Measure j, the area of the box.
3 w= oy - ;1 is the required value of the Newtonian viscosity, larger than it
probably should be, but honest.

We could use small sinusoidal oscillation data instead of stress relaxation to
compute G(t).
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This paper has been prepared for Amorphous Polymers Workshop, March 5-8, 1985, held
at the Institute for Mathematics and its Applications. The work was supported by
the U.S. Army Research Office, Math and by the National Science Foundation, Fluid
Mechanics. Many of the results given here are taken from previous works with vari-
ous collaborators, but most especially from a recent [1985] work with Jean Claude
Saut.
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