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Abstract

We consider the problem of global stability of the rigid rotation of two fluids. The
realized interfacial configurations minimize a potential. We derive the most general form
of the potential in which the working of the contact line may be expressed as a
potential. The resulting variational problem for the interfacial potential is solved when
the contact line conditions are suppressed and for coating flows in which the interface
makes a tangent contact with the wetted rod. In the former case, good agreement with
experiments is obtained except near lines of contact. This shows that a spinning rod
interfacial tensiometer is viable. In the latter case of coating flow, we get good
agreement with experiments when the effects of gravity are not too large. The problem
of bifurcation of coating flow is discussed qualitatively and some experimental results
are given. We show how bifurcating sequences fit well into our qualitative description of
the solution which must minimize the interfacial potential as the angular velocity is
increased. The last bifurcations lead to pendant drops on a rotating “ceiling” under the
influence of centripetal forces which replace gravity. The dynamics of rollers of oil in
water, or part in water and part in air, are explained in terms of the wave length
dependence of rotating drops.
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1.

Introduction. The problem of placements and the problem of shapes

Flows of two fluids are important and interesting because they are commonplace,
they lend themselves to technological applications and they introduce new phenomena
without counterpart in the flow of one fluid.

Many configurations of flow of two fluids are possible. We see layers, slugs, rollers,
sheets, bubbles, drops and emulsions and foams (see Joseph, Nguyen and Beavers
[1984, 1986], hereafter called JNB). These structures are often topologically different
from the rest configurations from which they arise. The evolution involves breakup of
liquids, a process which is not included in the usual statements governing dynamics
(say, the Navier-Stokes equations). In some approximate sense, the configurations and
the flow of two fluids which are ultimately achieved in practice are controlled by the
problem of placements and the problem of shapes. In the problem of placements, we
must describe the massive transport required to position the two fluids in the places
they ultimately occupy. This problem is controlled by fingering flows and breakup and
frequently is such that the low viscosity constituent is found in the regions of high shear.
Some suggestive ideas about the sets of solutions of the problem of placements which
may be realized in practice can be determined by arranging the liquids to minimize the
dissipation. Actually different minimum problems can be imagined (see JNB) and
probably none of them are precise statements of what dynamics will allow. It may in fact
be more useful to express the type of “minimization” achieved by the fluids in the
anthropomorphic terms used by JNB: “High viscosity liquids hate to work. Low viscosity
liquids are the victims of the laziness of high viscosity liquids because they are easy to
push around.”

The problem of shapes has to do with the geometric form of the interfaces between
flowing fluids. This problem involves surface tension and other potential terms which
enter into each problem. The problem of shapes for rigid rotations of two fluids was
considered by Joseph, Renardy, Renardy and Nguyen [1985], hereafter called JRRN.
This paper extends and solves the problem of shapes posed by them.

The problem of placements can be framed as a variational problem for
configurations which minimize a dissipation. This variational problem is perhaps a
suggestive but not exact statement of the placements allowed by dynamics. The
problem of shapes can also be framed as a variational problem. In this problem we
seek the shapes which minimize a potential energy. In general this variational problem
is also merely suggestive but in some limits it is also exact. The problem of rigid
rotations of two fluids without gravity is one of these special cases in which the shape of
the interface may be determined by minimizing a potential.



2. Energy theory of stability of rigid motions of two fluids with contact lines

2.1 Steady rigid rotation of two fluids

Rigid motions of a fluid are possible provided that the fluid rotates steadily about a
fixed axis. Drops, bubbles, different types of fluids in all types of containers may rotate
rigidly. Various kinds of perturbations of rigid motion are also of interest.

A single liquid which fills a container rotating steadily around some fixed axis will
eventually rotate with the container. But in the case of two fluids it is necessary to
determine the places occupied by the two fluids and the shape of the interfaces
between the two fluids.

We shall consider the special case in which the two liquids occupy the region

(Equations 2.1–2.5 and text.)

2.2 Disturbance equations

Set

(Equations 2.6–2.13 and text.)

2.3 Energy equation for rigid motions of two fluids

The disturbance equations given in Section 2.2 imply that

(Equations 2.14–2.19 and text.)

2.4 Assumptions about the interface �

We assume that the interface …

We also assume that the boundary …

2.5 Reduction of the interface terms

We proceed now to the terms on the right of (2.17). These were computed by JRRN
for the periodic problem and by C. Guillopé and D.D. Joseph for this paper …

(Equations 2.20–2.30 and text.)

2.6 The interface potential

In order to reduce the interface terms (2.30) to potential form we assume that …



(Equations 2.31–2.33 and text.)

Finally we note that the working of the contact line cannot always be represented by
a potential. The relation of the assumptions (i) and (ii) which lead to a potential and the
classical ones in which contact angles or contact lines are fixed is obscure. We note,
however, that these assumptions hold trivially for the case of a fixed line or a constant
angle independent of position and, in general, whenever implicit relations of the form �
or � are valid.

2.7 Poincaré’s inequality and the energy inequality

(Equations 2.34–2.37 and text.)

2.8 Integrability of the energy

Integrating (2.37) …

(Equation 2.38 and text.)

2.9 Minimum of the potential

Let us consider the limit configuration …

(Equations 2.39–2.41 and text.)

2.10 Relation between the contact line and the contact angle

Assumptions (i) and (ii) are equivalent to assuming a functional relation in which the
contact angle is determined by its position on the contact line. (We could also state
equivalent conditions in which the contact line is determined by the angle; say, the
contact line does not move.) Precisely, such a functional relation is a differentiable map
…

(Unnumbered equations and text.)

… The contact line moves about 1 cm in 3 days, so that the velocity of the contact
line is negligible and the angle does not depend on the velocity.

2.11 Spatially periodic connected interfaces

In this section we shall assume that the interface is a graph

(Equations 2.42–2.43 and text.)



3. Solutions of the minimum problem

3.1 Mathematical formulation of the minimum problem

Joseph, Renardy, Renardy and Nguyen [1985] showed that rigid motions of two
liquids between concentric cylinders …

(Equations 3.1–3.10, I, II, and text.)

3.2 Analysis of the minimum problem

(Place Figures 1, 2, and 3 near here.)

It is convenient to replace the parameters …

(Equations 3.11–3.24 and text.)

3.3 Periodic solutions, drops and bubbles

(Place Figure 4 near here.)

Solutions which cross the axis may be regarded as limiting cases of periodic
solutions. Then we get a periodic array of drops …

(Unnumbered equations and text.)

3.4 All the solutions with J<4 touch the cylinder

Minimizing solutions which cross the axis of rotation will certainly touch the inner
cylinder. The prediction that solutions with J<4 will touch the cylinder is completely
consistent with experiments. The cylinder touching solutions which are observed are of
two types: (i) The interface between the two fluids intersects the cylinder at lines of
contact, as shown in Figs. 5, 6, and 13 and (ii) The interface between the two fluids
makes a tangent contact with the wetted rod at r=a as shown in Figs. 7 through 11. The
physical mechanisms embodied in the difference between (i) and (ii) are associated
with fundamental problems of adhesion and cohesion not considered here.

The effects of capillarity at lines of contact should be considered for solutions of
type (i), as in (3.23); but if � is small, the effects of capillarity at contact lines will then
also be small. The comparison between theory and experiment shown in Section 5.1
shows that contact line effects are local even in cases when the interfacial tension is
large; say when a is small compared to the bubble radius. In the other case (ii), with
tangent contact, and no contact line, we acknowledge a constraint on our variational
problem, by looking for periodic solutions with troughs which touch the cylinder at r=a.
This also works well (see Fig. 7 through 11).



3.5 Critical remarks about stability theory

The fact that realized solutions with J<4 touch the cylinder are a motivation for
remarks which are meant to be critical of current ideas about the study of stability of the
flow of two fluids. When there is one fluid, there is a unique stable flow at low Reynolds
numbers. When there are two fluids, there can be many configurations, even at zero
Reynolds numbers. In the case of rigid motions, heavy fluid outside or inside and even
nested sequences of drops and bubbles are possible. Different solutions can be
realized in nature. So we have not got a unique solution to study but perhaps an infinity
of such solutions (see JNB for examples). If we choose one of these and show
instability, we eliminate one placement, but we have to study all the others. So with two
fluids the identification of a basic flow and the study of its stability cannot be separated.

As an example of the considerations just discussed we note that C. S. Yih [1960]
studied the problem of stability of a film of liquid rotating in air. He treats this problem in
the linearized approximation. He studies the stability of rigid motions with a free surface
of constant radius with gravity neglected. Naturally these constant radius interfaces are
unstable because J is negative. Rigid motions, with negligible gravity, are stable and
can be obtained easily in experiments (see Sections 5.3 and 5.4) but the free surface
cannot have a constant radius.

4. Experiments with heavy fluid outside—the spinning rod tensiometer

(Place figures 5 and 6 near here.)

The case J>0 corresponds to centrifuging, with heavy fluid outside, and 0<J<4 is the
domain corresponding to rigid rotation of bubbles whose long dimension increases
monotonically from that corresponding to a sphere at …

(4.1)

for values of � such that gravity is negligible.

The spinning rod tensiometer (U.S. Patent 4,644,782) is a device for measuring
interfacial tension between different liquids. This device competes with various spinning
drop tensiometers (see Rosenthal [1962], Princen, Zia and Mason [1967]). The rod and
the drop tensiometers are designed to work under conditions of negligible gravity in
which (2.4) and (4.1) hold simultaeously.

The working formula � for the spinning rod tensiometer may be replaced with the
working formula � for the spinning drop tensiometer when

(unnumbered equation)



where �. We may ignore the rod when a is small, � is large of the contact angle at the
rod is near to the angle on the bubble without the rod at the same radius.

The shape of rotating bubbles does not depend on whether a small rotating rod
pierces the central axis of the bubble, except near lines of contact.  This lack of
sensitivity of shape on rod is partially controllable, the capillarity is reduced in small rods
and may be reduced by using rods of different material and coated rods.

The experimental apparatus used to obtain the results reported here is a cylindrical
container of plexiglass with inner radius 3.6 cm., of length 24.5 cm., closed at each end.
A rod may be inserted along the central axis. The rods are attached rigidly to the
cylinder and all the parts rotate together as a rigid body. We used aluminum rods of
radius 0.24 cm. and 0.5 cm. and a plexiglass rod of radius 1.25 cm. A photograph of the
cylindrical interface which appears whenever J>4, shown as Fig. 4, will aid the reader in
visualizing the cylinder apparatus.

The liquids used in our experiments were water, Castor oil, Soybean oil and 20,
1000 and 12500 cp silicone oils. The densities of these liquids are 1, 0.960, 0.922,
0.949, 0.967, 0.975, respectively. The small density difference greatly reduces
perturbing effects due to gravity. The effects of gravity can be reduced to negligible
levels with |J|<4 when the density differences are <0.1 and d<1 cm., as in our
experiments. If we suppose that � for k >> 1, then (4.1) requires that �. Under these
conditions we always get centrifuged configuration with heavy fluid outside, �.

Solutions of permanent form, periodic in x, with heavy fluid outside (0<J<4), were
never observed. Instead of periodic solutions we found isolated bubbles of light liquid
centered on the rod. When J>4, we get a cylindrical interface which is modified by
capillarity at the end walls. The effects of capillarity are smaller when J–4>0 is larger.
When J is reduced from above to below 4, the interface deforms continuously until
points at the interior touch the axis. At this point we see some changes in the topology
of the interface. The fluid may rupture into bubbles separated from the heavy liquid
outside by well defined contact lines. This depends on energetic considerations
associated with the two fluids and the rod. The configuration of permanent form which
we see most frequently when 0<J<4 is like that shown in Fig. 5 in which small bubbles
and large bubbles both appear.

We define d for an isolated bubble as the radius associated with a right circular
cylinder of the same length and volume. It follows that there are different J’s for small
and large bubbles rotating with the same �. This is why the small bubbles are almost
spherical and the large ones are elongated.

Agreement between theory and experiment is demonstrated in Fig. 6. The dots
represent theory with capillarity neglected. The value of the interfacial tension may be
selected to make theory and experiment agree for one value of �. The same interfacial



tension then gives agreement for other values of �. In Figs. 6a and 6b we can compare
the agreement between theory and experiment for two different values of �, with one T.
Figs. 6a through 6c show that capillarity is a small effect. This was true for all the cases
we studied. Figs. 6c and 6d exhibit a worse case situation, comparing a free bubble to a
captured bubble, using the same interfacial tension, which is not at all bad.

Very rapid measurements of surface tension may be obtained using elongated
bubbles with aspect ratios greater than 6 by assuming that J ⁄ 4. More detailed
comparison of theory with observed shapes leads to values of the interfacial tension T.

Some of the advantages enjoyed by the spinning rod tensiometer over various
spinning drop tensiometers currently used are (1) the rod captures the bubble
eliminating the position problem, (2) the captured bubble is stable if small enough,
eliminating the stability problem, (3) the rod reduces the spin-up time from hours to
minutes and (4) the cylinder plus rod device is simple and cheap and has a potential for
high precision.

5. Experiments with heavy fluid inside—coating flows

We did experiments with heavy fluid outside, “drop” experiments, of a special kind,
coating aluminum and plexiglass rods rotating in air with oil. With air outside, � is not
small and gravity can be important. The coating liquids used in our studies were STP,
1000 and 6000 poise silicone oils. The viscosity of STP is about 100 poise. The
dynamics which we have observed are not inconsistent with the observations of Moffatt
[1977] of films of golden syrup (80 poise) rotating in air. Our study complements
Moffatt’s in carefully examining the axial structure of the rotating films as well as the
azimuthal variations. We are interested in demonstrating that the shapes of the films
are largely determined by minimizing the potential expressing energies associated with
centripetal acceleration and surface tension, even when gravity is not negligible.

The apparatus used in these experiments is nearly identical to the one used in the
experiments of Moffatt [1977]. A layer of liquid was first coated on the cylinder by
rotating it while partially immersed in a trough; the roller was then raised from the trough
while still rotating. The coating films achieved in this way could be maintained
indefinitely. The films undergo many different transitions as flow parameters are
changed. We used 3 different rods: 2 aluminum rods with radius and length 1.02, 30
cm. and 1.42, 45 cm. respectively and 1 plexiglass rod with radius and length 2.04, 30
cm. The material and length of the rods is not important. The liquids coated the entire
rod along its whole length.

All the fluids which were mentioned in the last paragraph are sticky. Once the rod is
coated with these fluids, it stays coated; dry patches do not develop. This means that
contact line conditions are inappropriate for such coating flows. We are then obliged to
reconsider the implications of the fact that in unconstrained problems the minimizing



solutions cross the axis when J<4. In the case of sticky coats on rotating rods we have
a constrained variational problem in which we require that if the interface touches the
rod it will do so with a flat angle of contact at touching points. In fact all the realized
solutions touch the rod in just this way (see Figs. 7, 9, 10 and 11).

The same oil which sticks on solids immersed in one fluid need not stick when
immersed in another fluid. Silicone oil sticks to plexiglass rods rotated in air, but not in
water (see Figs. 12 through 14) even though silicone oil preferentially wets plexiglass.

Some gross features of rod touching oil films rotating in air may be explained as
follows. Uniform coats are unstable and undulations begin to develop along the rod.
Moffatt [1977] gave a heuristic argument which explains why this instability should not
equilibrate until the troughs of the wavy interface touch the cylinder. In this argument we
neglect surface tension and suppose that a liquid is rotating in air with � on �. Then

(unnumbered equation)

and the pressure under any bump is less than the pressure at the side of the bump. In
the absence of countervailing forces the pressure deficit would exaggerate the bump,
with largest pressure gradients along lines from the point at the base of the bump
where � is minimum. This pressure gradient pulls in the sides of the bump,
exaggerating bumpiness. This heuristic argument does not require axisymmetry; it
works as well for bumps as for rings. The same argument works without change
whenever the heavy fluid is inside, �. When the speeds are low, axisymmetric wavy
solutions with troughs that touch the cylinder minimize the interface potential (see
Section 5.2). It is nearly impossible to pass fluid from one wave to another. Further
increases in the angular velocity lead to increases in the amplitude of the undulations
and length of the troughs touching the cylinders. These features are evident in Figs. 7
through 14 of this paper and Figs 5 and 6 of the paper by Moffatt. The undulations are
then isolated from one another and not useful to think of periodic (in x) solutions,
however periodic they may appear to be. Periodicity can be more closely simulated
when the viscosity of the coating fluid is smaller. In this case the transfer of fluid from
one undulation to another, which is required to maintain periodicity against
disturbances, is enhanced. It may be useful to think of the undulations as rotating drops
constrained by tangent contact at the rod. From these explanations the reader should
understand why long very thin films separate rotating drops making tangent contact,
whether or not the array of drops appears to be periodic.

5.1 Effects of gravity

(Place figures 7 and 8 near here.)



The analysis of Moffatt [1977] and the analysis and experiments of Preziosi and
Joseph [1987] show that the effects of gravity on coated rods rotating in air are small
when

(Equation 5.1 and text.)

5.2 Computation of the interface shape of rigidly rotating coating flows making
tangent contact at the rod

We first determine d in the plane …

5.3 Bifurcation of coating films to non-axisymmetric shapes

The problem of shapes of interfaces between fluids which rotate rigidly without
shear, when gravity is neglected, is determined by a balance of the capillary force
against pressure forces associated with centripetal accelerations. When there is no
rotation, and no other constraints, surface tension will pull the interface into a sphere.

The argument of Section 4 applies equally to axisymmetric shapes (rings) and non-
axisymmetric ones (bumps). The stability of rings for small amplitudes and their loss of
stability to non-axisymmetric shapes at large amplitudes can be argued from the form of
the dimensionless potential.

(Equations 5.2–5.5 and text.)

… modes of azimuthal periodicity.

The bifurcation of axisymmetric figures of equilibrium to first mode, eccentric figures
is a robust and possible generic phenomenon, readily observed on nearly every type of
coating film, whether rotating in air or in water (see Figs. 9 and 10). The same type of
first mode azimuthal periodicity was observed in the [1863] experiments of Plateau (see
his Fig. 4) as the first bifurcation of the olive oil drop coating the rotating disk in an
alcohol-water mixture. This type of instability does not make sense for free rotating
drops since the central axis of a free drop is not fixed in space.

Nonaxisymmetric one-lobed shapes were analyzed by Brown and Scriven [1980] for
a drop captured between two rotating disks. These calculations showed that higher
lobed shapes between disks, like those reported by Plateau and here are indeed
unstable. First mode, eccentric figures, like the shape of drops rotating on a rod, can
even be explained within the context of static figures. In his observations of static
capillary bridges, Plateau observed such a bifurcation when the end plates confining the
neutrally buoyant fluid were brought sufficiently close to one another. This reduces the
wave length, as in the case of rotating drops, until the price paid by further decrease of
the axial wave length in minimizing the potential is greater than that for bifurcation into



the first mode. Russo and Steen [1986] have recently analyzed this bifurcation in the
context of static figures.

5.4 Intrinsically steady and unsteady coating flows

(Place figure 11 near here.)

Flows which are steady in laboratory coordinates can be achieved when � is small.
For larger values of �, these flows are unsteady in every coordinate system. For very
large values of �, thin films rotate rigidly and are steady in a rotating coordinate system.

It is impossible to maintain an interface of constant radius on a film of liquid coating
a rod rotating in air. If the coat is thick gravity can be very effective in creating a large
secondary motion with gravity opposing the motion on one side of the film and
supporting it on the other. The effects of gravity are greater when there is more liquid on
the rod. For fixed volume of liquid, the effects of gravity are diminished when the
viscosity is increased; however, more liquid will remain on the rod at given speed when
the liquid is more viscous (cf. Section 4). The two effects compete. At low speeds an
equilibrium is established with a “lop-sided” configuration as in Fig. 4b of Preziosi and
Joseph [1987] which is steady in laboratory coordinates.

As the speed of rotation is increased the out of roundness begins to increase and
also to rotate relative to laboratory coordinates. This is a manifestation of bifurcation to
a mode one azimuthal variation, but it is slightly masked by out of roundness due to
gravity (see Fig. 9). Such solutions are intrinsically unsteady. At the same time the crest
of the waves grow and rings develop, in the manner shown in Fig. 10 and in Figs. 7 and
8 of Moffatt [1977].

When the coating fluid is very viscous and the coating film is thin, the effects of
gravity will be diminished, as shown in Fig. 10. Thin films can be created by centrifuging
away excess fluid. If the speed of rotation is further increased, more liquid will be flung
off the rod. At very high speeds most of the fluid is thrown off the rod. Gravity has
nothing to do with “throwing off” because ejected particles of fluid are flung out radially.
An equilibrium is reached in which there are pendant drops on a rotating rod. These are
shown in Figure 11.

Pendant drops are a symmetry breaking bifurcated solution of our coating film. They
tend to form on the rings of earlier solutions with successive rows staggered so that the
drops in one row lie in the interstice of the next row. This induces the diamond
symmetry shown in the figures. The pendant drops are like those which might develop
under gravity on a moist ceiling with an effective gravity equal to �

6. Rollers

(Place figures 12, 13, and 14 near here.)



This section is partly an addendum to the two papers of Joseph, Nguyen, Beavers
[1984, 1986] in which we try to explain what is observed there using what we have
learned here.

6.1 Rods coated with oil rotating in water, rollers and drops

We are going to discuss two fluid situations in which both fluids do not rotate rigidly.
We are interested in situations in which oil coats the rod and both the rod and the
attached oil rotate in water. If the oil is sufficiently viscous, it will rotate with the rod as a
rigid body. This rigid rotation was achieved in all our experiments with STP, 1000 and
6000 poise silicone oil. We could but do not give the boring data which show that the oil
masses rotate rigidly. It is also of interest to consider cases in which the rigid rotating
rod plus oil is immersed partly in water and partly in air, as in Fig. 12. The oil bodies
which rotate as rigid wheels in fluids of smaller viscosity have been called rollers (see
JNB). The dynamical problem posed by the [1863] experiments of Plateau in which
olive oil drops on a disk were rotated in an alcohol water mixture also falls in this frame.

We are going to say that oil masses rotating rigidly in water are analogous to drops.
This contradicts the static definition of a drop which is when the heavy fluid is inside
(J<0). Rollers and Plateau’s “drops” have the light oil inside (J>0). We call these “static
bubbles” drops because they act like drops when they are rotated, the length � along
the axis of rotation of these drops or rollers shortens and the maximum radius �
increases as the angular velocity � is increased. We have not reconciled the obvious
difference between the static and dynamic definitions of a drop.

It is necessary to say that the cases under discussion here differ from those in
Section 5 in that the water is confined to a stationary box and the water does not rotate
rigidly, though the oil does.

Plateau [1863] reports that he observed an unstable toroidal figure of equilibrium,
stable for a time, when he increased the rate of rotation of the disk driving the oil drop in
the density matched bath of alcohol and water. The sequence seen by him is like that
shown in Fig. 3, (b) and (c), a solution of nodoid type valid for rotating drops.

In Fig. 12 we show fat rollers of STP rotating rigidly, lubricated everywhere by water,
immersed in water at the bottom and with their tops poking into air. Gravity enters into
the dynamics of these rollers; the water pushes up on the bottom and the air pulls down
with a much bigger pull at the top. These gravity effects are stabilizing, tending to
stabilize otherwise unstable toroidal drops of equilibrium. Fig. 14 of JNB is another even
better example of a nodoid type solution of toroidal shape modified by gravity.

Photographs of interpenetrating rollers immersed partly in water and partly in air
have been exhibited in JNB [1984, 1986]. The dynamics of these rollers are partly
explained by drop dynamics. The first dramatic dynamic event in the formation of



interpenetrating rollers is that a sheet of water fingers through the STP joining the two
rotating cylinders, splitting the STP into more or less thick cylindrical films, each on its
own cylinder. These films develop the same type of undulations which are charateristic
for films rotating in air. The undulations grow in the manner consistent with rotating
drops. However their growth is blocked by the presence of the second cylinder and they
form square rollers which are consistent with minimizing a drop potential subject to a
unilateral constraint.

6.2 Sidewall detachment of single rollers

Sidewall detachment of single rollers was described by JNB and by JRRN. An
attempt to describe the underlying dynamics was made by JRRN. They say that the
most interesting feature of the dynamics leading to the formation of rollers is the
fracturing of the viscous liquid at some critical level of the stress. In this process the
roller breaks away from the sidewall and relieves the high stress associated with no slip
at the sidewall. So in the final, stable dynamics, rollers are lubricated by water and air
on all sides. The rollers rotate nearly as rigid bodies because they are so viscous. The
stability of rollers, as our analysis suggests, depends on the fact that the density
stratification is such as to prevent the centrifuging of the roller.

Several major points in the foregoing analysis must be revised in the light of our
work here. The first revision does away with the notion of a critical stress. The sidewall
detachment takes place as a kind of instability associated with a critical angular
velocity. Photographs of this instability are exhibited as Fig. 15 of JNB.

We now want to explain sidewall detachment in terms of drop dynamics. The roller
will attach to the side wall at all values of � below a critical one for which the length of
the drop with contact at r=a is equal to the distance between the sidewalls. For larger
values of � this length is less than the distance between sidewalls. This line of thought
appears to explain qualitatively all of our observations of side wall detachment (see Fig.
13). The foregoing explanation can be made quantitative under the hypothesis that the
oil roller completely immersed in water is the same as a roller with an effective density
equal to the density of water minus the density of oil, like a light drop rotating in air
without gravity. We have not been able to justify this hypothesis mathematically, but it is
consistent with the measurements reported in the caption of Fig. 13.

We close this discussion of oil masses rotating in water with some remarks about
bifurcation. Again it is necessary to revise JRRN in which it was said, “This instability (to
non-axisymmetric disturbances) is associated with viscous shearing, which becomes
important at higher speeds and with a possible unstable distribution of angular
momentum.” We want to deemphasize the effects of viscous shearing and to
emphasize the intrinsic instability. The arguments given in Section 5.3 apply here. In
general we get bifurcated sequences in the order of increasing azimuthal periodicity,
first n=1 as in Fig. 14(a), then n=2 as in Fig. 14(b). Some higher values of n are shown



in Fig. 14(c) and 14(d). The viscous shearing is very important for the bifurcated figures
shown in Fig. 14(c), but it is not the cause of the bifurcation. Our observations of
bifurcating sequences reproduced the sketches shown in Figs. 4 through 8 of the
celebrated [1863] treatise of Plateau and in photographs by Wang, et al. The same sort
of phenomenon, bifurcation of rotating drops into non-axisymmetric shapes in
qualitative agreement with theory, although the theory does not acknowledge the outer
fluid, was reported by Wang, et al.
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List of Figures

Figure 1 Solution (I) of unduloid type

Figure 2 Solution (II) of nodoid type



Figure 3 Schematic drawing of minimizing solutions. Minimizing solutions touch the
axis with a perpendicular tangent. (a) Solutions of unduloid type are
convex, 4≥J≥ –5.42285. (b) Solutions of nodoid type have a point of
inflection –5.42285≥J≥ –8.18834. (c) Limiting (toroidal) form of the
solution for J= –7.583908.

Figure 4 Cylindrical interface between 1000 cs. silicone oil and water when J=4.5.
The radius of the rod is 0.24 cm.

Figure 5 Array of bubbles of 95% silicone oil (12500 cs.) dyed with 5% castor oil
(�=.974, T=20.5) in water. The J for the central bubble is 1.87 and that for
the small ones is 0.05. The radius of the aluminum rod is 0.24 cm.



Figure 6 Numerical comparison. The dots are theory computed numerically (see
(3.24)) neglecting the contact line potential. The rod radius is 0.24 cm.

a) bubble of 95% silicone oil (12500 cs) dyed with 5% castor oil
(�=0.974, T=20.5) in water when J=0.72

b) bubble of 95% silicone oil (12500 cs) dyed with 5% castor oil
(�=0.974, T=20.5) in water when J=1.87

c) bubble of silicone oil (1000 cs, �=0.967, T=22.1) in water when
J=2

d) bubble of silicone oil (1000 cs, �=0.967, T=22.1) in water when
J=2 without inner rod.



Figure 7 The rod is coated with STP and is rotating in air with J= –0.95, a/d=0.74
and �=0.57. The dots compare the observed shape with the axisymmetric
drop which has a tangent contact at r=a. The shape of this axisymmetric
figure is determined by the method of Section 5.2.



Figure 8 (a) Bifurcated nonaxisymmetric solutions on rings of 6000 p silicone oil in
air on a 2.04 cm rotating plexiglass rod. (b) Instability of the bifurcated
rings at a higher rotation rate.



Figure 9 Silicone oil (6000 p) on a 1.02 cm. radius aluminum rod rotating in air at
21.9 rpm. The lobes rotate much more slowly, left to right, 15, 18.8 and
13.7 rpm, respectively.

Figure 10 The 6000 p silicone oil is thrown off radially. The effects of gravity are
negligible. The configuration is nearly steady in a rotating coordinate
system.



a) �=99.15 rpm, a=1.02 cm

b) �=31.76 rpm, a=2.04 cm

The surface velocities of the three rings (b) from left to right are 31.41,
31.57 and 31.53 rpm respectively.

Figure 11 Pendant drops of 6000 p silicone oil in air on a rod of radius 2.04 cm. The
motion is perfectly steady in a rotating coordinate system. Gravity is
negligible.

a) �=500 rpm

b) �=1000 rpm



Figure 12 STP roller immersed in water, lubricated by water everywhere, poking its
head into air. The shape of this roller is nodoid (see Fig. 3).



Figure 13 Detachment of rollers from the side walls. The diameter and length of the
plexiglass cylinder is 5.7 cm. and 10.8 cm., respectively. The roller of
silicone oil (1000 p, �=0.997) rotates in water.

(a) �=0.75 rad/sec. The roller is attached to the side walls.

(b) �=1.19 rad/sec. The speed is increased. The wave length of the
roller decreases as in a rotating drop and the roller detaches from
the wall. The critical � for detachment is 1.14 rad/sec.

(c) �=1.19 rad/sec., but three days later, the minimizing solution
appears to have the form required for a rotating drop.

In fact, we get qualitative agreement between the theory given in Section
6.2 and the experiments if we imagine the roller to be a drop of density
�(water) – �(oil) >0. We call attention to the change in the contact angle
with the position of the contact line.



Figure 14 Bifurcated configurations of silicone oil in water. Only the one-lobed figure
is stable in our experiments; the other figures eventually degenerate into a
single lobe. This is consistent with predictions given by Brown and Scriven
[1980] for a related problem. The one- and two-lobed figures resemble
Figures 4 and 8 sketched in the work of Plateau (1863).

(a) One lobe, �=0.47 rad/sec

(b) Two lobes, �=0.83 rad/sec

(c) Three lobes, �=1.49 rad/sec

(d) Six lobes, �=3.18 rad/sec


