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?t 1. MOTIVATIONS AND APPLICATIONS

} Flows of two fluids are important and interesting because they are com-
g monplace, they lend themselves to technological application and they intro-
{  duce new phenomena without counterpart in the flow of one fluid,

i Many configurations of flow of two fluids are possible. We see layers,
I slugs, rollers, sheets, bubbles, drops and dynamic emulsions and foams.

; These structures are often topologically different from the rest confi-
¢ gurations from which they arise.

y The evolution process involves breakup and fracture of liquids which
' are not included in the usual statements governing dynamics (say, the Navier-
¥ tokes equations).

In some approximate sense the configurations and the flow of two
fluids which are ultimately achieved in practice are controlled by the problem
of placements and the problems of shapes. In the problem of placements we
must describe the massive transport required to transport the two fluids to
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the places they ultimately occupy. This problem is controlled by fingering
and fracturing flows and frequently is such that the low viscosity constituent
is found in the regions of high shear.

“High viscosity liquids hate to work. Low viscosity liquids are the
victims of the laziness of high viscosity liquids because they are easy to
push around.”

The problem of shapes has to do with the geometric form of the interfaces
between flowing fluids. This problem involves surface tension and other
potential terms which enter into each problem. This problem is treated for
rotating flows in Chaprter II.

Applications which involve the lubrication of one fluid by another are
possible because lubricating flows are often stable (Joseph, Nguven and
Beavers, 1984: Joseph, Renardy and Renardy, 1984; Renardy and Joseph,
1985; Rosso, Than and Joseph, 1985). In the flow of two liquids down
pipes there is a tendency for the low viscosity liquid to migrate to the ripe
walls, lubricating the flow. The addition of water in the pipeline transport
of oll, leads to a reduction in the pressure gradicht needed for transport of
a given amount of oil (Charles and Lilleleht, 1965; Gemmell and Epstein,
1962; Russell and Charles, 1959). There are significant reserves of heavy
viscous crude oil in the United States, Canada, Venezuela and Europe which
are becoming of increasing commercial importance. Heavy crudes may have
viscosities of 1000 poise at room temperature. These viscous crudes cannot
be transported by the usual pipeline methods. One proposed scheme would
be to lubricate the walls with a second less viscous liquid, say water. The
same tvpe of technology could find a rich application for the transport of
coal slurries and other granular materials in pipelines. It is known that some
solids-liquids mixtures can move through pipes as plug flows in which the
solids are concentrated in a large central core or plug which is surrounded by
a thin annulus of relatively clear liquid. Investigators have reported that the
resistance of certain mixtures moving in plug flow is appreciably less than
that of similar mixtures when the solids are dispersed over the whole area of
the pipe. It therefore appears that the lubrication of fluid by another may
also be of interest in pipeline transport of fluidized solids.

The lubrication of one fluid by another was used by Macosko, Ocansey
and Winter (1982) to create a planar extensional flow for application I1n the
field of rheometrical measurements of material properties of fluids. They
showed that planar stagnation flow could be achieved using molten polys
tyrene in a die with walls lubricated by silicone oil.
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Polymer processing applications of the flows of two liquids which are
of commercial interest are the coextrusion of two polymer melts through a
slit die to form a multlayer film having unique optical and mechanical pro-
perties (Schrenk and Alfrey, 1972; Radford, Alfrey and Schrenke, 1972;
Guillotte, 1972) and in the strattied flow of two polymer melts through
a tube, a process essential in the spinning of two-component fibers, which
are important for their self-erumping characteristics (Hicks, Ryan, Taylor
and Techinor, 1960; Buckley and Phillips, 1969).

The extrusion of metal tilaments in molten glass sheaths stabilizes the
metal and allows the formation of thin wires of constant diameter which
would be destroved by capillary instabilities if extruded into air (Manfre,
Servi and Ruffino, 1974).

Some interesting studies of compound jets and their potential appli-
cations are reported by Hertz and Hermanrud (1983) and Hermanrud (1981).
A compound jet consists of a central primary jet surrounded by a sheath of
secondary fluid which has been entrained by the primary jet during its passage
through the secondary tluid. The compound jet is useful because the outer
laver of the jet can be used tor lubrication of the tube as it passes through
the jet spray orifice. It allows larger diameter orifices whilst maintaining a
small diameter for the ink jet.

A different kind of application 1s associated with the simulation of
artificial microgravity environments by matching densities. The principle is
that gravity enters into interface dynamics through the relative weight per
unit volume, which is equal to the density difference times gravity. Applica-
tion of densitv matching have been explored in rheometrical devices using
free surfaces. The amplitude of the deformation of the free surface may be
amplified through density matching.

Certain geophysical processes, like mantle convection, may be modeled
by two flowing liquids. The type of modeling is useful because it reduces
geophysical flows to laboratory scale where they can be studied by controlled

experiments.

II. RIGID MOTIONS OF TWO FLUIDS

Rigid motions of a fluid are possible provided that the fluid rotates
steadily about a fixed axis. Drops, bubbles, different types of fluids in all
types of container may rotate rigidly. Various kinds of perturbations of rigid
motion are also of interest. The main point of the analysis is that the configu-
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rations which are stable are those which minimize a well defined interfacial
potential.

The results which are discussed in this chapter are taken from papers by
Joseph, Nguyen and Beavers (1984) called JNB, Joseph, Renardy, Renardy
and Nguyen (1985) called JRRN, Guillope, Joseph, Nguyen and Rosso
(1985), called GJNR, and Preziosi and Joseph (1985), called P].

1. Steady rigid rotation of two fluids.

A single liquid which fills a container rotating steadily around some
fixed axis will eventually rotate with the container. But in the case of two
fluids it is necessary to determine the places occupied by the two fluids and
the shape of the interfaces between the two fluids. We call this generic prob-
lem the problem of placements and shapes.

Two liquids occupy the region

G={x=(0,0x), R, <<r<R,, 0<6<27,—-L<x<L}

between two coaxial cvlinders of radius R; and R, which rotate with
a common angular velocity §2. Liquid one is in G, and two is in G,,
G, U Gy =G. The interface between G, and G, 1is called Z. It may be
of disjoint parts.

Candidates for rigid motions, with gravity neglected, are

(1o, Po] = (Qrey, pQ2rH2 + ¢) (1.1)

The velocity is continuous across ¥ no matter what X, and the ex-
cess stress vanishes. We call (1.1) a candidate because it need not satisfy the
normal stress condition

[pol =2HT on Z (1.2)

[[po]J=[[p]]%QR+HC]} (1.3)

where R is the value of » at a point on £ and 2H is the sum of the prin-
cipal curvatures. An expression for 2H in cylindrical coordinates is given byv:

_ RRpg(14+RY) + RR,(R* +Rj)— R*(1+R2)—2Rj—2RRyR, R g

2H
(R? +R3 + RER2)*7

(1.4)
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2. Disturbance equation.

Set
w=uyth , p=potp. (2.1)
Then:
p Ll +ite Vg + g Vit + 1 Va] == Vp + div S[#] (2.2)

where # is solenoidal and satisfies the no slip condition on cylinder walls.
At the interface X

[#] =0
~[pln+[S]'n=1[pol*n+2HTn . (2.3)

For any integrable function f which is equal to f; in G; and f; In

G,, we define:
define
(fr = /fldx +ff2dx. (2.4)

For any g defined on X we define:

(g)s =fgd2 : (2.5)
3

Since the total volume for each incompressible fluid is conserved, we deduce
that

<u-n>z=0. (2.6)
If 2 1sgiven by

F(x(),t)=0
then

dF _ OF
—d't——?-Fy_'VF:O (2.7)
were we have assumed that the normal component of the velocity dx/dt of
the surface T and the particles of fluid on either side of Z are the same. In
fact, the velocity # is continuous across X.
When F=r—R(0,x,t) we get:

VF 1 @R
|VF|  |VF| dt

Usn=u- (2.8)
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3. Energy equation for rigid motion of two fluids.

The disturbance equation given in § 2 imply that:

d& [u] A A
o+ 2ul = nllp] +2HT))y (3.1)
where
. | |?
&lal={r—=—) (3.2)
1s the energy and
Z (&) = 2uD[a]: D[] (3.3)

1s the dissipation.
Moreover, using Eq. (9.6.11) of Joseph II (1976), we find that:

(wen([pol +2HT))y =u-nlpoliyg ~

d|Z
—(ug n(lpol + 2HT)>E + Tg_cli—t-i— +[I.gd1§
3

ey

where |Z| 1s the area of 2, 7 1s the outward normal to X, in X, and U
1s the velocity of a point of the contact line 9Z. Under certain circumstan-
ces, specified in 5 we can express (3.4) as the ume derivative of some poten-
tial 9; that iS,

A ; a7
(un([po] +2HT))s =~ 7 (3.5)
We may then write (3.1) as
d(& +2)
- L = - ’6
= 7 . (3.6)

4. Assumptions about the interface Z.

We assume that the interface £ between the two fluids has a finite
number of components; each of them is represented locally by a finite num-
ber of equations 7= R(6,x,t), where R is a continuously differentiable
function, periodic in 6. These local charts also satisfy suitable continuity
conditions at common points.

We assume also that the boundary 38X of the interface has the following
properties: either dX has measure zero as in the case of bubbles, drops and
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emulsions or 9% has a finite number of components, say 0Z = 0Z, UV aZ,
where 93X, lies on the side walls at x == L and can be represented by a
graph r=R(0, £L, 1) and where 9%, lies on one of the cylinders and is
composed of a finite number of contact lines, each of them with a graph of
the form x = X(R;,0,t), 1 =1 or 2.

5. Reducton of interface terms.

We proceed now to the terms on the left of (3.4). These were computed
by JRRN for the periodic problem without contact lines and by GJNR when
there are such lines. We assume that X has an equation r = R(0,x,t) for
x,(0,)<x <L, 0<0<2m, RO, x,(0,t),t) =R, for 0<0 <2m The
function R is continuously differentiable and R (0) = R (2m). Here 0Z, 1is
given by x =X(Ry,0,1) =x(0,t) (= x,(0), for short) where X Is contl-
nuously differentiable and periodic in 6 and 3T, Iis given by the curve
r=R(0,L,t).

Since (ug+nry =0, we find that

(g nlpolds = (o nR* ) é—ﬂpﬂﬂz :

27 L
11:—<£¢_0'_7?_R2>Z:Q'[ f R@RadXde
0 x1(0)

where u, = QRey. Using Leibnitz’s rule we tind that

We detine

L L
d 0x,
— RR3dx =4 R3Rgdx ——— R*(0,x,(0))
a0 06

xy(0) x1(0)

and after integrating, using periodicity, find that I, = 0,
(uo-nlpolty =0 (5.1)

The calculation of (u+n[py])s issimilar.
Since (x-n)s =0, we have

wenlpoly =5 LMol u nRYy .

Then, using (2.8) and dZ =R |VF|d0 dx, we get
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I, ={u-nR?*s f f R,R3dx do .
x1(9 t)
Since

2m
0x
f f R*(0,x,t)dx do = 41, f azl R4(0, x,(0,2), t)d6 =
x1(9 1) 0

2m

x,(0,t)do . (5.2

g

0

It follows now, from (5.2), that I, is the time derivative of some
function and

Q2 d
<y_-_7g[[p0]]>z=——%M'E;3<R3IVF|"1>E +f<bd1§ (5.3)

where

@ziR?Xlr teeg , i=172

=R1_

and t is the unit tangent vector to 98X, (see Exercise 1.2).

In the expression for & the signis + (resp. =) on the parts of 0Z,
being on the right (resp. left) side of a component of fluid s.

We turn next to the reduction of:

(uog+n2HT)y =~ Tﬂf f 2HRRydxdb . (5.4)
x1(0, 1)

Using the formula:

d [R(1+Ri)}+ d [RR,CRG}

RR,2H =
Rg 00 |VF| ox | |VF|

derived in JRRN. We may integrate this expression. The second term leads to:

mrtod [RR,CRQ}OZ o "I RR. Ry
ax | [VF| |7 \VE |
0 x1(0) 0

For the first term we use Leibnitz’s rule:

RR, Ry
. IVF]

}d@ 5.5)
x]
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d L—Ru+Rbd (Fo —R@+Rbci+a% R(1+ R2)
daf wE T ae[ |UF| ]x ae[ VF| }

x1

Since R, = R(8,x(9)), dx,/00 =— Ry/Rx. Hence:

2 Ly r—R(1+RJ) edd =R ”ﬂ§i1+R§
fofae{ |VF| }” Y [Rx IVFl} - GO
!

\xl

Collecting resuits from (5.4), (5.5) and (5.6), we find that

R.RyR
|VF|

RlR@
. R.IVF]

dg . (5.7)

PAig
0

Xy

We may reexpress the second term on the right in terms of X,

R Ry 1 R, Xp X, 5.8
— = 5.
VR, TVE L, TEL g, :
Rz 1/2
where |VF| = <1 + e + Ri) in the first term on the right of (5.7) and

|VF|=(1+ X(Z_)/R2 + Xf)l/2 in the second term, using (5.8).
Finally the calculation of 7+U on Z, given as Exercise 1.2, implies

that:
am R/ X, X
Ufz-gdhif ——i———i\ 4o (5.9)
oz 0 Ry

L [VF{ |
Let « be the angle between the interface £ and the end walls and

RR.R,
|VF|

o, the angle between the interface = and the cylinders. Then:
CosQ =M+ Ex =—-R./IVF| ,

(5.10)

cosa, =n+e, =X /IVF] .

After introducing (5.10) into (5.7) and (5.9) and collecting all the
previous results we find that:
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—(u-n([pol + 2HT))y =

2m
=f (R, + &Ry) R cos o + (X, + QXy) Ry cos a, do +
0 x=L r= Ry
d Q2 R3
— + — + | &ddl : Sl
o\ TR+ o) )55 ) faz §> (5.11)
c

6. The interface potential (GJNR).

In order to reduce the interface terms (5.11) to potential form we as-

sume that:

(*) The contact angle at the interface on the end walls depends only on
the distance 7 from the contact line to the axis of the cylinder.
(At two different points 6; and 6, at which »; =7,, the con-
tact angle will be the same.)

(**) The contact angle at the interface on the cylinders depends only on
the distance L — x of the contact line to the end wall at x = L.

The form of the functional dependence will be explicitly discussed in Section
10. The assumption (*) and (**) imply the existence of two functions Y, (R)
and Y. (X) such that

R cos o) (R) = ¢; (R)

Rycos o (X) = Ve (X)

(6.1)

The reduction of (5.11) to a time derivative of a potential, using (6.1), is
straightforward. We write:

27
[ {(R, + QR Y (R) + (X; + QXy) Y (R)}dO =
0

2m D + d 2w
=f W+ ¥e) do [V, (R) + Y- (X)]dO .  (6.2)
0

Dt T dr
0

D 0 : L L .
Where Do T £2 5g sa derivative following rigid motion.
The motivations in (6.2) are slightly misleading: the integration over 6
is to be carried out on each and every contact line.

We may write (6.2) as

whe

fine
per;
furt
whe
and

for

anc

wh

bul



183

d
—E W dl

oz
* R

where w:L.Qeg LptL( )‘X:iL on azL
* X

b |, g =12 on aZ

It now follows that £ in (3.6) is given by
P=Tz\-| vdi ( Ks Y+ [ bl (6.3)
5 |VF| . ’ ’

7. Poincaré’s inequality and the energy inequality.

[p] 2
8

+

Let v belong to a space X of square integrable solenoidal vectors de-
fined in G which vanish on the solid parts of the boundary of G, or are
periodic in x, with period 2L, if the cylinders are infinitely long. Suppose
further that the gradients of such functions are also square integrable in G
where integration is in the sense (2.4). Such functions are said to lie in H*(G)
and they are automatically continuous in G, even across =, [z] = 0.

Each such v satisfies Korn’s inequality:

(1o ) <2k(D[¥]" (7.1)
for some positive constant k. Since
2 (ID* 2]l = (T2 + (div2)*)

and div o = 0, the constant & is Poincaré’s constant.
Using (7.1) we may establish that

o] > 2N& [2] VoEX (7.2)

where
A = min [y, K2 ]/R max [Py, P2l . (7.3)

The inequality (7.2) holds for connected configurations as well as for

bubbles, drops and emulsions.
It now follows from (7.2) and (2.6) that:

d(&+2P ~
——(—E———)—g—z,\& . (7.4)
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8. Integrability of the energy.

Integrating (15.3) from ¢t =0 to ¢, we find that
t t
&@t)+ 2(t)= &) +2(0) —-f D (1)dr—< &(0) + P0)— kf &(n)dr .
0 0

It follows that:

t
Kf &(r)dr < &(0) + 20)— &(t) — P(¢) . (8.1)
0

Let us suppose that 2 is bounded below on the set of allowed interfa-
ces. In fact, if G is a bounded region, £ is bounded from below. In un-
bounded domains 2 need not be bounded below. In a bounded domain we
could centrifuge all the light fluids to the outer cylinder wall. In an unbounded
domain we would centrifuge a certain amount of liquid off the inner red
before reaching some equilibrium in which the potential is bounded.

If 2(0) is bounded below as a functional on the set of interfaces, &(?)
and 2 (t) are integrable and

lim [&(2) + 2(1)] < .

9. Minimum of the potential.
Let use consider the limit configuration [&(e°). 2(*°)]; since &(o0) = 0,

this is a rigid motion and

9’(00)—9’(0)=m(0)—f D(t)dt . (9.1)
0

Clearly 2 decreases in every transformation for which the right side
of (9.1) is negative. We may find disturbances u at t=0, forany Z, such
that &(0)/2 (0) is arbitrarily small. For these:

P(2)—P(0)<0. (9.2)

It follows that all configurations which give rise to different than P ()
are unstable and that:

P(»)= tli_inm@(t) = ‘}iéngg’[E] . (9.3)
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Finally we note that critical points of £ correspond to steady rigid
motions for which the normal stress equation (1.2) holds:

[po] +2HT =0

and the boundary condizions (6.1) are Euler equations for the minimization
problem defined by (9.3) subject to the constraints of constant volumes for

the two liquids.

THEOREM 9.1. Assume that the contact angle assumptions (*) and (**) hold.
Then

(i) Rigid motions are almost stable in the sense that the energy disturbances
is integrable on (0, %°).

(ii) The stable configurations associated with rigid motions minimize 2P 1n

.

10. Relation between the contact line and the contact angle.

Assumption (*) and (**) are equivalent to assuming a functional relation
between the contact angle determining it by its position on the contact line.
Precisely, such a functional relation is a differentiable map # between the
set @ of contact lines and the set & of contact angles. For instance, in the
case of sidewall (x =% L), € is the space of 27 periodic functions R =
= R(8), which are continuously differentiable with valuesin [R;, R;]; & is
tie space of 27 periodic functions, which are continuous which values in
[ R,, R,]; and:

€ — -4
% .4 R+ R cos o
contact angle contact line

The equation of Young and Dupré is given by
F(R)=CR
where C (= cos ;) is a fixed constant in [—1,1].

Assumption (*) is equivalent to the more general equatign F(R)(O) =
=&, ,[R(0)] where &,  Is a given absolutely continuous function from
[Rl,Rz] into (—RI,R2).
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11. Spatially periodic connected interfaces.
In this section we shall assume that the interface is a graph:

r = R(0, x)

) 2m : :
periodic, with period 27 in 60, and period —~= 2L in x. Following

Preziosi and Joseph (1985), we show that either R =d, where d is the mean
radius of R or the minimizing solution crosses the axis at r = 0. This means
that we get periodic arrays of drops and bubbles which have contact lines on
the inner rod. The analysis neglects the effects of these lines on the potentials
but is in good agreement with experiments away from these lines.

The analysis of stable configurations starts from the expression (6.3) for
2 It is assumed that there are no end plates and that R(6,x)=a, with
possibly flat tangents at R =a«. The contact line potentials & and  are
put to zero. Then we may write (6.3) as:

2/ 2
5Z>=f f {TIR*+ Ry + R*R2)V* — 1/8 [p] Q*R*}df dx (111)
0 0

27/ 27
d? =f f R?*d0 dx . (11.2)
0 0

In the analvsis which follows we will work with a potential M, differing
from 2 by terms which are independent of R,

where:

12. Mathematical formulation (PJ, 1985).

Joseph, Renardy, Renardy and Nguyen (1985), showed that rigid mo-
tions of two liquids between concentric cylinders of radius R, and R, are
stable to spatially periodic disturbances of arbitrary amplitude and that the
stable interface 7 = R(6,x) minimizes the potential.

M=T([R? + Ry + R*R}"*) -+ [p] Q2 ((R*—d2F) (121
where T is the interfacial tension, [p] = p; —p, where p, is the density

of the inner fluid, $ is the angular velocity of the two fluids, d? is the
spatial average of R?
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(R*) = (d*) (12.2)

2/ Q¢ 2w
() :f dxj ()do
0 0

and 27/« is the wave length in the direction x. When the heavy fluid is out-
side, [p] <0, M is minimized by R(0,x) = d whenever
def leH Q2 d3

J= > (12.3)

where

If /<4 the minimizing solution is not of constant radius. The volume con-
straint (12.2) eliminates solutions of constant radius other than 4. When J =
= 0, the interface is a surface of constant mean curvature, spherical, indepen-
dent of 0. We are going to study the 0 independent solutions tollowing the
work of Preziosi and Joseph (1985).

We measure all length in units d, setting » = R(x)/d where x and «
are dimensionless. Then there is a new M which is the old one divided by
Td and such that

21172 J

M= (L2 S P 1), a4

where

(r*y=«1). (12.5)

We scek to minimize M among periodic functions r(x), in the class C'(x),
satisfying (12.5). To do this, we introduce a Lagrange multiplier A and seek
the minimum of M + 2A(#*—1) among periodic C’(x) functions r(x).
The Euler equations for this problem are

1+72—¢"r J B
TN J{?r(r —~ 1)—?@—0. (12.6)

We may find a first integral of (2.6) by following a change of variables
first introduced by Beer (1869). Consider the interface curve formed in the
intersection of the axisymmetric interface and the axis r =0 of revolution.
The coordinates in this plane are (x,7) and the angle between the interface
curve ¥ = r(x) and x is Y. We define

v=cosy , OS2, (12.7)
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Then
' _V1-d
r' =tan Y = >
and
y_ dr' ,  duny __ 1 a
~ar T ar tan y = v3 dr
The Euler equations (12.6) become
d J
- iy —ur= 12.
= (ro) + 57— 0 (12.8)
_J . .
where u = > (1+ M) is as yet undetermined and
J 4 M <
v(r)———8—r + > " (12.9)

where ¢ 1s a constant of integration.

4
_— —_—
X

a) b) c)

Fig.1 — Schematic drawing of the minimizing solutions, Minimizing solutions touch the
axis with a perpendicular tangent.

(a) Solutions of unduloid type are convex, 4 = J = —5.42285,

(b) Solutions of nodoid type have a point of inflection —5.42285 > — 8.18834.

(c) Limiting (toroidal) form the solution for J = —7.553908.

The solution (12.9) is to be associated with an interface profile satisfying

*' =+/1—v%/v and the volume constraint

€rnc«
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2 —-1)p

= P = R E——————
0=(r 1) =4nm T

r1

dr . (12.10)

We may find all the axisymmetric solutions of our problem v(r(x)) gov-
erned by (12.9). There are solutions () of unduloid type, v = cos ¥ (see
Fig. 1)

forany 7 o<v(ns<l1 (D

and solutions (II) of nodoid type (see Fig. 1)

there exists r/v(r)<o0., (1)

The angle between the interface curve and the x-axis is ¢ and 7’ = tan Y.
An unduloid is a surface of constant mean curvature, J = 0, which is gener-
ated by the focus of a rolling ellipse. A nodoid is a surface of constant mean
curvature, J = 0, which is generated by the focus of a rolling hyperbola.

13. Preliminary analysis of the minimum problem.

It is convenient to replace the parameters (u,¢) with (ry, 7,), the mi-
~imum and maximum values of r(x). Since r'(r;) =r'(r,) =0 we have
v(r;) =v(r,) =1 and, using (12.9), we find that

J ury
‘g‘?";" 2 +7'1+C:Oy
J & KT
-grz— 2 +r2+C:O,
_ Joo_ 1
C=nri g T
#_] 2 2
2 _8<r1+r2)+71+7’2 ’
J s 4 4
ro=g (=T T (13.1)
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. ! .
Moreover, since 7' =+ 1—02/v

Y (Y N
NVTEE)

(13.2)

The period of periodic solutions is given x = A where

")
, VI=RE)

Solutions (1) of the unduloid type have 0 <v < 1. The constraintfrom

A=2

above leads us to

(r—ry)(r2—r) IZLS (r+r)(r+r)—

}éo.

ry 7,
Hence
8
J= (13.3)
(r +r)(r +7ry)(r +72)
forall » €[ry,7,]. When »=17,, (13.3) reduces to
4
J= (13.4)

7o (1) +12)?

In the problem treated by JRRN the fluid is confined by cylinders of
radius R; and R,. Hence 7, Z R,/R, and 7, 21, so thatif

4

CET
1+

then J satisfies (13.4). The largest possible J for which a solution of unduloid
type is possible is obviously J=4. When J=4 the only solution of our
minimum problem is the interface of constant radius 7(x) = 1.

The other condition v 20 for an unduloid leads us to the inequality

J= (13.5)

—8(r? 4+ 71 7,)

= ) )P )

(13.6)

for all r €[r,,7,]. Let us choose r € [r,,7,] <o as to make the right side of

(13.6) as large as possible; i.e., #2 = Vryry(r, + 70 = V7 73)
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-8 def

it VP

Solutions of type (I) are possible only when J satisfies the inequalities (13.4)
and (13.7).

If J<-0, solutions of type (I) are not possible and we get solutions
(I1) of nodoid type.

PJ showed that minimizing solutions of both types cross the axis, r, =
= 0. These solutions have r'(0) =oo at the axis. To see this we note that
r'(x) =V1-0v%/v where v(r(x)) = v(0) is evaluated at r(x) =r; =0 and,
from (13.1), v(0) = 0. It follows that solutions which minimize are singular
in that they are limits of solutions for which 7'(0) = 0, for ever larger curva-
rures. Solutions of type (I) which cross the axis satisfy the inequality (13.7)
with 7, =0, where r, must be found from the volume constraint (12.10). We
shall show that this inequality cannot be satistied if J<—=35.42285. In this
case the minimizing solution is of type (II). It has a point of inflection at
some >0 and r =00 art the points r; = 0 which cross the axis.

J -0 . (13.7)

1\

14. Numerical analysis of the minimum problem.

We -turn now to the problem of minimization. After introducing the new
variables into (12.4) and (12.5), we seek the minimum of

ry {r +—é—(r2 - 1)7)}
M =4 dr (14.1)
N 1—22

subject to the volume constraint (12.10). We note that v(r;) = v(r;) =1 so
that the integrands in (14.1) and in (12.10) are singular at end points of in-
tegration. This singularity is integrable because

(1= =0F—r),—r)gr) (14.2)

where

1 J 2 )
g(7)=(r+n)(r+rz)Hrl+rz —‘g(”z + 7y 7’2)} ‘7'62_‘7’2(7’1'*‘72) }

is positive for all r € [ry, 7,]. This singularity may be removed by the follow-
ing change of variables
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ry+vr ¥y —F def
r= ‘22+ 22‘gnaéfwy (14.3)

We find then that

2| ¥+ “é’ (r* = 1*ro(r)
47rf

M= — do , (14 4
- /2 g(r) )
/2
(r2 = 1)rv(r) jl
0=4 140 (14.5)
ﬂ'/: n/2 { g(?’)

These integrals are nice because the limits are fixed and the integrands are not
singular if 7; # 0. The volume constraint gives 7, as a function of 7y, 0 <
r, < 1. The stable configuration is the one which minimizes M as 7, varies.

Renardy (see JRRN) proved that when J 2 4 the minimizing interface
is of constant radius. PJ find that when J<—8.18834 there are no axisim-
metric minimizers. Exactly the same criterion of non-existence was
given by Chandrasekhar (1965) in his study of drops rotating in a vacuum,
He mentions the possibility of toroidal figures of equilibrium (see Fig. 1).
In the context of this paper a toroidal figure of equilibrium at large
negative values of J might be interpreted to mean that there are no locally
stable flows with heavy fluid inside; all of the heavy liquid has been
centrifuged to the outér cylinder giving rise to robustly stable flows with
J>4

When —8.18834 <] <4 the minimum of M is taken by interfaces
which cross the axis, 7; =0 at periodic points on the axis x of revolution.
When —8.18834 <J < —5.42285 the minimizing solutions are of nodoid
type (II). When —5.42285 < J<4 the solutions are of unduloid type oY)
(see table 1). When r; = 0, v(r) reduces to

v(r)=l8£(7§~—r2)+72- (14.6)

and, using (13.2)

0]
_ v(y)Vy db
x = 5 SAASS = - (14.7)
-7n/2 + A A A Y 2 2
l:(”z "/)[8 r2:| 64 7‘23/}

4 . \
where y = 72 (1+sin6) and ¢ = arcsin [__i.r - 1], The period A of thesé
2
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periodic solutions is given (14.7) with r=r, and ¢ =7/2 and x = A/2
where A is the period. The function A(J), J>0 giving the period of the
minimizing solution is a monotonically increasing function and A(J) = e
for J = 4. This means that the wave length gets larger and as J<4 is
increased.

TABLE 1. Parameter values for minimizing solutions.
J ) A 72 [p] 24%ST
Solutions of unduloid type 1
0 1.22 2.45 2 0

-1 1.22 1.98 1.63 0.227
-2 1.20 1.65 1.36 0.439
-2.1 1.20 1.62 1.35 0.859
-3 1..89 1.39 1.17 0.625
-4 1.17 1.20 1.02 0.798
-5 1.15 1.03 0.91 0.942
-5.42285 1.14 0.98 0.865 1.00
-6 1.13 0.91 0.807 1.07
-7 1.12 0.78 0.692 1.23
-8 1.15 0.58 0.505 1.52
-8.18839 1.19 0.446 0.374 1.73
Solutions of nodoid type 11

-8.1880 1.19 0.442 0.370 1.73
-8.0 1.26 0.246 0.145 2.02
-7.55395 1.35 0 0 2.32
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15. Periodic solutions, drops and bubbles.

Solutions which touch the axis may be regarded as limiting cases of peri-
odic solutions. Then we get a periodic array of drops (J<0) or bubble
(J>0) lined up with their centers on the axis of rotation. If we put a rod of
radius a at the center of the array the resulting configuration would assume
the form of an array of rollers. When the periodic solution is viewed as an
array of drops or bubble, 7, is one radius of the drop and A/2 1s the other.
The sphere with 7, = \V/3/2 corresponds toa volume of 7+/6 which is the
volume of a right circular cylinder of unit radius and height 27, .Graphs of A
and the ratio r, /A which gives the aspect ratio of the drop or bubble is shown
in Fig. 2 and Table 1. We may compute /J from this aspect ratio. It 1s also
of interest to briefly consider the mean curvature H(r) = [v(r) r)12r =

= g(rz 27°) + 7, at the poles » =0, H(0) = §+ 7y or at the equator
H(ry) =——é—r§ + 712— or the rotating drop or bubble. The curvature at the

equator 1s negative when J§—8/r§ corresponding to solutions (II) of
nodoid tvpe.

Fig.2 — Rotating bubble with J= 1.32. The dots are values given by the minimizing
solution which neglects capillarity at the contact line.

Solutions which touch the axis of rotation will certainly touch the inner
cylinder. In a strict formulation such cylinder touching solutions would bring
in contact lines energies which were neglected in the analysis of §12-14.
These solutions are same as the ones given by Rosenthal (1962) for rotating
bubbles (/> 0) and by Chandrasekhar (1965) for rotating drops (J < O0).

I
bec
1Nt
elo

bu
tra

fin
(1¢
sili
bu
caj

e
sh
of
sty
du
th

Tl
W]
sC

Pr

lo



195

For rotating drops and bubbles, the volume, rather than the mean
radius d is prescribed. The appropriate parameter, replacing J, isY =—Jra/
The parameter is used by Chandrasekhar and it is listed in Tabel 1. In the case
of bubbles J>4 cannot be achieved because the bubble will elongate as £2
is increased in such a way that the effective mean radius

d=14T/[p] Q%"

is a decreasing function of €. This property of rigidly rotating bubbles has
meen used as a basis for a device (Princin, Zia and Mason, 1967) for measuring
interface tension. In our experiments, using end plates, we may suppress the
elongation and achieve a solution with constant radius R = d when J > 4.

Spatially periodic configurations do appear in the experiments of PJ,
but periodic solutions with heavy fluid outside (J>0) occur only as
transients.

Periodic arravs of bubbles of permanent form rarcely appear. Instead one
finds isolated bubbles pierced bv a shaft, as in the experiments of Plateau
(1863) on rotating fluid drops (see Fig. 2). In the experiments of PJ with
silicone oils, castor oil and paratac bubbles rotating in water, the form of the
bubbles near the piercing center cylinder was not very strongly intluenced by
capillarity at the line of contact (see Fig. 2).

Periodic arravs of drops, even periodic solutions, can be seen, even as
solutions of permanent form. We mayv regard the periodic arrays of rollers
shown in the paper of Joseph, Nguven and Beavers (1980) as a manifestation
of minimization of the interface potential subject to certain unilateral con-
straints. Rollers may be regarded as a nearly rigid motion perturbed by shear
due the drag of a second liquid and to gravity. It is necessary to establish that
there are realizable conditions under which the perturbations can be sup-
pressed.

Photographs of periodic (or nearly periodic) films or layers of liquids on
rotating rods are exhibited in the papers Moffat (1977) and Preziosi and
Joseph (1985). In §19 of this paper we argue that the effects of gravity on
the periodic structures in the axial direction are not important. These solu-
tions do not exhibit contact lines and they cannot be minimizing solutions
which cross the axis. It is probable that those periodic structures are de-
scribed by solutions in which the presence of the rod is'acknowledged by the
prescription of flat contact angles at points where R = K.

F. Leslie (1985) has solved the problem of rotating bubble shapes in a
low gravity environment. His drop can contact end walls which are perpen-
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dicular to the axis of rotation. He applies the condition of constant contact
angle given by the Young-Dupré formula at the side walls. He does not use
density matching to achieve micro-gravity but instead does the experiment in
a free falling aircraft.

C.S. Yih (1960) considered the problem of stability of a film of liquid
on a cylinder rotating in air. He treats this problem in the linearized approxi-
mation. He studies the stability of rigid motions with a free surface of con-
stant radius with gravity neglected. Naturally these are unstable because J<C.
The rigid motion is stable, but not the free surface of constant radius.

Renardy and Joseph (1984) studied the stability of Couette flow of two
fluids between concentric cylinders with gravity neglected. The linear theory
1s used and the interface is assumed to have a constant radius. A thin layer of
less viscous fluid next to the cylinder is stable. There are surely other stable
motions in which the interface does not have a constant radius.

16. Perturbation of rigid motions due to the drag of a second liquid.

To fix our topic ‘we may think of a drop of oil rotating in vast expense
of water at rest at infinity. This configuration is like the one used by Plateau
(1863) in his study of rotating drops and like another used by Joseph, Nguyen
and Beavers (1984) to study rollers.

Brown and Scriven (1980) note that:

“J.A.F. Plateau though blind was far — seeing when be began experimen:-
ing on the shapes of rotating liquid drops, for he intended his centimetre —
sized drops hold together by surface tension to be models for immense liquid
masses hold together by self gravitation... .

“Plateau drop was pierced by a shaft and immersed in a tank of liquid
having almost the density of the drop. The shaft was mounted vertically and
by turning it Plateau... could bring the drop into rotation: not rigid rotation,
because of the drag of the surrounding liquid, but some sort of rotation that
Plateau presumed to approximate rigid-body rotation”.

The dynamics governing the drops in Plateau’s experiments is not well
understood. The working fluids for those experiments were olive oil and
water-alcohol, with water-alchohol outside (a rotating bubble). There is no
doubt that if the viscosity of the fluid on the rotating rod is sufficiently
large, the fluid on the rod may rotate as a rigid body. Consider laminar flow
viscous fluids filling the plane outside of a cylinder of radius R rotating at
an angular velocity £2; whith gravity neglected. The viscosity ratio of the

two
We ¢

whe

aCr(

wh
Stre

wk
1S ;



197

cwo fluids is m = u,/m, where u; s the viscosity of the fluid on the rod.

Wwe seek and find a solution in circles with

Qi R, Ry R,
v, = D2 (L=—m)yr=—7—¢, R<r<D;
meQl
V=, D<r<o (16.1)
gr

where r = D 1is the position of the interface,

RZ
g=0-m 71

dlm) T _
= ﬂ‘o

The pressure may be obtained by integrating:

across which

2
dPi:Piv,' | i=12
ar ¥

where the constant of integration may be selected to satisfy the normal

stress equation

T
le]]—_-’D— .

For fixed values of R; and D, we get:

b = Q1 (16.2)
U2 = QlDz/r’
p, Q2 r?
pl_—_- 2 +C1 ’
— 05 QZD4
pr=——5— +1C1-C,
[pll=T/D

when m = u,/u, is sufficently large. Thevelocity field v, = &7, RySr<D
s a rigid rotation.

The solution (16.1) and (16.2) would not be expected to be stable for
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all values of the parameters. Indeed the analysis of stability of rigid motions
given in Section 12 to 13 suggests that a constant radius with R = D could
not be mantained for small £, (recall that J=>4 for stability) or for any
§2; when the inner fluid 1s heavy (drops).

In the case of water outside oil, the water could be expected to undergo
ordinary hydrodynamics transitions leading to turbolence Reynolds numbers
well below those required for instability in the viscous drop. What might be
the effect of the turbulence in the water? It is possible that the turbolent
solutions could lead to a thin boundaryv layer of water on the oil across which
pressure is effectively constant and equal to the pressure in the water (which
could be atmospheric plus the gravitational head) at large distances. In this case
the dynamical stabilizing effects of the water outside, which in rigid motions
keeps the light fluid from centrifuging, would be lost and the bubble would
act like a drop.

The experiments of JNB, JNNR and PJ also involve the rotation of
oil masses called rollers in water. These rollers are lubricated everywhere by
water, and if the viscosity of the oil is large enough, the rotation of the oil
mass 1s rigid. The 1000 poise and 6000 poise silicone oil rollers in water
(0.01) rotate rigidly. The 200 poise polvmeric oils (STP) also rotate in water
rigidly, or nearly so with some evidence for slight effects of shearing against
water. Viscous liquids of smaller viscosity begin to show marked relative
motion under the influence of shearing in water, In these fluids we get sheet
lubrication and dynamic emulsions. The formation of these interesting que-
stions 1s related more to the problem of placements than to the problem of
shapes. The problem of placements arises whenever the effects of shearing
are important.

17. Physical mechanism for the instability of rigid rotation of fluid. Bifur-
cation to non-axisymmetric shapes.

The problem of shapes on fluids, which rotate rigidly whithout shear
when gravity is neglected, is determined by a balance of the capillary force
against pressure forces associated with centripetal accelerations. When there
Is no rotation, and no other constraints, surface tension will pull the interface
into a sphere. Of course, the sphere is an axisymmetric figure for any axis.

Plateau, in the (1863) work already cited, found that as § increased
the drop passed through a sequence of shapes, axisymmetric, ellipsoidal and
two lobed. Then the majority of the liquid broke free of the shaft, forming
a toroidal ring which was stable for a short time. Brown and Scriven (1980)
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R>d, A>0, A, =0, because, on the average (17.3) requires A < 0. Near
these points we get larger values of (1+ AL (1 + AP, As Q is small, 1t in-
creases the maximum values at which & = R—d >0 get larger, and A,
grows near such points. When the positive values of & are sufficiently large
we pay a greater price by increasing A, than by increasing Ag. Then bifur-
cation occurs. This argument suggests that we should expect to see non axi-
symmetric solutions form on rings R—d >0 of relatively short length,
Such bifurcation on narrow rings have been observed in the experiments of
PJ and can inferred from inspecting the paper of Moffat (1977).

18. Some effects of gravity. Intrinsically unsteady and steady solutions.

Up to now we have neglected the effects of gravity. Gravity can have a
big effect, depending on parameters. It is certain that gravity is most impor-
tant when the density difference is largest; gravity enters through the normal
stress equation and it is appears there as [p] g and it has no effect when
[p] = 0. We can achieve microgravity environments by density matching. In
this section we want to understand what the main effects of gravity may be;
so we emphasize its effect by considering the dynamics of a viscous liquid
which coats a horizontal rod rotating in air.

It is impossible to maintain an interface of constant radius on a film or
layer coating a rotating rod. The effects of gravity and the interface potential
lead to wavy surfaces and drops which are forced to rotate by adherence o
the rotating rod. If the layer of oil is thick, gravity can be very effective :n
creating a large secondary motion with gravity opposing the direction of
motion on one side of the rod and supporting on the other, leading to a film
cross-section with a first mode (sin ) azimuthal variation, as in Fig. 3.

On the other hand even though there is secondary motion due to gravity,
there is also the competition between centripetal acceleration and surface
tension, tending to minimize the potential. At low speads § of rotation,
this minimum tends to be achieved by axisymmetric solutions, which are then
superimposed on the first mode azimuthal variation due to gravity. This leads
to shapes of the type shown in Fig. 3.

The effect of gravity are greater when there is more liquid on the rod.
For fixed volume of liquid, the effects of gravity are diminished when the
viscosity is increased; however, more liquid will remain on the rod at given
speed when the liquid is more viscous. The two effects compete. At low
speeds an equilibrium is established with a “lop-sided” configuration as in
Fig. 3, which is steady in laboratory coordinates.

Fig. 3
the ¢
the sl

Fig
vier
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As the speed of rotation is increased the out of roundness shown In
Fig. 3 begins to rotate relative to laboratory coordinates. At the same time
the crest of the waves of grow and rings develop, in a manner suggested in

the sketch of Fig. 4.

g g
(b) front

|

‘ C (top)
Fig. 3 — Viscous film on a slowly rotating rod is
distorted by gravity. The configuration is steady
in laboratory coordinates. The “top-sided” bumps

are due to gravity.
8
1 ¢
(b) (c)

(a)

Fig. 4 — Liquid film on a rod rotating at a higher angular velocity than in Fig. 3. (a) Front
view, (b) top view, (c) side view. This configuration is intrinsically unsteady. The lobe in
(¢) undergoes a differential rotation and also rotates as a whole with the rod.
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Configurations like the one shown in Fig. 4 where studied by Moffart
(1977). He did some experiments with 80 poise golden syrup solutions. In
his experiments gravity and secondary motion were important,

If the speed of rotation is now increased liquid will be flung of the rod,
reducing the volume of fluid on the rod. In some circumstances it is possible

to see bifurcation to many lobed configurations, more or less axisymmetric
asin Fig. 5.

Fig. 5 — Nearly rigid bifurcated figures on a rotating rod. These figures are almost steady
in a coordinate system rotating with angular velocity §2.

At very high speeds, most of the liquid is thrown off the rod. Gravity
has nothing to with throwing off because ejected particles of fluid are flung
out radially. An equilibrium is reached in which there are pendant drops on
a rotating rod. There is a tendency for these drops to form with a diamond
plan form as in Fig. 6.

Fig. 6 — Pendant drops on a rapidly rotating rod. This configuration rotates rigidly and is
perfectly steady in a coordinate system which rotates with angular velocity £2.

The pendant drops are exactly the same as would form an a wet ceiling
under the influence of gravity, The effective gravity is Q?R,, where R, is
the radius of the rotating rod.

At low speeds, the coating flows are strongly influenced by gravity and
the interfacial potential. They are stationary in coordinates rotating with
angular velocity . At high speeds, gravity is unimportant. The film must
bifurcate into various regular patterns of increasing complexity as the speed
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of rotation is increased.

Let us consider rimming flows. These are flows which coat the interior
wall of a rotating annular cylinder. At high speeds all the liquid will be cen-
rrifuged to the outside wall. At lower speeds there will be some effect of
gravity. The effects of gravity will be small (see Exercise 11.6) when the ratio

2g
R

<1.

Note that this criterion is independent of density.
We suppress gravity by rapid rotation, as is well known.

Exercises.

Exercise 1.1 - A container is filled with an incompressible fluid and it is
rotating with angular velocity £(¢). Show that rigid motions of the fluid
in the container are possible only when £ is independent of ¢.

Exercise I1.2 (GJNR) - Calculation of 7-U on 0Z.
The interface T is described locally by the equation

r=R(0,x,t) , x;(0)<x,(0), 0sO0<27
or by
x=X(0,t), r(0)<r<r(0), 0<0<2m.
Assﬁme that 8% has a part on the side walls:
Z,={x=R(, L, t)e}
and a part on the cylinders
0. = {x=R;e, + X(R;, 0,t)e.t .
Define:

n = VF/|VF|, the unit vector normal to Z, from fluid 1 to fluid 2, with
F(x)=r—R(0,x) or F(x)=X(r,0)—x;

t = dx/dl, a unit tangent vector to 9X;

T =n At, aunit vector normal to 9% In 2;

U = dx/dt, the velocity of a point on the contact line 9.

The function 7+ U is calculated as follows
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T U=U@rND)=nCCAD.
On the side walls at x = * L., we have

VE=¢e, +egRyp —Ryex,
R
= (QR@ —@R)de/dl y

g ZgrRt + (QR@ +£6R)d0/dt .

=+

On the cylinders at » = R;, we have

VF =eX, +egXg/R; —ex ,
t =legR; +e.Xgd0/dl,
U =l[egR;+e.Xgldbrdt + e, X, ,

7*U=R;X,X,|VF|"1d6/dl .

Exercise I1.3 - Show that (6.1) and (1.2) are Euler equations for (9.3).

Exercise 11.4 (the inequality (2.2)) - Consider the functional

1 1
Me]zf u@'zdx/f 0’ dx
[¢] 0

where u, u;, u, are positive constants:

My F My,

1

My, O0<x</
‘l:
My, I<x <

0(x) is continuous across x =/, 9(0)=6(1)=0 and 6 is rwice differen-
tiable above and below /. Show that A[#] is positive and bounded from
below,

A=A0)=min\[0]>0.
Show that
0" + 226 =0

holds above and below 1 and

M2 0| z“gl‘xw'

- xy 1!
Find A.
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Exercise I1.5 (the inequality (7.2)) - Let
X =A[3] = min \[7]

reEX
where

N ol = 2]
[v] T

Find Euler’s equations and the natural boundary conditions for A

and 7.
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